Package ‘SAVER’

November 13, 2019

Type Package
Version 1.1.2
Title Single-Cell RNA-Seq Gene Expression Recovery
Maintainer Mo Huang <mohuangx@gmail.com>
License GPL-2
Encoding UTF-8
LazyData true
Depends R (>= 3.0.1)
Imports glmnet, foreach, methods, iterators, doParallel, Matrix
RoxygenNote 7.0.0
URL https://github.com/mohuangx/SAVER
BugReports https://github.com/mohuangx/SAVER/issues
Suggests knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation no
Author Mo Huang [aut, cre], Nancy Zhang [aut], Mingyao Li [aut]
Repository CRAN
Date/Publication 2019-11-13 19:30:03 UTC

R topics documented:

SAVER-package .. 2
calc.a ... 3
SAVER-package

SAVER: Single-cell Analysis Via Expression Recovery

Description

The SAVER package implements SAVER, a gene expression recovery method for single-cell RNA sequencing (scRNA-seq). Borrowing information across all genes and cells, SAVER provides estimates for true expression levels as well as posterior distributions to account for estimation uncertainty. See Huang et al (2018) for more details.

Author(s)

Mo Huang (Maintainer), <mohuangx@gmail.com>
Nancy Zhang, <nzh@wharton.upenn.edu>
Mingyao Li, <mingyao@pennmedicine.upenn.edu>

Source

https://github.com/mohuangx/SAVER
calc.a

Optimizes variance

Description

Finds the prior parameter that maximizes the marginal likelihood given the prediction.

Usage

- `calc.a(y, mu, sf)`
- `calc.b(y, mu, sf)`
- `calc.k(y, mu, sf)`

Arguments

- `y` A vector of observed gene counts.
- `mu` A vector of predictions from `expr.predict`.
- `sf` Vector of normalized size factors.

Details

calc.a returns a prior alpha parameter assuming constant coefficient of variation. calc.b returns a prior beta parameter assuming constant Fano factor. calc.k returns a prior variance parameter assuming constant variance.

Value

A vector with the optimized parameter and the negative log-likelihood.

calc.estimate

Calculate estimate

Description

Calculates SAVER estimate
Usage

calc.estimate(
 x,
 x.est,
 cutoff = 0,
 coefs = NULL,
 sf,
 scale.sf,
 pred.gene.names,
 pred.cells,
 null.model,
 nworkers,
 calc.maxcor,
 estimates.only
)

calc.estimate.mean(x, sf, scale.sf, mu, nworkers, estimates.only)

calc.estimate.null(x, sf, scale.sf, nworkers, estimates.only)

Arguments

x An expression count matrix. The rows correspond to genes and the columns correspond to cells.
x.est The log-normalized predictor matrix. The rows correspond to cells and the columns correspond to genes.
cutoff Maximum absolute correlation to determine whether a gene should be predicted.
coefs Coefficients of a linear fit of log-squared ratio of largest lambda to lambda of lowest cross-validation error. Used to estimate model with lowest cross-validation error.
sf Normalized size factor.
scale.sf Scale of size factor.
pred.gene.names Names of genes to perform regression prediction.
pred.cells Index of cells to perform regression prediction.
null.model Whether to use mean gene expression as prediction.
nworkers Number of cores registered to parallel backend.
calc.maxcor Whether to calculate maximum absolute correlation.
estimates.only Only return SAVER estimates. Default is FALSE.
mu Matrix of prior means

Details

The SAVER method starts by estimating the prior mean and variance for the true expression level for each gene and cell. The prior mean is obtained through predictions from a LASSO Poisson
regression for each gene implemented using the \texttt{glmnet} package. Then, the variance is estimated through maximum likelihood assuming constant variance, Fano factor, or coefficient of variation variance structure for each gene. The posterior distribution is calculated and the posterior mean is reported as the SAVER estimate.

Value

A list with the following components

- \texttt{est} Recovered (normalized) expression
- \texttt{se} Standard error of estimates
- \texttt{maxcor} Maximum absolute correlation for each gene. 2 if not calculated
- \texttt{lambda.max} Smallest value of lambda which gives the null model.
- \texttt{lambda.min} Value of lambda from which the prediction model is used
- \texttt{sd.cv} Difference in the number of standard deviations in deviance between the model with lowest cross-validation error and the null model
- \texttt{ct} Time taken to generate predictions.
- \texttt{vt} Time taken to estimate variance.

calc.loglik.a
Calculates marginal likelihood

Description

Calculates the marginal likelihood given the prediction under constant coefficient of variation (\(a\)), Fano factor (\(b\)), and variance (\(k\)).

