Package ‘Rediscover’

October 6, 2021

Type Package

Title Identify Mutually Exclusive Mutations

Version 0.3.0

Description An optimized method for identifying mutually exclusive genomic events. Its main contribution is a statistical analysis based on the Poisson-Binomial distribution that takes into account that some samples are more mutated than others. See [Canisius, Sander, John WM Martens, and Lodewyk FA Wessels. (2016) ``A novel independence test for somatic alterations in cancer shows that biology drives mutual exclusivity but chance explains most co-occurrence.’’ Genome biology 17.1 : 1-17. <doi:10.1186/s13059-016-1114-x>]. The mutations matrices are sparse matrices. The method developed takes advantage of the advantages of this type of matrix to save time and computing resources.

Depends R (>= 4.0), Matrix, speedglm, PoissonBinomial, ShiftConvolvePoibin, utils, matrixStats

Imports maftools, data.table, parallel, RColorBrewer, methods

Suggests knitr, rmarkdown, RUnit, BiocStyle, BiocGenerics, dplyr, kableExtra, TCGAbiolinks, magick, stats, qvalue

License Artistic-2.0

LazyData true

RoxygenNote 7.1.2

Encoding UTF-8

biocViews mutex

VignetteBuilder knitr

NeedsCompilation no

Author Juan A. Ferrer-Bonsoms Developer [aut, cre]. Laura Jareno Developer [aut]. Angel Rubio User [aut, ctb]

Maintainer Juan A. Ferrer-Bonsoms Developer <jafhernandez@tecnun.es>
AMP_COAD
description

Description
A binary matrix, with information about amplifications in Colon Adenocarcinoma, created by applying GDCquery and used as real example in getMutexAB.

Usage
data("AMP_COAD")

Format
The format is:
num [1:1000, 1:391] 0 0 0 0 0 0 0 0 0 0 ...
- attr(*, "dimnames")=List of 2
 ..$: chr [1:1000] "ENSG00000212993.4" "ENSG00000279524.1" "ENSG00000136997.13" "ENSG00000101294.15" ...
 ..$: chr [1:391] "TCGA-CA-6718" "TCGA-D5-6931" "TCGA-AZ-6601" "TCGA-G4-6320" ...

Examples
data(AMP_COAD)
maybe str(AMP_COAD)
A_example

Description

A binary matrix of class matrix used as toy example in `getPM` and `getMutex` and `getMutexAB` and `getMutexGroup`.

Usage

```r
data("A_example")
```

Format

The format is: `num [1:1000, 1:500] 0 0 0 0 1 0 0 0 1 ...`

Examples

```r
data(A_example)
```

A_Matrix

Description

A binary dgCMatrix matrix used as toy example in `getPM` and `getMutex` and `getMutexAB` and `getMutexGroup`.

Usage

```r
data("A_Matrix")
```

Format

The format is:

Formal class 'dgCMatrix' [package "Matrix"] with 6 slots

```
..@ i : int [1:249838] 5 9 10 11 13 14 18 20 23 24 ...
..@ p : int [1:501] 0 503 1010 1506 1995 2497 2981 3488 4002 4474 ...
..@ Dim : int [1:2] 1000 500
..@ Dimnames:List of 2
  ..$ : NULL
  ..$ : NULL
..@ x : num [1:249838] 1 1 1 1 1 1 1 1 1 ...
..@ factors : list()
```
Examples

```r
data(A_Matrix)
```

B_example **B_example data**

Description

A binary matrix of class `matrix` used as toy example in `getPM` and `getMutex` and `getMutexAB` and `getMutexGroup`.

Usage

```r
data("B_example")
```

Format

The format is:

```r
int [1:1000, 1:500] 0 1 1 0 1 0 0 0 1 1 ... 
```

Examples

```r
data(B_example)
```

B_Matrix **B_Matrix data**

Description

A binary `dgCMatrix` matrix used as toy example in `getPM` and `getMutex` and `getMutexAB` and `getMutexGroup`.

Usage

```r
data("B_Matrix")
```
Format

The format is:

Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
 ..@ i : int [1:249526] 1 2 4 8 9 11 13 15 18 20 ...
 ..@ p : int [1:501] 0 498 1014 1527 2048 2558 3036 3511 4035 4537 ...
 ..@ Dim : int [1:2] 1000 500
 ..@ Dimnames:List of 2
$: NULL
$: NULL
 ..@ x : num [1:249526] 1 1 1 1 1 1 1 1 1 1 ...
 ..@ factors : list()

Examples

data(B_Matrix)

discoverSomaticInteractions
discoverSomaticInteractions

Description

Function adapted to maftools where given a .maf file, it graphs the somatic
interactions between a group of genes, i.e., the combination of gene expression
and mutation data to detect mutually exclusive or co-occurring events.

