Package ‘SIHR’

October 7, 2021

Type Package

Title Statistical Inference in High Dimensional Regression

Version 0.2.0

License GPL-3

Encoding UTF-8

RoxygenNote 7.1.1

Imports CVXR, Matrix, glmnet, Rdpack, scalreg, qpdf

RdMacros Rdpack

Suggests knitr, rmarkdown, MASS

URL https://github.com/prabrishar1/SIHR

BugReports https://github.com/prabrishar1/SIHR/issues

VignetteBuilder knitr

NeedsCompilation no

Author Prabrisha Rakshit [aut, cre],
Tony Cai [aut],
Zijian Guo [aut]

Maintainer Prabrisha Rakshit <prabrisha.rakshit@rutgers.edu>

Repository CRAN

Date/Publication 2021-10-07 08:00:08 UTC
Direction_fixedtuning

Description

Constructs the projection direction, used for bias-correction, with a fixed tuning parameter

Usage

```r
Direction_fixedtuning(
  X,
  loading,
  mu = NULL,
  model = "linear",
  weight = NULL,
  deriv.vec = NULL
)
```

Arguments

- `X`
 Design matrix, of dimension `n x p`
- `loading`
 Loading, of length `p`
- `mu`
 The dual tuning parameter used in the construction of the projection direction
- `model`
 The high dimensional regression model, either `linear` or `logistic` (default = `linear`)
- `weight`
 The weight vector of length `n`; to be supplied if `model="logistic"` (default=NULL when `model=linear`)
- `deriv.vec`
 The first derivative vector of the logit function at `X%*%init.coef`, of length `n`; to be supplied if `model="logistic"`. Here `init.coef` is the initial estimate of the regression vector. (default = NULL when `model=linear`)

Value

- `proj`
 The projection direction, of length `p`
Examples

n <- 100
p <- 400
X <- matrix(sample(-2:2,n*p,replace = TRUE),nrow = n,ncol = p)
resol <- 1.5
step <- 3
Est <- Direction_fixedtuning(X,loading=c(1,rep(0,(p-1))),mu=sqrt(2.01*log(p)/n)*resol^{-(step-1)})

Direction_searchtuning

Searches for the best step size and computes the projection direction
with the searched best step size

Description

Searches for the best step size and computes the projection direction with the searched best step size

Usage

Direction_searchtuning(
 X,
 loading,
 model = "linear",
 weight = NULL,
 deriv.vec = NULL,
 resol = 1.5,
 maxiter = 6
)

Arguments

X Design matrix, of dimension n x p
loading Loading, of length p
model The high dimensional regression model, either linear or logistic (default = linear)
weight The weight vector of length n; to be supplied if model="logistic" (default=NULL when model=linear)
deriv.vec The first derivative vector of the logit function at $X \% \% (\text{init.coef})$, of length n; to be supplied if model="logistic". Here init.coef is the initial estimate of the regression vector. (default = NULL when model=linear)
resol The factor by which mu is increased/decreased to obtain the smallest mu such that the dual optimization problem for constructing the projection direction converges (default = 1.5)
maxiter Maximum number of steps along which mu is increased/decreased to obtain the smallest mu such that the dual optimization problem for constructing the projection direction converges (default = 6)
Value

- **proj**: The projection direction, of length p
- **step**: The best step size

Examples

```r
n <- 100
p <- 400
X <- matrix(sample(-2:2, n*p, replace = TRUE), nrow = n, ncol = p)
Est <- Direction_searchtuning(X, loading = c(1, rep(0, (p-1))))
```

GLM_binary

Inference for single regression coefficient in high dimensional probit regression model

Description

Computes the bias corrected estimator of a single regression coefficient in the high dimensional binary outcome regression model and the corresponding standard error. It also constructs the confidence interval for the target regression coefficient and tests whether it is equal to a pre-specified value b_0.

