Package ‘RVCompare’
August 22, 2021

<table>
<thead>
<tr>
<th>Type</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Compare Real Valued Random Variables</td>
</tr>
<tr>
<td>Version</td>
<td>0.1.5</td>
</tr>
<tr>
<td>Author</td>
<td>Etor Arza</td>
</tr>
<tr>
<td>Maintainer</td>
<td>Etor Arza etorarza@gmail.com</td>
</tr>
</tbody>
</table>

Description
A framework with tools to compare two random variables, and determine which of takes produces lower values. See the README.md at <https://github.com/EtorArza/RVCompare> for a quick start guide. It can compute the \(C_p \) and \(C_d \) of two probability distributions, as explained in E. Arza (2021) <https://github.com/EtorArza/RVCompare-paper/releases>. Given the observed samples of two random variables \(X_A \) and \(X_B \), it can compute the cumulative difference-plot (see E. Arza (2021) <https://github.com/EtorArza/RVCompare-paper/releases> for details). Uses bootstrap and DKW-bounds to compute the confidence bands of the cumulative distributions. These two methods are described in B. Efron (1979) <doi:10.1214/aos/1176344552> and P. Massart (1990) <doi:10.1214/aop/1176990746>.

Depends
stats (\(>= 3.4.4 \)), pracma (\(>= 2.2.2 \)), ggplot2 (\(>= 3.2.0 \)),

Imports
Rcpp (\(>= 0.11.0 \)), utils (\(>= 3.4.4 \))

License
CC0

Encoding
UTF-8

RoxygenNote
7.1.1

LinkingTo
Rcpp

NeedsCompilation
yes

Repository
CRAN

Date/Publication
2021-08-22 21:30:12 UTC

R topics documented:

CdFromDensities ... 2
CdFromProbMassFunctions 3
CdFromDensities

The dominance rate of X_A over X_B given the density functions.

Description

Returns a real number in the interval [0,1] that represents the dominance rate of X_A over X_B. Basically, we are measuring the amount of mass of X_A in which the cumulative distribution of X_A is higher minus the amount of mass of X_B in which the cumulative distribution of X_B is higher.

Usage

CdFromDensities(densityX_A, densityX_B, xlims, EPSILON = 0.001)

Arguments

densityX_A The probability density function of the random variable X_A.
densityX_B The probability density function of the random variable X_B.
xlims an interval that represents the domain of definition the density functions.
EPSILON (optional, default = 1e-3) minimum difference between two values.

Value

Returns the dominance rate of X_A over X_B.

See Also

CpFromDensities
Examples

If two symmetric distributions are centered in the same point (x = 0 in # this case), then their Cd will be 0.5.

densityX_A <- normalDensity(0,1)
densityX_B <- uniformDensity(c(-2,2))
CdFromDensities(densityX_A, densityX_B, c(-5,5))

Example 2
If two distributions are equal, Cd will be 0.5. Cd(X_A,X_A) = 0.5
CdFromDensities(densityX_A, densityX_A, c(-10,10))

Example 3
example on https://etorarza.github.io/pages/2021-interactive-comparing-RV.html
tau <- 0.11
densityX_A <- normalDensity(0.05,0.0015)
densityX_B <- mixtureDensity(c(normalDensity(0.05025,0.0015),
 normalDensity(0.04525, 0.0015)),
 weights = c(1 - tau, tau))
plot(densityX_A, from=0.03, to=0.07, type="l", col="red", xlab="x", ylab="probability density")
curve(densityX_B, add=TRUE, col="blue", type="l", lty=2)
Cd <- CdFromDensities(densityX_A, densityX_B, c(.03,.07))
mtext(paste("Cd(X_A, X_B) =", format(round(Cd, 3), nsmall = 3)), side=3) # add Cd to plot as text
legend(x = c(0.0325, 0.045), y = c(200, 250),legend=c("X_A", "X_B"),
col=c("red", "blue"),
lty=1:2,
cex=0.8) # add legend

Example 4
The dominance factor ignores the mass of the probability where the # distribution functinos are equal.
densityX_A <- uniformDensity(c(0.1, 0.3))
densityX_B <- uniformDensity(c(-0.2,0.5))
CdFromDensities(densityX_A, densityX_B, xlims = c(-2,2))
densityX_A <- mixtureDensity(c(uniformDensity(c(0.1,0.3)), uniformDensity(c(-1,-0.5))))
densityX_B <- mixtureDensity(c(uniformDensity(c(-0.2,0.5)), uniformDensity(c(-1,-0.5))))
CdFromDensities(densityX_A, densityX_B, xlims = c(-2,2))

CdFromProbMassFunctions

The dominance rate of X_A over X_B for discrete distributions, given the probability mass functions.