Usage

discoverSomaticInteractions(
maf,
top = 25,
genes = NULL,
pvalue = c(0.05, 0.01),
getMutexMethod = "ShiftedBinomial",
getMutexMixed = TRUE,
returnAll = TRUE,
geneOrder = NULL,
fontSize = 0.8,
showSigSymbols = TRUE,
showCounts = FALSE,
countStats = "all",
countType = "all",
countsFontSize = 0.8,
countsFontColor = "black",

colPal = "BrBG",
showSum = TRUE,
colNC = 9,
nShiftSymbols = 5,
sigSymbolsSize = 2,
sigSymbolsFontSize = 0.9,
 pvSymbols = c(46, 42),
limitColorBreaks = TRUE
)

Arguments

maf maf object generated by read.maf
top check for interactions among top 'n' number of genes. Defaults to top 25 genes
genes List of genes among which interactions should be tested. If not provided, test will be performed between top 25 genes.
pvalue Default c(0.05, 0.01) p-value threshold. You can provide two values for upper and lower threshold.
getMutexMethod Method for the 'getMutex' function (by default "ShiftedBinomial")
getMutexMixed Mixed parameter for the 'getMutex' function (by default TRUE)
returnAll If TRUE returns test statistics for all pair of tested genes. Default FALSE, returns for only genes below pvalue threshold.
geneOrder Plot the results in given order. Default NULL.
fontSize cex for gene names. Default 0.8
showSigSymbols Default TRUE. Highlight significant pairs
showCounts Default FALSE. Include number of events in the plot
countStats Default 'all'. Can be 'all' or 'sig'
countType Default 'all'. Can be 'all', 'cooccur', 'mutexcl'
countsFontSize Default 0.8
countsFontColor Default 'black'
colPal colPalBrewer palettes. Default 'BrBG'. See RColorBrewer::display.brewer.all() for details
showSum show [sum] with gene names in plot, Default TRUE
colNC Number of different colors in the palette, minimum 3, default 9
nShiftSymbols shift if positive shift SigSymbols by n to the left, default 5
sigSymbolsSize size of symbols in the matrix and in legend. Default 2
sigSymbolsFontSize size of font in legends. Default 0.9
 pvSymbols vector ofpch numbers for symbols of p-value for upper and lower thresholds c(upper, lower). Default c(46, 42)
limitColorBreaks limit color to extreme values. Default TRUE
getMutex

details

Internally, this function run the getMutex function. With the ‘get MutexMethod’ parameter user might select the 'method' parameter of the get Mutex function. For more details run '?get Mutex'

#’ @return A list of data.tables and it will print a heatmap with the results.

references

examples

#An example of how to perform the function,
#using data from TCGA, Colon Adenocarcinoma in this case.

coad.maf <- GDCquery_Maf("COAD", pipelines = "muse") %>% read.maf
discoversomaticInteractions(maf = coad.maf, top = 35, pvalue = c(1e-2, 2e-3))

getMutex getMutex function

description

Given a binary matrix and its corresponding probability matrix pij, compute the Poisson Binomial method to estimate mutual exclusive events.

usage

getMutex(
 A = NULL,
 PM = getPM(A),
 lower.tail = TRUE,
 method = "ShiftedBinomial",
 mixed = TRUE,
 th = 0.05,
 verbose = FALSE,
 parallel = FALSE,
 no_cores = NULL
)
Arguments

A The binary matrix
PM The corresponding probability matrix of A. It can be computed using function getPM. By default equal to getPM(A)
lower.tail True if mutually exclusive test. False for co-occurrence. By default is TRUE.
method one of the following: "ShiftedBinomial" (default), "Exact", "Binomial", and "RefinedNormal".
mixed option to compute lower p-values with an exact method. By default TRUE
th upper threshold of p.value to apply the exact method.
verbose The verbosity of the output
parallel If the exact method is executed with a parallel process.
no_cores number of cores. If not stated number of cores of the CPU - 1

Details

we implemented three different approximations of the Poison-Binomial distribution function:

- "ShiftedBinomial" (by default) that correspond to a shifted Binomial with three parameters (Peköz, Shwartz, Christiansen, & Berlowitz, 2010).
- "Exact" that use the exact formula using the ‘PoissonBinomial’ Rpackage based on the work from (Biscarri, Zhao, & Brunner, 2018).
- "Binomial" with two parameters (Cam, 1960).
- "RefinedNormal" that is based on the work from (Volkova, 1996).