Usage

```r
GLM_binary(
  X,
  y,
  index,
  model = "logistic1",
  intercept = TRUE,
  init.coef = NULL,
  lambda = NULL,
  mu = NULL,
  step = NULL,
  resol = 1.5,
  maxiter = 6,
  b0 = 0,
  alpha = 0.05,
  verbose = TRUE
)
```

Arguments

- **X**: Design matrix, of dimension $n \times p$
- **y**: Outcome vector, of length n
index An integer between 1 and \(p \) indicating the index of the targeted regression coefficient. For example, \(index = 1 \) means that the first regression coefficient is our inference target.

model The fitted GLM, either logistic1 or logistic2 or probit or inverse t1 (default = logistic1); model="logistic1" uses SIHR::LF_logistic with weight=NULL; model="logistic2" uses SIHR::LF_logistic with weight=rep(1,n)

intercept Should intercept be fitted for the initial estimator (default = TRUE)

init.coef Initial estimator of the regression vector (default = NULL)

lambda The tuning parameter used in the construction of init.coef (default = NULL)

mu The dual tuning parameter used in the construction of the projection direction (default = NULL)

step The step size used to compute \(\mu \); if set to NULL it is computed to be the number of steps (< maxiter) to obtain the smallest \(\mu \) such that the dual optimization problem for constructing the projection direction converges (default = NULL)

resol The factor by which \(\mu \) is increased/decreased to obtain the smallest \(\mu \) such that the dual optimization problem for constructing the projection direction converges (default = 1.5)

maxiter Maximum number of steps along which \(\mu \) is increased/decreased to obtain the smallest \(\mu \) such that the dual optimization problem for constructing the projection direction converges (default = 6)

b0 The null value to be tested against

alpha Level of significance to test the null hypothesis that the target regression coefficient is equal to \(b0 \) (default = 0.05)

verbose Should intermediate message(s) be printed (default = TRUE)

Value

prop.est The bias corrected estimator of the target regression coefficient

se The standard error of the bias-corrected estimator

CI The confidence interval for the target regression coefficient

decision decision= 1 implies the target regression coefficient is not equal to \(b0 \)

decision= 0 implies the target regression coefficient is equal to \(b0 \)

proj The projection direction, of length \(p \)

References

Examples

sp = 20
n = 400
p = 800
ITE

Individualized treatment effect in the high dimensional linear regression

Description

Computes the bias corrected estimator of the Individualized Treatment Effect (ITE) and the corresponding standard error. It also constructs the confidence interval for ITE and tests whether ITE is above zero or not. Here ITE is defined as a linear combination of the difference between two regression vectors.

Usage

ITE(
X1,
y1,
X2,
y2,
loading,
intercept.loading = TRUE,
intercept = TRUE,
init.coef1 = NULL,
init.coef2 = NULL,
lambda1 = NULL,
lambda2 = NULL,
mu1 = NULL,
mu2 = NULL,
step1 = NULL,
step2 = NULL,
resol = 1.5,
maxiter = 6,
alpha = 0.05,
verbose = TRUE
)
Arguments

X1 Design matrix for the first sample, of dimension \(n_1 \times p \)
y1 Outcome vector for the first sample, of length \(n_1 \)
X2 Design matrix for the second sample, of dimension \(n_2 \times p \)
y2 Outcome vector for the second sample, of length \(n_2 \)
loading Loading, of length \(p \)
intercept.loading Should intercept be included for the loading (default = TRUE)
intercept Should intercept(s) be fitted for the initial estimators (default = TRUE)
init.coef1 Initial estimator of the first regression vector (default = NULL)
init.coef2 Initial estimator of the second regression vector (default = NULL)
lambda1 The tuning parameter in the construction of init.coef1 (default = NULL)
lambda2 The tuning parameter in the construction of init.coef2 (default = NULL)
mu1 The dual tuning parameter used in the construction of the first projection direction (default = NULL)
mu2 The dual tuning parameter used in the construction of the second projection direction (default = NULL)
step1 The step size used to compute \(\mu_1 \); if set to NULL it is computed to be the number of steps (< maxiter) to obtain the smallest \(\mu_1 \) such that the dual optimization problem for constructing the first projection direction converges (default = NULL)
step2 The step size used to compute \(\mu_2 \); if set to NULL it is computed to be the number of steps (< maxiter) to obtain the smallest \(\mu_2 \) such that the dual optimization problem for constructing the second projection direction converges (default = NULL)
resol The factor by which \(\mu_1 \) (and \(\mu_2 \)) is increased/decreased to obtain the smallest \(\mu_1 \) (and \(\mu_2 \)) such that the dual optimization problem for constructing the first (and the second) projection direction converges (default = 1.5)
maxiter Maximum number of steps along which \(\mu_1 \) (and \(\mu_2 \)) is increased/decreased to obtain the smallest \(\mu_1 \) (and \(\mu_2 \)) such that the dual optimization problem for constructing the first (and the second) projection direction converges (default = 6)
alpha Level of significance to test the null hypothesis which claims that ITE is not above zero (default = 0.05)
verbose Should intermediate message(s) be printed (default = TRUE)