Description

Returns a real number in the interval [0,1] that represents the dominance rate of X_A over X_B.
Usage

CdFromProbMassFunctions(pMassA, pMassB)

Arguments

- **pMassA**: The probability mass function where \(p_{MassA}[i] \) is the probability of \(x_i, p_A(x_i) \).
- **pMassB**: The probability mass function where \(p_{MassB}[i] \) is the probability of \(x_i, p_B(x_i) \).

Value

Returns the dominance rate of \(X_A \) over \(X_B \) for discrete random variables.

Examples

```
CdFromProbMassFunctions(c(0.2,0.6,0.2), c(0.3,0.3,0.4))
#> 0.6
# Notice how adding additional mass with the same cumulative distribution in both
# random variables does not change the result.
CdFromProbMassFunctions(c(0.2,0.6,0.2,0.2,0.2)/1.4, c(0.3,0.3,0.4,0.2,0.2)/1.4)
#> 0.6
```

CpFromDensities

The probability that \(X_A < X_B \) given the density functions.

Description

Returns a real number in the interval \([0,1]\) that represents the probability that a sample observed from \(X_A \) is lower than a sample observed from \(X_B \).

Usage

CpFromDensities(densityX_A, densityX_B, xlims)

Arguments

- **densityX_A**: The probability density function of the random variable \(X_A \).
- **densityX_B**: The probability density function of the random variable \(X_B \).
- **xlims**: an interval that represents the domain of definition the density functions.

Value

Returns the probability that \(X_A < X_B \).

See Also

CdFromDensities
cpp_helper_from_ranks_to_integrable_values

Examples

Example 1
If two symmetric distributions are centered in the same point (x = 0 in this case), then their Cp will be 0.5.
densityX_A <- normalDensity(0,1)
densityX_B <- uniformDensity(c(-2,2))
Cp = CpFromDensities(densityX_A, densityX_B, c(-5,5))
plot(densityX_A, from=-5, to=5, type="l", col="red", xlab="x", ylab="probability density")
curve(densityX_B, add=TRUE, col="blue", type="l", lty=2)
mtext(paste("Cp(X_A, X_B) =", format(round(Cp, 3), nsmall = 3)), side=3) # add Cp to plot as text
legend(x = c(-4.5, -2), y = c(0.325, 0.4),legend=c("X_A", "X_B"),
 col=c("red", "blue"),
 lty=1:2, cex=0.8) # add legend

Example 2
If two distributions are equal, Cp will be 0.5. Cp(X_A,X_A) = 0.5
CpFromDensities(densityX_A, densityX_A, c(-10,10))

Example 3
densityX_A <- normalDensity(-2,1)
densityX_B <- uniformDensity(c(-2,2))
Cp(X_A,X_B) = 1 - Cp(X_B, X_A)
CpFromDensities(densityX_A, densityX_B, c(-8,4))
1 - CpFromDensities(densityX_B, densityX_A, c(-8,4))
cumulative_difference_plot

Generate the cumulative difference-plot

Description

Generate the cumulative difference-plot given the observed samples using the bootstrap method.

Usage

```r
cumulative_difference_plot(
  X_A_observed,
  X_B_observed,
  isMinimizationProblem,
  labelA = "X_A",
  labelB = "X_B",
  alpha = 0.05,
  EPSILON = 1e-20,
  nOfBootstrapSamples = 1000,
  ignoreMinimumLengthCheck = FALSE
)
```

Arguments

- `X_A_observed`: array of the observed samples (real values) of X_A.
- `X_B_observed`: array of the observed samples (real values) of X_B, it needs to have the same length as X_A.
- `isMinimizationProblem`: a boolean value where TRUE represents that lower values are preferred to larger values.
- `labelA`: (optional, default value "X_A") the label corresponding to X_A.
- `labelB`: (optional, default value "X_B") the label corresponding to X_B.
- `alpha`: (optional, default value 0.05) the error of the confidence interval. If alpha = 0.05 then we have 95 percent confidence interval.
- `EPSILON`: (optional, default value 1e-20) minimum difference between two values to be considered different.
- `nOfBootstrapSamples`: (optional, default value 1e3) how many bootstrap samples to average. Increases computation time.
- `ignoreMinimumLengthCheck`: (optional, default value FALSE) whether to skip the check for a minimum length of 100 in X_A_observed and X_A_observed.