Usage

\begin{verbatim}
calc.loglik.a(a, y, mu, sf)
calc.loglik.b(b, y, mu, sf)
calc.loglik.k(k, y, mu, sf)
\end{verbatim}

Arguments

- \texttt{a, b, k} Prior parameter.
- \texttt{y} A vector of observed gene counts.
- \texttt{mu} A vector of predictions from \texttt{expr.predict}.
- \texttt{sf} Vector of normalized size factors.
Details

calc.loglik.a returns the shifted negative log-likelihood under constant coefficient of variation. calc.loglik.b returns the shifted negative log-likelihood under constant Fano factor. calc.loglik.k returns the shifted negative log-likelihood under constant variance.

Value

A shifted negative marginal log-likelihood.

calc.maxcor Calculate maximum correlation

Description

Calculates the maximum absolute correlation between two matrices along the columns

Usage

calc.maxcor(x1, x2)

Arguments

x1 Named matrix 1
x2 Named matrix 2

Details

This function calculates the maximum absolute correlation for each column of x2 against each column of x1. The matrices are named and if the names overlap between x1 and x2, the correlation between the same named entries is set to zero.

Value

A vector of maximum absolute correlations

Examples

x1 <- matrix(rnorm(500), 100, 5)
x2 <- x1 + matrix(rnorm(500), 100, 5)
colnames(x1) <- c("A", "B", "C", "D", "E")
colnames(x2) <- c("A", "B", "C", "D", "E")
cor(x1, x2)
calc.maxcor(x1, x2)
calc.post

Calculates SAVER posterior

Description

Given prediction and prior variance, calculates the Gamma posterior distribution parameters for a single gene.

Usage

`calc.post(y, mu, sf, scale.sf)`

Arguments

- `y`: A vector of observed gene counts.
- `mu`: A vector of prior means.
- `sf`: Vector of normalized size factors.
- `scale.sf`: Mean of the original size factors.

Details

Let α be the shape parameter and β be the rate parameter of the prior Gamma distribution. Then, the posterior Gamma distribution will be

$$Gamma(y + \alpha, sf + \beta),$$

where y is the observed gene count and sf is the size factor.

Value

A list with the following components

- `estimate`: Recovered (normalized) expression
- `se`: Standard error of expression estimate

combine.saver

Combines SAVER

Description

Combines SAVER objects

Usage

`combine.saver(saver.list)`
Arguments

saver.list List of SAVER objects

Details

If SAVER was applied to a dataset for chunks of genes (by specifying `pred.genes` and `pred.genes.only = TRUE`), this function combines the individual SAVER objects into one SAVER object.

Value

A combined SAVER object

Examples

data(“linnarsson”)
Not run:
a <- saver(linnarsson, pred.genes = 1:5, pred.genes.only = TRUE)
b <- saver(linnarsson, pred.genes = 6:10, pred.genes.only = TRUE)
ab <- combine.saver(list(a, b))
End(Not run)

cor.genes

Calculates gene-to-gene and cell-to-cell SAVER correlation

Description

Adjusts for SAVER estimation uncertainty by calculating and adjusting gene-to-gene and cell-to-cell correlation matrices

Usage

cor.genes(x, cor.mat = NULL)
cor.cells(x, cor.mat = NULL)

Arguments

x A saver object.

cor.mat If a correlation matrix of the SAVER estimates was already obtained, then it can be provided as an input to avoid recomputation.

Details

The SAVER estimates that are produced have varying levels of uncertainty depending on the gene and the cell. These functions adjust the gene-to-gene and cell-to-cell correlations of the SAVER estimates to reflect the estimation uncertainty.
expr.predict

Value
An adjusted correlation matrix.

Examples
data("linnarsson_saver")
gene.cor <- cor.genes(linnarsson_saver)

expr.predict
Calculates SAVER prediction.

Description
Uses cv.glmnet from the glmnet package to return the SAVER prediction.