Value

prop.est The bias-corrected estimator of the ITE
se The standard error of the bias-corrected estimator
CI The confidence interval for the ITE
decision decision = 1 implies the ITE is above zero
decision = 0 implies the ITE is not above zero
References

Examples

```r
n1 <- 90
p <- 200
n2 <- 90
mu <- rep(0, p)
beta1 <- rep(0, p)
beta1[1:10] <- c(1:10)/5
beta2 <- rep(0, p)
beta2[1:5] <- c(1:5)/10
X1 <- MASS::mvrnorm(n1, mu, diag(p))
X2 <- MASS::mvrnorm(n2, mu, diag(p))
y1 <- X1%*%beta1 + rnorm(n1)
y2 <- X2%*%beta2 + rnorm(n2)
loading <- c(1, rep(0, (p-1)))
Est <- ITE(X1 = X1, y1 = y1, X2 = X2, y2 = y2, loading = loading)
```

ITE_Logistic

Inference for difference of case probabilities in high dimensional logistic regressions

Description

Computes the bias corrected estimator of the difference between case probabilities or a linear combination of the difference between two regression vectors with respect to two high dimensional logistic regression models and the corresponding standard error. It also constructs the confidence interval for the difference of case probabilities or a linear combination of the difference between the regression vectors and test whether it is above zero or not. Here the case probability refers to the conditional probability of the binary response variable taking value 1 given the predictors are assigned to loading.

Usage

```r
ITE_Logistic(
  X1,
  y1,
  X2,
  y2,
  loading,
  weight = NULL,
  trans = TRUE,
)```
intercept = TRUE,
intercept.loading = TRUE,
init.coef1 = NULL,
init.coef2 = NULL,
lambda1 = NULL,
lambda2 = NULL,
mu1 = NULL,
mu2 = NULL,
step1 = NULL,
step2 = NULL,
resol = 1.5,
maxiter = 6,
alpha = 0.05,
verbose = TRUE
)

Arguments

X1  Design matrix for the first sample, of dimension $n_1 \times p$
y1  Outcome vector for the first sample, of length $n_1$
X2  Design matrix for the second sample, of dimension $n_2 \times p$
y2  Outcome vector for the second sample, of length $n_2$
loading  Loading, of length $p$
weight  The weight vector used for bias correction, of length $n$; if set to NULL, the weight is the inverse of the first derivative of the logit function (default = NULL)
trans  Should results for the case probability (TRUE) or the linear combination (FALSE) be reported (default = TRUE)
intercept  Should intercept(s) be fitted for the initial estimators (default = TRUE)
intercept.loading  Should intercept be included for the loading (default = TRUE)
init.coef1  Initial estimator of the first regression vector (default = NULL)
init.coef2  Initial estimator of the second regression vector (default = NULL)
lambda1  The tuning parameter in the construction of init.coef1 (default = NULL)
lambda2  The tuning parameter in the construction of init.coef2 (default = NULL)
mu1  The dual tuning parameter used in the construction of the first projection direction (default = NULL)
mu2  The dual tuning parameter used in the construction of the second projection direction (default = NULL)
step1  The step size used to compute mu1; if set to NULL it is computed to be the number of steps (< maxiter) to obtain the smallest mu1 such that the dual optimization problem for constructing the projection direction converges (default = NULL)
step2  The step size used to compute mu2; if set to NULL it is computed to be the number of steps (< maxiter) to obtain the smallest mu2 such that the dual optimization problem for constructing the second projection direction converges (default = NULL)
resol

The factor by which \( \mu_1 \) (and \( \mu_2 \)) is increased/decreased to obtain the smallest \( \mu_1 \) (and \( \mu_2 \)) such that the dual optimization problem for constructing the first (and the second) projection direction converges (default = 1.5)

maxiter

Maximum number of steps along which \( \mu_1 \) (and \( \mu_2 \)) is increased/decreased to obtain the smallest \( \mu \) (and \( \mu_2 \)) such that the dual optimization problem for constructing the first (and the second) projection direction converges (default = 6)

alpha

Level of significance to test the null hypothesis which claims that the first case probability is not greater than the second case probability (default = 0.05)

verbose

Should intermediate message(s) be printed (default = \texttt{TRUE})

Value

prop.est

The bias-corrected estimator for the difference between case probabilities or the linear combination of the difference between two regression vectors

se

The standard error for the bias-corrected estimator

CI

The confidence interval for the difference between case probabilities or the linear combination of the difference between two regression vectors

decision

decision = 1 implies the first case probability or linear combination is greater than the second one
decision = 0 implies the first case probability or linear combination is less than the second one

Examples