Value

Returns and shows the cumulative difference-plot.
Examples

```r
### Example 1 ###
X_A_observed <- rnorm(100, mean = 2, sd = 1)
X_B_observed <- rnorm(100, mean = 2.1, sd = 0.5)
cumulative_difference_plot(X_A_observed, X_B_observed, TRUE, labelA="X_A", labelB="X_B")

### Example 2 ###
# Comparing the optimization algorithms PL-EDA and PL-GS
# with 400 samples each.
PL_EDA_fitness <- c(
  52235, 52485, 52542, 52558, 52520, 52508, 52491, 52474, 52524,
  52414, 52428, 52413, 52457, 52437, 52449, 52534, 52531, 52476, 52434,
  52492, 52554, 52520, 52500, 52342, 52520, 52392, 52478, 52422, 52469,
  52421, 52386, 52373, 52230, 52504, 52445, 52378, 52554, 52475, 52528,
  52508, 52222, 52416, 52492, 52538, 52192, 52416, 52213, 52478, 52496,
  52444, 52524, 52501, 52495, 52415, 52151, 52440, 52390, 52428, 52438,
  52475, 52177, 52512, 52530, 52493, 52424, 52201, 52484, 52389, 52334,
  52548, 52560, 52536, 52467, 52392, 51327, 52506, 52473, 52087, 52502,
  52533, 52523, 52485, 52535, 52502, 52577, 52508, 52463, 52530, 52507,
  52472, 52400, 52511, 52528, 52532, 52526, 52421, 52442, 52532, 52505,
  52531, 52644, 52513, 52507, 52444, 52471, 52474, 52426, 52526, 52564,
  52512, 52521, 52533, 52511, 52416, 52414, 52425, 52457, 52522, 52508,
  52481, 52439, 52402, 52442, 52512, 52377, 52412, 52432, 52506, 52524,
  52488, 52494, 52531, 52471, 52616, 52482, 52499, 52386, 52492, 52484,
  52537, 52517, 52536, 52449, 52439, 52410, 52417, 52402, 52406, 52217,
  52484, 52418, 52550, 52513, 52530, 51667, 52185, 52089, 51853, 52511,
  52051, 52584, 52475, 52447, 52390, 52506, 52514, 52452, 52526, 52502,
  52422, 52411, 52171, 52437, 52323, 52488, 52546, 52505, 52563, 52457,
  52502, 52593, 52126, 52537, 52435, 52419, 52300, 52481, 52419, 52540,
  52566, 52547, 52476, 52448, 52474, 52438, 52363, 52484, 52455,
  52420, 52385, 52152, 52505, 52457, 52473, 52503, 52507, 52429, 52513,
  52433, 52538, 52416, 52479, 52501, 52485, 52429, 52395, 52503, 52195,
  52380, 52487, 52498, 52421, 52137, 52493, 52403, 52511, 52409, 52479,
  52400, 52498, 52482, 52440, 52541, 52499, 52476, 52485, 52294, 52408,
  52426, 52464, 52535, 52512, 52516, 52531, 52449, 52507, 52485, 52491,
  52499, 52414, 52403, 52398, 52548, 52536, 52410, 52549, 52454, 52534,
  52468, 52483, 52239, 52502, 52525, 52328, 52467, 52217, 52543, 52391,
  52524, 52474, 52509, 52496, 52432, 52532, 52493, 52503, 52508, 52422,
  52459, 52477, 52521, 52515, 52469, 52416, 52249, 52537, 52494, 52393,
  52057, 52513, 52452, 52458, 52518, 52520, 52524, 52531, 52439, 52530,
  52422, 52649, 52481, 52256, 52428, 52425, 52458, 52488, 52502, 52373,
  52462, 52392, 52529, 52178, 52495, 52438, 52539, 52430, 52459, 52312,
  52437, 52637, 52511, 52563, 52270, 52341, 52436, 52515, 52408, 52509,
  52490, 52453, 52422, 52443, 52419, 52512, 52447, 52425, 52509, 52180,
  52521, 52566, 52060, 52425, 52480, 52501, 52536, 52143, 52432,
  52451, 52548, 52508, 52561, 52515, 52502, 52468, 52373, 52511, 52516,
)```
cumulative_difference_plot(PL_EDA_fitness, 
PL_GS_fitness, 
isMinimizationProblem=FALSE, 
labelA="PL-EDA", 
labelB="PL-GS")
getEmpiricalCumulativeDistributions

Get the empirical distribution from samples.

Description

Given the observed samples of \( X_A \) (or \( X_B \)) returns the empirical cumulative distribution function of \( Y_A \) (or \( Y_B \)).

Usage