Usage
expr.predict(
x,
y,
pred.cells = 1:length(y),
seed = NULL,
lambda.max = NULL,
lambda.min = NULL
)

Arguments
x A log-normalized expression count matrix of genes to be used in the prediction.
y A normalized expression count vector of the gene to be predicted.
pred.cells Index of cells to use for prediction. Default is to use all cells.
seed Sets the seed for reproducible results.
lambda.max Maximum value of lambda which gives null model.
lambda.min Value of lambda from which the prediction model is used

Details
The SAVER method starts with predicting the prior mean for each cell for a specific gene. The prediction is performed using the observed normalized gene count as the response and the normalized gene counts of other genes as predictors. cv.glmnet from the glmnet package is used to fit the LASSO Poisson regression. The model with the lowest cross-validation error is chosen and the fitted response values are returned and used as the SAVER prediction.

Value
A vector of predicted gene expression.
get.mu
Output prior predictions

Description
Outputs prior predictions

Usage
get.mu(x, saver.obj)

Arguments
- `x` Original count matrix.
- `saver.obj` SAVER output.

Details
This function outputs prior mean predictions μ used in fitting the SAVER model.

Value
A matrix of prior mean predictions

Examples
```r
data("linnarsson")
data("linnarsson_saver")
mu <- get.mu(linnarsson, linnarsson_saver)
```

linnarsson
Mouse brain single-cell RNA-seq dataset

Description
3,529 genes and 200 cells from a mouse brain scRNA-seq dataset.

Usage
linnarsson

Format
An object of class *matrix* with 3529 rows and 200 columns.
linnarsson_saver

References

Description
Output of running `saver` on the `linnarsson` dataset.

Usage
```r
linnarsson_saver
```

Format
An object of class `saver` of length 3.

References

sample.saver

Description
Samples from the posterior distribution output by SAVER.

Usage
```r
sample.saver(x, rep = 1, efficiency.known = FALSE, seed = NULL)
```

Arguments
- `x`: A saver object.
- `rep`: Number of sampled datasets. Default is 1.
- `efficiency.known`: Whether the efficiency is known. Default is FALSE.
- `seed`: seed used in set.seed.
Details

The SAVER method outputs a posterior distribution, which we can sample from for downstream analysis. The posterior distribution accounts for uncertainty in the SAVER estimation procedure. If the efficiency is known, negative binomial sampling is performed; otherwise, gamma sampling is performed.

Value

A matrix of expression values sampled from SAVER posterior. If \(\text{rep} > 1 \), a list of matrices is returned.

Examples

```r
data("linnarsson_saver")
samp1 <- sample.saver(linnarsson_saver, seed = 50)
```

Description

Recover expression using the SAVER method.

Usage

```r
saver(
  x,
  do.fast = TRUE,
  ncores = 1,
  size.factor = NULL,
  npred = NULL,
  pred.cells = NULL,
  pred.genes = NULL,
  pred.genes.only = FALSE,
  null.model = FALSE,
  mu = NULL,
  estimates.only = FALSE
)
```

Arguments

- **x**: An expression count matrix. The rows correspond to genes and the columns correspond to cells. Can be sparse.
- **do.fast**: Approximates the prediction step. Default is TRUE.
ncores Number of cores to use. Default is 1.
size.factor Vector of cell size normalization factors. If x is already normalized or normalization is not desired, use size.factor = 1. Default uses mean library size normalization.
npred Number of genes for regression prediction. Selects the top npred genes in terms of mean expression for regression prediction. Default is all genes.
pred.cells Indices of cells to perform regression prediction. Default is all cells.
pred.genes Indices of specific genes to perform regression prediction. Overrides npred. Default is all genes.
pred.genes-only Return expression levels of only pred.genes. Default is FALSE (returns expression levels of all genes).
null.model Whether to use mean gene expression as prediction.
mu Matrix of prior means.
estimates.only Only return SAVER estimates. Default is FALSE.

Details
The SAVER method starts by estimating the prior mean and variance for the true expression level for each gene and cell. The prior mean is obtained through predictions from a LASSO Poisson regression for each gene implemented using the glmnet package. Then, the variance is estimated through maximum likelihood assuming constant variance, Fano factor, or coefficient of variation variance structure for each gene. The posterior distribution is calculated and the posterior mean is reported as the SAVER estimate.