```r
A1gen <- function(rho,p){
 A1 <- matrix(0,p,p)
 for(i in 1:p){
 for(j in 1:p){
 A1[i,j] <- rho^abs(i-j)
 }
 }
 A1
}
n1 <- 100
n2 <- 100
p <- 400
mu <- rep(0,p)
rho <- 0.5
Cov <- (A1gen(rho,p))/2
beta1 <- rep(0,p)
beta1[1:10] <- c(1:10)/5
beta2 <- rep(0,p)
beta2[1:5] <- c(1:5)/10
X1 <- MASS::mvrnorm(n1,mu,Cov)
X2 <- MASS::mvrnorm(n2,mu,Cov)
ex_val1 <- X1%*%beta1
ex_val2 <- X2%*%beta2
```
\begin{verbatim}
prob1 <- exp(exp_val1)/(1+exp(exp_val1))
prob2 <- exp(exp_val2)/(1+exp(exp_val2))
y1 <- rbinom(n1,1,prob1)
y2 <- rbinom(n2,1,prob2)
loading <- c(1,rep(0,(p-1)))
Est <- ITE_Logistic(X1 = X1, y1 = y1, X2 = X2, y2 = y2,loading = loading, trans = FALSE)
\end{verbatim}

---

**LF**

*Inference for a linear combination of regression coefficients in high dimensional linear regression.*

**Description**

Computes the bias corrected estimator of the linear combination of regression coefficients and the corresponding standard error. It also constructs the confidence interval for the linear combination and tests whether it is above zero or not.

**Usage**

\[
\text{LF}(X, y, \text{loading}, \text{intercept.loading} = \text{TRUE}, \text{intercept} = \text{TRUE}, \text{init.coef} = \text{NULL}, \text{lambda} = \text{NULL}, \text{mu} = \text{NULL}, \text{step} = \text{NULL}, \text{resol} = 1.5, \text{maxiter} = 6, \text{alpha} = 0.05, \text{verbose} = \text{TRUE})
\]

**Arguments**

- **X**: Design matrix, of dimension \(n \times p\)
- **y**: Outcome vector, of length \(n\)
- **loading**: Loading, of length \(p\)
- **intercept.loading**: Should intercept be included for the loading (default = \text{TRUE})
- **intercept**: Should intercept be fitted for the initial estimator (default = \text{TRUE})
- **init.coef**: Initial estimator of the regression vector (default = \text{NULL})
- **lambda**: The tuning parameter in the construction of \text{init.coef} (default = \text{NULL})
mu  The dual tuning parameter used in the construction of the projection direction (default = NULL)

step  The step size used to compute mu; if set to NULL it is computed to be the number of steps (< maxiter) to obtain the smallest mu such that the dual optimization problem for constructing the projection direction converges (default = NULL)

resol  The factor by which mu is increased/decreased to obtain the smallest mu such that the dual optimization problem for constructing the projection direction converges (default = 1.5)

maxiter  Maximum number of steps along which mu is increased/decreased to obtain the smallest mu such that the dual optimization problem for constructing the projection direction converges (default = 6)

alpha  Level of significance to test the null hypothesis which claims that the linear combination of the regression coefficients is less than or equal to zero (default = 0.05)

verbose  Should intermediate message(s) be printed (default = TRUE)

Value

prop.est  The bias-corrected estimator for the linear combination of regression coefficients

se  The standard error of the bias-corrected estimator

CI  The confidence interval for the linear combination

decision  decision = 1 implies the linear combination is above zero
decision = 0 implies the linear combination is not above zero

proj  The projection direction, of length p

plug.in  The plug-in estimator for the linear combination

References


Examples