```r
getEmpiricalCumulativeDistributions(
 X_A_observed,
 X_B_observed,
 nOfEstimationPoints,
 EPSILON,
 trapezoid = TRUE
)
```

Arguments

- **X_A_observed**: array of the observed samples (real values) of \( X_A \).
- **X_B_observed**: array of the observed samples (real values) of \( X_B \).
- **nOfEstimationPoints**: the number of points in the interval \([0,1]\) in which the cumulative density is estimated + 2.
- **EPSILON**: (optional, default value 1e-20) minimum difference between two values to be considered different.
- **trapezoid**: (optional, default TRUE) if trapezoid=FALSE the non smooth empirical distribution is given. This is what the WDK uses the empirical as the estimation.

Value

a list with two fields: the empirical distributions of \( X^'A \) and \( X^'B \).

Examples

```r
Example 1
c <- getEmpiricalCumulativeDistributions(c(1:5),c(1:3,2:3), 170, EPSILON=1e-20, trapezoid=FALSE)
plot(cp, cY_A_cumulative_estimation, type="l")
lines(x=c$p, y=c$Y_B_cumulative_estimation, col="red")
```
**Description**

Estimate the confidence intervals for the cumulative distributions of \( Y_A \) and \( Y_B \) using bootstrap. Much slower than the Dvoretzky–Kiefer–Wolfowitz approach.

**Usage**

```r
get_Y_AB_bounds_bootstrap(
 X_A_observed,
 X_B_observed,
 alpha = 0.05,
 EPSILON = 1e-20,
 nOfBootstrapSamples = 1000,
 ignoreMinimumLengthCheck = FALSE
)
```

**Arguments**

- **X_A_observed**
  array of the observed samples (real values) of \( X_A \).
- **X_B_observed**
  array of the observed samples (real values) of \( X_B \), it needs to have the same length as \( X_A \).
- **alpha**
  (optional, default value 0.05) the error of the confidence interval. If alpha = 0.05 then we have 95 percent confidence interval.
- **EPSILON**
  (optional, default value 1e-20) minimum difference between two values to be considered different.
- **nOfBootstrapSamples**
  (optional, default value 1e3) how many bootstrap samples to average. Increases computation time.
- **ignoreMinimumLengthCheck**
  (optional, default value FALSE) wether to check for a minimum length in \( X_A \) and \( X_B \).

**Value**

Returns a list with the following fields:

- **p**: values in the interval \([0,1]\) that represent the nOfEstimationPoints points in which the densities are estimated. Useful for plotting.
- **Y_A_cumulative_estimation**: an array with the estimated cumulative distribution function of \( Y_A \) from 0 to \( p[ji] \).
- **Y_A_cumulative_upper**: an array with the upper bounds of confidence 1 - alpha of the cumulative density of \( Y_A \).
- \(Y_A\) cumulative_lower: an array with the lower bounds of confidence 1 - \(\alpha\) of the cumulative density of \(Y_A\)
- \(Y_B\) cumulative_estimation: The same as \(Y_A\) cumulative_estimation for \(Y_B\).
- \(Y_B\) cumulative_upper: The same as \(Y_A\) cumulative_upper for \(Y_B\)
- \(Y_B\) cumulative_lower: The same as \(Y_A\) cumulative_lower for \(Y_B\)
- \(\text{diff}\) estimation: \(Y_A\) cumulative_estimation - \(Y_B\) cumulative_estimation
- \(\text{diff}\) upper: an array with the upper bounds of confidence 1 - \(\alpha\) of the difference between the cumulative distributions
- \(\text{diff}\) lower: an array with the lower bounds of confidence 1 - \(\alpha\) of the difference between the cumulative distributions

**Examples**

```r
library(ggplot2)

Example 1
X_A_observed <- rnorm(100, mean = 2, sd = 1)
X_B_observed <- rnorm(100, mean = 2.1, sd = 0.5)

res <- get_Y_AB_bounds_bootstrap(X_A_observed, X_B_observed)

fig1 = plot_Y_AB(res, plotDifference=FALSE)+ ggplot2::ggtitle("Example 1")
print(fig1)

Example 2
Comparing the estimations with the actual distributions for two normal distributions.
Sample size = 100

X_A_observed <- rnorm(100, mean = 1, sd = 1)
X_B_observed <- rnorm(100, mean = 1.3, sd = 0.5)

res <- get_Y_AB_bounds_bootstrap(X_A_observed, X_B_observed)
X_A_observed_large_sample <- sort(rnorm(1e4, mean = 1, sd = 1))
X_B_observed_large_sample <- sort(rnorm(1e4, mean = 1.3, sd = 0.5))

actualDistributions <- getEmpiricalCumulativeDistributions(
 X_A_observed_large_sample,
 X_B_observed_large_sample,
 nOfEstimationPoints=1e4,
 EPSILON=1e-20
)