If ‘mixed’ option is selected (by default is FALSE), the "Exact" method is computed for p-values lower than a threshold (‘th’ parameter, that by default is 0.05). When the exact method is computed, it is possible to parallelize the process by selecting the option ‘parallel’ (by default FALSE) and setting the number of cores (‘no_cores’ parameter)

Value

A symmetric matrix with the p-values of the corresponding test.

Examples

```r
#This first example is a basic example of how to perform getMutex.
data("A_example")
PMA <- getPM(A_example)
mismutex <- getMutex(A=A_example,PM=PMA)
```

```r
#The next example, is the same as the first one but, # using a matrix of class Matrix.
```
getMutexAB

data("A_Matrix")
PMA_Matrix <- getPM(A_Matrix)
mismutex <- getMutex(A=A_Matrix,PM=PMA_Matrix)

#Finally, the last example, shows a real example of how to perform this function when using data from TCGA, Colon Adenocarcinoma in this case.
data("TCGA_COAD")
data("PM_COAD")

PM_COAD <- getMutex(TCGA_COAD, PM_COAD)

getMutexAB

getMutexAB function

Description

Given two binary matrices and its corresponding probability matrices PAij and PBij, compute the Poisson Binomial method to estimate mutual exclusive events between A and B

Usage

getMutexAB(
 A,
 PMA = getPM(A),
 B,
 PMB = getPM(B),
 lower.tail = TRUE,
 method = "ShiftedBinomial",
 mixed = TRUE,
 th = 0.05,
 verbose = FALSE,
 parallel = FALSE,
 no_cores = NULL
)

Arguments

A The binary matrix of events A
PMA The corresponding probability matrix of A. It can be computed using function getPM. By default equal to getPM(A)
B The binary matrix of events B
PMB The corresponding probability matrix of B. It can be computed using function getPM. By default equal to getPM(B)
getMutexAB

lower.tail True if mutually exclusive test. False for co-occurrence. By default is TRUE.

method one of the following: "ShiftedBinomial" (default), "Exact", "RefinedNormal", and "Binomial".

mixed option to compute lower p-values with an exact method. By default TRUE

th upper threshold of p-value to apply the exact method.

verbose The verbosity of the output

parallel If the exact method is executed with a parallel process.

no_cores number of cores. If not stated number of cores of the CPU - 1

Details

we implemented three different approximations of the Poison-Binomial distribution function:

• "ShiftedBinomial" (by default) that correspond to a shifted Binomial with three parameters (Peköz, Shwartz, Christiansen, & Berlowitz, 2010).
• "Exact" that use the exact formula using the ‘PoissonBinomial’ R package based on the work from (Biscarri, Zhao, & Brunner, 2018).
• "Binomial" with two parameters (Cam, 1960).
• "RefinedNormal" that is based on the work from (Volkova, 1996).

If 'mixed' option is selected (by default is FALSE), the "Exact" method is computed for p-values lower than a threshold ('th' parameter, that by default is 0.05). When the exact method is computed, it is possible to parallelize the process by selecting the option 'parallel' (by default FALSE) and setting the number of cores ('no_cores' parameter)

Value

A matrix with the p-values of the corresponding test.

Examples

#The next example, is the same as the first
one but, using a matrix of class Matrix.

data("A_Matrix")
data("B_Matrix")
PMA <- getPM(A_Matrix)
PMB <- getPM(B_Matrix)
mismutex <- getMutexAB(A=A_Matrix, PM=PMA, B=B_Matrix, PMB = PMB)

#Finally, the last example, shows a
#real example of how to perform this function
when using data from TCGA, Colon Adenocarcinoma in this case.

data("TCGA_COAD_AMP")
data("AMP_COAD")
getMutexGroup

getMutexGroup function

Description

Given a binary matrix and its corresponding probability matrix pij, compute the Poisson Binomial method to estimate mutual exclusive events.