```r
n <- 90
p <- 200
A1gen <- function(rho,p){
 A1=matrix(0,p,p)
 for(i in 1:p){
 for(j in 1:p){
 A1[i,j] <- rho^(abs(i-j))
 }
 }
 A1
}
A1
mu <- rep(0,p)
```
\begin{verbatim}
rho <- 0.5
Cov <- (A1gen(rho,p))/2
beta <- rep(0,p)
beta[1:10] <- c(1:10)/5
X <- MASS::mvrnorm(n,mu,Cov)
y <- X%*%beta + rnorm(n)
loading <- c(1,rep(0,(p-1)))
Est <- LF(X = X, y = y, loading = loading)
\end{verbatim}

**LF_logistic**

Inference for the case probability or a linear combination of regression coefficients in high dimensional logistic regression.

**Description**

Computes the bias corrected estimator of the case probability or the linear combination of regression coefficients in the high dimensional logistic regression model and the corresponding standard error. It also constructs the confidence interval for the case probability or the linear combination and tests whether the case probability is above 0.5 or not. Here case probability refers to the conditional probability of the binary response variable taking value 1 given the predictors take value loading.

**Usage**

\[
\text{LF_logistic}(X, y, \text{loading}, \text{weight = NULL, trans = TRUE, intercept.loading = TRUE, intercept = TRUE, init.coef = NULL, lambda = NULL, mu = NULL, step = NULL, resol = 1.5, maxiter = 6, alpha = 0.05, verbose = TRUE})
\]

**Arguments**

- **X** Design matrix, of dimension \(n \times p\)
- **y** Outcome vector, of length \(n\)
- **loading** Loading, of length \(p\)
weight

The weight vector used for bias correction, of length \( n \); if set to \( \text{NULL} \), the weight is the inverse of the first derivative of the logit function (default = \( \text{NULL} \))

trans

Should results for the case probability (TRUE) or the linear combination (FALSE) be reported (default = TRUE)

intercept.loading

Should intercept be included for the loading (default = TRUE)

intercept

Should intercept be included for the initial estimator (default = TRUE)

init.coef

Initial estimator of the regression vector (default = \( \text{NULL} \))

lambda

The tuning parameter used in the construction of \( \text{init.coef} \) (default = \( \text{NULL} \))

mu

The dual tuning parameter used in the construction of the projection direction (default = \( \text{NULL} \))

step

The step size used to compute \( \mu \); if set to \( \text{NULL} \) it is computed to be the number of steps (< \( \text{maxiter} \)) to obtain the smallest \( \mu \) such that the dual optimization problem for constructing the projection direction converges (default = \( \text{NULL} \))

resol

The factor by which \( \mu \) is increased/decreased to obtain the smallest \( \mu \) such that the dual optimization problem for constructing the projection direction converges (default = 1.5)

maxiter

Maximum number of steps along which \( \mu \) is increased/decreased to obtain the smallest \( \mu \) such that the dual optimization problem for constructing the projection direction converges (default = 6)

alpha

Level of significance to test the null hypothesis that the case probability is less than or equal to 0.5 (default = 0.05)

verbose

Should intermediate message(s) be printed (default = TRUE)

Value

prop.est

The bias corrected estimator of the case probability or the linear combination of regression coefficients

se

The standard error of the bias-corrected estimator

CI

The confidence interval for the case probability or the linear combination

decision

decision = 1 implies the case probability is above 0.5
decision = 0 implies the case probability is not above 0.5

proj

The projection direction, of length \( p \)

plug.in

The plug-in estimator of the case probability or the linear combination

References

Examples