actualDistributions$Y_A_cumulative_estimation <- lm(Y_A_cumulative_estimation ~
 p + I(p^2) + I(p^3)+ I(p^4)+ I(p^5)+ I(p^6)+I(p^7)+ I(p^8),
 data = actualDistributions)$fitted.values
actualDistributions$Y_B_cumulative_estimation <- lm(Y_B_cumulative_estimation ~
 p + I(p^2) + I(p^3)+ I(p^4)+ I(p^5)+ I(p^6)+I(p^7)+ I(p^8),
 data = actualDistributions)$fitted.values
```
data = actualDistributions$fitted.values

fig = plot_Y_AB(res, plotDifference=FALSE) +

geom_line(data=as.data.frame(actualDistributions),
aes(x=p, y=Y_A_cumulative_estimation, colour = "Actual Y_A", linetype="Actual Y_A")) +

geom_line(data=as.data.frame(actualDistributions),
aes(x=p, y=Y_B_cumulative_estimation, colour = "Actual Y_B", linetype="Actual Y_B")) +

scale_colour_manual("", breaks = c("X_A", "X_B","Actual Y_A", "Actual Y_B"),
values = c("X_A"="#00BFC4", "X_B"="#F8766D", "Actual Y_A"="#0000FF", "Actual Y_B"="#FF0000")) +

scale_linetype_manual("", breaks = c("X_A", "X_B","Actual Y_A", "Actual Y_B"),
values = c("X_A"="solid", "X_B"="dashed", "Actual Y_A"="solid", "Actual Y_B"="solid")) +

ggtitle("100 samples used in the estimation")
print(fig)

###########################################################
## sample size = 300 
###########################################################
X_A_observed <- rnorm(300, mean = 1, sd = 1)
X_B_observed <- rnorm(300, mean = 1.3, sd = 0.5)
res <- get_Y_AB_bounds_bootstrap(X_A_observed, X_B_observed)

X_A_observed_large_sample <- sort(rnorm(1e4, mean = 1, sd = 1))
X_B_observed_large_sample <- sort(rnorm(1e4, mean = 1.3, sd = 0.5))
actualDistributions <- getEmpiricalCumulativeDistributions(
  X_A_observed_large_sample,
  X_B_observed_large_sample,
  nOfEstimationPoints=1e4,
  EPSILON=1e-20)

actualDistributions$Y_A_cumulative_estimation <- lm(Y_A_cumulative_estimation ~
  p + I(p^2) + I(p^3)+ I(p^4)+ I(p^5)+ I(p^6)+I(p^7)+ I(p^8),
data = actualDistributions$fitted.values

actualDistributions$Y_B_cumulative_estimation <- lm(Y_B_cumulative_estimation ~
  p + I(p^2) + I(p^3)+ I(p^4)+ I(p^5)+ I(p^6)+I(p^7)+ I(p^8),
data = actualDistributions$fitted.values

fig = plot_Y_AB(res, plotDifference=FALSE) +

geom_line(data=as.data.frame(actualDistributions),
aes(x=p, y=Y_A_cumulative_estimation, colour = "Actual Y_A", linetype="Actual Y_A")) +

geom_line(data=as.data.frame(actualDistributions),
aes(x=p, y=Y_B_cumulative_estimation, colour = "Actual Y_B", linetype="Actual Y_B")) +

scale_colour_manual("", breaks = c("X_A", "X_B","Actual Y_A", "Actual Y_B"),
values = c("X_A"="#00BFC4", "X_B"="#F8766D", "Actual Y_A"="#0000FF", "Actual Y_B"="#FF0000")) +

fig = plot_Y_AB(res, plotDifference=FALSE) +

geom_line(data=as.data.frame(actualDistributions),
aes(x=p, y=Y_A_cumulative_estimation, colour = "Actual Y_A", linetype="Actual Y_A")) +

geom_line(data=as.data.frame(actualDistributions),
aes(x=p, y=Y_B_cumulative_estimation, colour = "Actual Y_B", linetype="Actual Y_B")) +

scale_colour_manual("", breaks = c("X_A", "X_B","Actual Y_A", "Actual Y_B"),
values = c("X_A"="#00BFC4", "X_B"="#F8766D", "Actual Y_A"="#0000FF", "Actual Y_B"="#FF0000")) +

fig = plot_Y_AB(res, plotDifference=FALSE) +

geom_line(data=as.data.frame(actualDistributions),
aes(x=p, y=Y_A_cumulative_estimation, colour = "Actual Y_A", linetype="Actual Y_A")) +

geom_line(data=as.data.frame(actualDistributions),
aes(x=p, y=Y_B_cumulative_estimation, colour = "Actual Y_B", linetype="Actual Y_B")) +

scale_colour_manual("", breaks = c("X_A", "X_B","Actual Y_A", "Actual Y_B"),
values = c("X_A"="#00BFC4", "X_B"="#F8766D", "Actual Y_A"="#0000FF", "Actual Y_B"="#FF0000")) +
Estimate the confidence intervals for the cumulative distributions of Y_A and Y_B with Dvoretzky–Kiefer–Wolfowitz.

Usage