Usage

getMutexGroup(A = NULL, PM = NULL, type = "Impurity", lower.tail = TRUE)

Arguments

A
The binary matrix

PM
The corresponding probability matrix of A. It can be computed using function getPM. By default equal to getPM(A)

type
one of Coverage, Exclusivity or Impurity. By default is Impurity

lower.tail
True if mutually exclusive test. False for co-occurrence. By default is TRUE.

Value

A symmetric matrix with the p.value of the corresponding test.

Examples

#This first example is a basic example of how to perform getMutexGroup

data("A_example")
A2 <- A_example[,1:30]
A2[1,1:10] <- 1
A2[2,1:10] <- 0
A2[3,1:10] <- 0
A2[1,11:20] <- 0
A2[2,11:20] <- 1
A2[3,11:20] <- 0
getPM

Description
Given a binary matrix estimates the corresponding probability matrix pij.

Usage
getPM(A)

Arguments
A The binary matrix

Value
A ‘PMatrix’ object with the corresponding probability estimations. This ‘PMatrix’ object stored the corresponding coefficients of the logistic regression computed. With this coefficients it is possible to build the complete matrix of probabilities.

Examples

#This first example is a basic example of how to perform getPM:

data("A_example")
PMA <- getPM(A_example)

#The next example, is the same as the first one but,
#using a matrix of class Matrix:

data("A_Matrix")
PMA_Matrix <- getPM(A_Matrix)

#Finally, the last example, shows a real example
of how to perform this function when using # data from TCGA, Colon Adenocarcinoma in this case:
data("TCGA_COAD")
PM_COAD <- getPM(TCGA_COAD)

PMatrix-class

An S4 class to store the probabilities

Description

An S4 class to store the probabilities of gene i being mutated in sample j

Slots

- `rowExps` Sample depending estimated coefficients obtained from the logistic regression
- `colExps` gene depending estimated coefficients obtained from the logistic regression

PM_AMP_COAD

PM_AMP_COAD data

Description

Probability matrix, with information of genes being amplified in samples in Colon Adenocarcinoma, created by AMP_COAD.rda applying getPM and used as real example and getMutexAB.

Usage

data("PM_AMP_COAD")

Format

The format is:

```
num [1:1000, 1:391] 0.118 0.118 0.118 0.118 0.114 ...
```

Examples

data(PM_AMP_COAD)
Description
Probability matrix, with information of genes being mutated in samples in Colon Adenocarcinoma, created by TCGA_COAD.rda applying getPM and used as real example in getMutex and getMutexAB and getMutexGroup.

Usage

data("PM_COAD")

Format
The format is:
Formal class ’PMatrix’ [package ”Rediscover”] with 2 slots
..@ rowExps: num [1:399] 13.1 1.02 7.43 3.26 0.4 ...
..@ colExps: num [1:17616] 2.54 1.78 1.76 1.35 0.6 ...

Examples

data(PM_COAD)

Description
A binary matrix, with information about genes mutations in Colon Adenocarcinoma, created by applying maftools to .maf file and used as real example in getPM and getMutex and getMutexAB and getMutexGroup.

Usage

data("TCGA_COAD")

Format
The format is:
num [1:399, 1:17616] 1 1 1 1 1 1 1 1 ...
- attr(*, "dimnames")=List of 2
..$: chr [1:399] ”TCGA-CA-6718" ”TCGA-D5-6931" ”TCGA-AZ-6601" ”TCGA-G4-6320" ...
..$: chr [1:17616] ”APC" ”TP53" ”TTN" ”KRAS" ...
Examples

data(TCGA_COAD)
Index

* datasets
 A_example, 3
 A_Matrix, 3
 AMP_COAD, 2
 B_example, 4
 B_Matrix, 4
 PM_AMP_COAD, 13
 PM_COAD, 14
 TCGA_COAD, 14

[,PMatrix, matrix, missing, ANY-method (PMatrix-class), 13
[,PMatrix, missing, numeric, ANY-method (PMatrix-class), 13
[,PMatrix, numeric, missing, ANY-method (PMatrix-class), 13
[,PMatrix, numeric, numeric, ANY-method (PMatrix-class), 13

A_example, 3
A_Matrix, 3
AMP_COAD, 2

B_example, 4
B_Matrix, 4

dim, PMatrix-method (PMatrix-class), 13
discoversomaticInteractions, 5

getMutex, 7
getMutexAB, 9
getMutexGroup, 11
getPM, 12

PM_AMP_COAD, 13
PM_COAD, 14
PMatrix (PMatrix-class), 13
PMatrix-class, 13

TCGA_COAD, 14