```r
A1gen <- function(rho,p){
 A1 <- matrix(0,p,p)
 for(i in 1:p){
 for(j in 1:p){
 A1[i,j] <- rho^(abs(i-j))
 }
 }
 A1
}

n <- 100
p <- 400
mu <- rep(0,p)
rho <- 0.5
Cov <- (A1gen(rho,p))/2
beta <- rep(0,p)
beta[1:10] <- 0.5*c(1:10)/10
a0 <- 0
loading <- c(1,rep(0,(p-1)))
X <- MASS::mvrnorm(n,mu,Cov)
exp_val <- X%*%beta+a0
prob <- exp(exp_val)/(1+exp(exp_val))
y <- rbinom(n,1,prob)
Est <- LF_logistic(X = X, y = y, loading = loading, trans = TRUE)
```

Description

Inference for quadratic forms of the regression vector in high dimensional linear regression

Computes the bias-corrected estimator of the quadratic form of the regression vector, restricted to the set of indices $G$ for the high dimensional linear regression and the corresponding standard error. It also constructs the confidence interval for the quadratic form and test whether it is above zero or not.

Usage

```r
QF(
 X,
 y,
 G,
 Cov.weight = TRUE,
 A = NULL,
 tau.vec = c(1),
 init.coef = NULL,
)```
lambda = NULL,
mu = NULL,
step = NULL,
resol = 1.5,
maxiter = 6,
alpha = 0.05,
verbose = TRUE
}

Arguments

X Design matrix, of dimension \(n \times p \)
y Outcome vector, of length \(n \)
G The set of indices, \(G \) in the quadratic form
Cov.weight Logical, if set to TRUE then \(A \) is the \(|G| \times |G|\) submatrix of the population covariance matrix corresponding to the index set \(G \), else need to provide an \(A \) (default = TRUE)
A The matrix \(A \) in the quadratic form, of dimension \(|G| \times |G|\) (default = NULL)
tau.vec The vector of enlargement factors for asymptotic variance of the bias-corrected estimator to handle super-efficiency (default = 1)
init.coef Initial estimator for the regression vector (default = NULL)
lambda The tuning parameter used in the construction of init.coef (default = NULL)
mu The dual tuning parameter used in the construction of the projection direction (default = NULL)
step The step size used to compute \(\mu \); if set to NULL it is computed to be the number of steps (< maxiter) to obtain the smallest \(\mu \) such that the dual optimization problem for constructing the projection direction converges (default = NULL)
resol Resolution or the factor by which \(\mu \) is increased/decreased to obtain the smallest \(\mu \) such that the dual optimization problem for constructing the projection direction converges (default = 1.5)
maxiter Maximum number of steps along which \(\mu \) is increased/decreased to obtain the smallest \(\mu \) such that the dual optimization problem for constructing the projection direction converges (default = 6)
alpha Level of significance to test the null hypothesis which claims that the quadratic form of the regression vector is equal to 0 (default = 0.05)
verbose Should intermediate message(s) be printed (default = TRUE)

Value

prop.est The bias-corrected estimator of the quadratic form of the regression vector
se The standard error of the bias-corrected estimator
CI The matrix of confidence interval for the quadratic form of the regression vector; row corresponds to different values of tau.vec
decision = 1 implies the quadratic form of the regression vector is above zero
decision = 0 implies the quadratic form of the regression vector is zero
row corresponds to different values of tau.vec
proj The projection direction, of length p
plug.in The plug-in estimator for the quadratic form of the regression vector restricted
to G

References

Examples

```r
n = 100
p = 200
A1gen <- function(rho,p){
  A1=matrix(0,p,p)
  for(i in 1:p){
    for(j in 1:p){
      A1[i,j]<-rho^(abs(i-j))
    }
  }
  A1
}
mu <- rep(0,p)
mu[1:5] <- c(1:5)/5
rho = 0.5
Cov <- (A1gen(rho,p))/2
beta <- rep(0,p)
beta[1:10] <- c(1:10)/5
X <- MASS::mvrnorm(n,mu,Cov)
y = X%*%beta + rnorm(n)
test.set =c(30:50)
Est <-SIHR::QF(X = X, y = y, G = test.set)
```
Index

Direction_fixedtuning, 2
Direction_searchtuning, 3

GLM_binary, 4

ITE, 6
ITE_Logistic, 8

LF, 11
LF_logistic, 13

QF, 15