```r
get_Y_AB_bounds_DKW(
 X_A_observed,
 X_B_observed,
 nOfEstimationPoints = 1000,
 alpha = 0.05,
 EPSILON = 1e-20,
 ignoreMinimumLengthCheck = FALSE
)
```

Arguments

- `X_A_observed` array of the observed samples (real values) of X_A.
- `X_B_observed` array of the observed samples (real values) of X_B.
- `nOfEstimationPoints` (optional, default 1000) the number of points in the interval [0,1] in which the density is estimated.
- `alpha` (optional, default value 0.05) the error of the confidence interval. If alpha = 0.05 then we have 95 percent confidence interval.
- `EPSILON` (optional, default value 1e-20) minimum difference between two values to be considered different.
- `ignoreMinimumLengthCheck` (optional, default value FALSE) wether to check for a minimum length in X_A and X_B.
Value

Returns a list with the following fields:
- p: values in the interval [0,1] that represent the nOfEstimationPoints points in which the densities are estimated. Useful for plotting.
- Y_A_cumulative_estimation: an array with the empirical cumulative distribution function of Y_A from 0 to p[i].
- Y_A_cumulative_upper: an array with the upper bounds of confidence 1 - alpha of the cumulative density of Y_A
- Y_A_cumulative_lower: an array with the lower bounds of confidence 1 - alpha of the cumulative density of Y_A
- Y_B_cumulative_estimation: The same as Y_A_cumulative_estimation for Y_B.
- Y_B_cumulative_upper: The same as Y_A_cumulative_upper for Y_B
- Y_B_cumulative_lower: The same as Y_A_cumulative_lower for Y_B
- diff_estimation: Y_A_cumulative_estimation - Y_B_cumulative_estimation
- diff_upper: an array with the upper bounds of confidence 1 - alpha of the difference between the cumulative distributions
- diff_lower: an array with the lower bounds of confidence 1 - alpha of the difference between the cumulative distributions

Examples

```r
library(ggplot2)

Example 1
X_A_observed <- rnorm(100, mean = 2, sd = 1)
X_B_observed <- rnorm(100, mean = 2.1, sd = 0.5)
res <- get_Y_AB_bounds_DKW(X_A_observed, X_B_observed)
fig1 = plot_Y_AB(res, plotDifference=FALSE) + ggtitle("Example 1")
print(fig1)

Example 2
Comparing the estimations with the actual distributions for two normal distributions.
sample size = 100
X_A_observed <- rnorm(100,mean = 1, sd = 1)
X_B_observed <- rnorm(100,mean = 1.3, sd = 0.5)
res <- get_Y_AB_bounds_DKW(X_A_observed, X_B_observed)