Value
If ‘estimates.only = TRUE’, then a matrix of SAVER estimates.
If ‘estimates.only = FALSE’, a list with the following components

estimate Recovered (normalized) expression.
se Standard error of estimates.
info Information about dataset.

The info element is a list with the following components:

size.factor Size factor used for normalization.
maxcor Maximum absolute correlation for each gene. 2 if not calculated
lambda.max Smallest value of lambda which gives the null model.
lambda.min Value of lambda from which the prediction model is used
sd.cv Difference in the number of standard deviations in deviance between the model with lowest cross-validation error and the null model
pred.time Time taken to generate predictions.
var.time Time taken to estimate variance.
maxcor Maximum absolute correlation cutoff used to determine if a gene should be predicted.
lambda.coefs Coefficients for estimating lambda with lowest cross-validation error.
total.time Total time for SAVER estimation.

Examples

data("linnarsson")

Not run:
system.time(linnarsson_saver <- saver(linnarsson, ncores = 12))
End(Not run)

predictions for top 5 highly expressed genes
Not run:
saver2 <- saver(linnarsson, npred = 5)
End(Not run)

predictions for certain genes
Not run:
genes <- c("Thy1", "Mbp", "Stim2", "Psmc6", "Rps19")
genes.ind <- which(rownames(linnarsson) %in% genes)
saver3 <- saver(linnarsson, pred.genes = genes.ind)
End(Not run)

return only certain genes
Not run:
saver4 <- saver(linnarsson, pred.genes = genes.ind, pred.genes.only = TRUE)
End(Not run)

saver.fit Fits SAVER

Description

Fits SAVER object

Usage

saver.fit(
 x,
 x.est,
 do.fast,
 ncores,
saver.fit

sf,
scale.sf,
pred.genes,
pred.cells,
null.model,
ngenes = nrow(x),
ncells = ncol(x),
gene.names = rownames(x),
cell.names = colnames(x),
estimates.only
)

saver.fit.mean(
x,
ncores,
sf,
scale.sf,
mu,
ngenes = nrow(x),
ncells = ncol(x),
gene.names = rownames(x),
cell.names = colnames(x),
estimates.only
)

saver.fit.null(
x,
ncores,
sf,
scale.sf,
ngenes = nrow(x),
ncells = ncol(x),
gene.names = rownames(x),
cell.names = colnames(x),
estimates.only
)

Arguments

x An expression count matrix. The rows correspond to genes and the columns correspond to cells.
x.est The log-normalized predictor matrix. The rows correspond to cells and the columns correspond to genes.
do.fast Approximates the prediction step. Default is TRUE.
ncores Number of cores to use. Default is 1.
sf Normalized size factor.
scale.sf Scale of size factor.
pred.genes Index of genes to perform regression prediction.
pred.cells Index of cells to perform regression prediction.
null.model Whether to use mean gene expression as prediction.
ngenenes Number of genes.
ncells Number of cells.
gene.names Name of genes.
cell.names Name of cells.
estimates.only Only return SAVER estimates. Default is FALSE.
mu Matrix of prior means.

Details

The SAVER method starts by estimating the prior mean and variance for the true expression level for each gene and cell. The prior mean is obtained through predictions from a Lasso Poisson regression for each gene implemented using the \texttt{glmnet} package. Then, the variance is estimated through maximum likelihood assuming constant variance, Fano factor, or coefficient of variation variance structure for each gene. The posterior distribution is calculated and the posterior mean is reported as the SAVER estimate.

Value

A list with the following components

\begin{itemize}
 \item \texttt{estimate} Recovered (normalized) expression
 \item \texttt{se} Standard error of estimates
 \item \texttt{info} Information about fit
\end{itemize}
Index

*Topic **datasets**
 linnarsson, 10
 linnarsson_saver, 11

calc.a, 3
calc.b(calc.a), 3
calc.estimate, 3
calc.k(calc.a), 3
calc.loglik.a, 5
calc.loglik.b(calc.loglik.a), 5
calc.loglik.k(calc.loglik.a), 5
calc.maxcor, 6
calc.post, 7
combine.saver, 7
cor.cells(cor.genes), 8
cor.genes, 8

expr.predict, 3, 5, 9

get.mu, 10

linnarsson, 10
linnarsson_saver, 11

sample.saver, 11
saver, 12
SAVER-package, 2
saver.fit, 14