X_A_observed_large_sample <- sort(rnorm(1e4, mean = 1, sd = 1))
X_B_observed_large_sample <- sort(rnorm(1e4, mean = 1.3, sd = 0.5))
actualDistributions <- getEmpiricalCumulativeDistributions(X_A_observed_large_sample, X_B_observed_large_sample, nOfEstimationPoints=1e4, EPSILON=1e-20)
actualDistributions$Y_A_cumulative_estimation <- lm(Y_A_cumulative_estimation ~ p + I(p^2) + I(p^3)+ I(p^4)+ I(p^5)+ I(p^6)+I(p^7)+ I(p^8),
```

data = actualDistributions$fitted.values
actualDistributions$Y_B_cumulative_estimation <- lm(Y_B_cumulative_estimation ~
p + I(p^2) + I(p^3) + I(p^4) + I(p^5) + I(p^6) + I(p^7) + I(p^8),
data = actualDistributions)$fitted.values
fig = plot_Y_AB(res, plotDifference=FALSE) +
geom_line(data=as.data.frame(actualDistributions),
aes(x=p, y=Y_A_cumulative_estimation, colour = "Actual Y_A", linetype="Actual Y_A")) +
geom_line(data=as.data.frame(actualDistributions),
aes(x=p, y=Y_B_cumulative_estimation, colour = "Actual Y_B", linetype="Actual Y_B")) +
scale_colour_manual("", breaks = c("X_A", "X_B", "Actual Y_A", "Actual Y_B"),
values = c("X_A"="#00BFC4", "X_B"="#F8766D", "Actual Y_A"="#0000FF", "Actual Y_B"="#FF0000")+scale_linetype_manual("", breaks = c("X_A", "X_B", "Actual Y_A", "Actual Y_B"),
values = c("X_A"="solid", "X_B"="dashed", "Actual Y_A"="solid", "Actual Y_B"="solid")+ggtitle("100 samples used in the estimation")
print(fig)

########################################################################
## sample size = 300 ##############
########################################################################
X_A_observed <- rnorm(300, mean = 1, sd = 1)
X_B_observed <- rnorm(300, mean = 1.3, sd = 0.5)
res <- get_Y_AB_bounds_DKW(X_A_observed, X_B_observed)

X_A_observed_large_sample <- sort(rnorm(1e4, mean = 1, sd = 1))
X_B_observed_large_sample <- sort(rnorm(1e4, mean = 1.3, sd = 0.5))
actualDistributions <- getEmpiricalCumulativeDistributions(X_A_observed_large_sample,
X_B_observed_large_sample, nOfEstimationPoints=1e4, EPSILON=1e-20)

actualDistributions$Y_A_cumulative_estimation <- lm(Y_A_cumulative_estimation ~
p + I(p^2) + I(p^3) + I(p^4) + I(p^5) + I(p^6) + I(p^7) + I(p^8),
data = actualDistributions$fitted.values
actualDistributions$Y_B_cumulative_estimation <- lm(Y_B_cumulative_estimation ~
p + I(p^2) + I(p^3) + I(p^4) + I(p^5) + I(p^6) + I(p^7) + I(p^8),
data = actualDistributions$fitted.values
fig = plot_Y_AB(res, plotDifference=FALSE) +
geom_line(data=as.data.frame(actualDistributions),
aes(x=p, y=Y_A_cumulative_estimation, colour = "Actual Y_A", linetype="Actual Y_A")) +
geom_line(data=as.data.frame(actualDistributions),

scale_colour_manual("", breaks = c("X_A", "X_B", "Actual Y_A", "Actual Y_B"),
values = c("X_A"="#00BFC4", "X_B"="#F8766D", "Actual Y_A"="#0000FF", "Actual Y_B"="#FF0000")+)
isFunctionDensity

Check if a function is a (non-discrete) probability density function in a given domain.

Description

This function checks if an input function f is a non-discrete probability density function. For this to be the case, the function needs to only return real values. The function also needs to be bounded, positive, and its integral in the domain of definition needs to be 1.

Usage

isFunctionDensity(f, xlims, tol = 0.001)

Arguments

- f: the function to be checked.
- xlims: an interval that represents the domain of definition of f.
- tol: (optional parameter, default = 0.001) the integral of f is allowed to be in the interval (1-tol, 1+tol), to account for some reasonable error in the integration.

Value

Returns True if the function is a non-discrete probability density function. Otherwise, returns False.

Examples

dist1 <- normalDensity(0,1)
# the integral of the density of the normal distribution is too low in the interval (-2,2)
isFunctionDensity(dist1, c(-2,2))

isFunctionDensity(dist1, c(-5,5)) # it is close enough from 1 in the interval (-5,5)
dist2 <- uniformDensity(c(0,1))
isFunctionDensity(dist2, xlims=c(-2,2))
isFunctionDensity(dist2, xlims=c(0.5,2)) # the integral is not 1

dist3 <- function(x) 0.5/sqrt(x)
# The integral of the function being 1 is not enough to be considered a density function.
# It also needs to be bounded.
isFunctionDensity(dist3, c(1e-14,1))
isXlimsValid

Description
Check if xlims is a tuple that represents a valid bounded interval in the real space.

Usage
isXlimsValid(xlims)

Arguments
xlims the tuple to be checked.

Value
TRUE if it is a valid tuple. Otherwise prints error message and returns FALSE

mixtureDensity

Description
Returns the density function of the mixture distribution. The returned function is a single parameter function that returns the probability of the mixture in that point.

Usage
mixtureDensity(densities, weights = NULL)

Arguments
densities the probability density functions to be combined.
weights (optional) the weights of the distributions in the mixture. If it is not give, equal weights are assumed.

Value
Returns a callable function with a single parameter that returns the probability of the mixture distribution each point.
normalDensity

The probability density function of the normal distribution

Description

Returns the density function of the normal distribution with mean mu and standard deviation sigma. The returned function is a single parameter function that returns the probability of the normal distribution in that point. It is just a convenient wrapper of dnorm from the package 'stat' with some parameter checks.

Usage

normalDensity(mu, sigma)

Arguments

mu the mean of the normal distribution.
sigma the standard deviation of the normal distribution.

Value

Returns a callable function with a single parameter that describes the probability of the normal distribution in that point.

See Also

Other probability density distributions: uniformDensity()

Examples

dist <- normalDensity(0,1)
dist(0)
Description

returns a ggplot2 with the estimations of \( Y_A \) and \( Y_B \) or the difference in cumulative distribution function.

Usage

\[
\text{plot\_Y\_AB}\left(\text{estimated\_Y\_AB\_bounds, labels = c("X\_A", "X\_B"), plotDifference = TRUE}\right)
\]

Arguments

estimated\_Y\_AB\_bounds

the bounds estimated with \text{get\_Y\_AB\_bounds\_bootstrap} or \text{get\_Y\_AB\_bounds\_DKW}.

labels

(optional, default=c("X\_A","X\_B")) a string vector of length 2 with the labels of \( X_A \) and \( X_B \), in that order.

plotDifference

(optional, default=TRUE) plots the difference \((Y\_A - Y\_B)\) instead of each of the random variables on their own.

Value

the ggplot figure object.

Examples

### Example 1 ###

\[
\begin{align*}
X\_A\_observed &\leftarrow \text{rnorm}(800,\text{mean} = 1, \text{sd} = 1) \\
X\_B\_observed &\leftarrow \text{rnorm}(800,\text{mean} = 1.3, \text{sd} = 0.5) \\
\text{res} &\leftarrow \text{get\_Y\_AB\_bounds\_DKW}(X\_A\_observed, X\_B\_observed) \\
\text{densitiesPlot} &\leftarrow \text{plot\_Y\_AB}(\text{res, plotDifference=TRUE)} \\
\text{print(densitiesPlot)}
\end{align*}
\]
RVCompare

RVCompare: Compare Real Valued Random Variables

Description
A framework with tools to compare two random variables, and determine which of them produces lower values. It can compute the Cp and Cd of theoretical probability distributions, as explained in E. Arza (2021) <https://github.com/EtorArza/RVCompare-paper/releases>. Given the observed samples of two random variables X_A and X_B, it can compute the confidence bands of the cumulative distributions of X'_A and X'_B (see E. Arza (2021) <https://github.com/EtorArza/RVCompare-paper> for details) based on the observed samples of X_A and X_B. Uses bootstrap and DKW-bounds to compute the confidence bands of the cumulative distributions. These two methods are described in B. Efron. (1979) <doi:10.1214/aos/1176344552> and P. Massart (1990) <doi:10.1214/aop/1176990746>.

Author(s)
Etor Arza <etorarza@gmail.com>

sampleFromDensity

Get sample given the density function

Description
Returns an array with samples given the probability density function.

Usage
sampleFromDensity(density, nSamples, xlims, nIntervals = 1e+05)

Arguments
density the probability density function.
nSamples the number of samples to generate.
xlims the domain of definition of the random variable.
nIntervals (optional, default = 1e4) the number of intervals from which to draw samples. A higher value implies more accuracy but also more computation time.

Value
Returns an array of samples.

Examples

```
normDens <- normalDensity(0,1)
samples <- sampleFromDensity(normDens, 1e4, c(-4,4))
hist(samples, breaks=20)
```
uniformDensity

The probability density function of the uniform distribution

Description

Returns the density function of the uniform distribution in the interval (xlims[1], xlims[2]). The returned function is a single parameter function that returns the probability of the uniform distribution in that point. It is just a convinient wrapper of dunif from the package 'stat' with some parameter checks.

Usage

uniformDensity(xlims)

Arguments

xlims a tuple representing the interval of nonzero probability of the distribution.

Value

Returns a callable function with a single parameter that returns the probability of the uniform distribution in each point.

See Also

Other probability density distributions: normalDensity()

Examples

dist <- uniformDensity(c(-2,2))
dist(-3)
dist(0)
dist(1)

xHasEnoughValues

Check for enough values.

Description

This function checks if there are at least minRequiredValues values in the introduced vector.

Usage

xHasEnoughValues(X, minRequiredValues)
Arguments

X       the array with the values.
minRequiredValues
    the minimum number values required to return TRUE.

Value

Returns TRUE if the values are OK. FALSE, if there are not enough values.

Examples

xHasEnoughValues(c(1,2,3,5,6,7,8.5,4.8,3), 6)
Index

* probability density distributions
  normalDensity, 18
  uniformDensity, 21

CdFromDensities, 2, 4
CdFromProbMassFunctions, 3
CpFromDensities, 2, 4
cpp_helper_from_ranks_to_integrable_values, 5
cumulative_difference_plot, 6

get_Y_AB_bounds_bootstrap, 10, 19
get_Y_AB_bounds_DKW, 13, 19
getEmpiricalCumulativeDistributions, 9

isFunctionDensity, 16
isXlimsValid, 17

mixtureDensity, 17
 normalDensity, 18, 21

plot_Y_AB, 19

RVCompare, 20

sampleFromDensity, 20

uniformDensity, 18, 21

xHasEnoughValues, 21