Package ‘SMMA’

October 12, 2022

Type Package

Title Soft Maximin Estimation for Large Scale Array-Tensor Models

Version 1.0.3

Date 2020-09-17

Author Adam Lund

Maintainer Adam Lund <adam.lund@math.ku.dk>

License GPL (>= 2)

Imports Rcpp (>= 0.12.12)

LinkingTo Rcpp, RcppArmadillo

RoxygenNote 7.1.1

NeedsCompilation yes

Repository CRAN

Date/Publication 2020-09-17 13:00:07 UTC

R topics documented:

predict.SMMA .. 2
print.SMMA ... 3
RH ... 4
SMMA .. 5

Index 10
predict.SMMA

Make Prediction From a SMMA Object

Description
Given new covariate data this function computes the linear predictors based on the estimated model coefficients in an object produced by the function softmaximin. Note that the data can be supplied in two different formats: i) as a \(n' \times p \) matrix (\(p \) is the number of model coefficients and \(n' \) is the number of new data points) or ii) as a list of two or three matrices each of size \(n'_i \times p_i, i = 1, 2, 3 \) (\(n'_i \) is the number of new marginal data points in the \(i \)th dimension).

Usage
```r
## S3 method for class 'SMMA'
predict(object, x = NULL, X = NULL, ...)
```

Arguments
- `object`: An object of class SMMA, produced with softmaximin
- `x`: a matrix of size \(n' \times p \) with \(n' \) is the number of new data points.
- `X`: a list containing the data matrices each of size \(n'_i \times p_i \), where \(n'_i \) is the number of new data points in the \(i \)th dimension.
- `...`: ignored

Value
A list of length \(n\lambda \) containing the linear predictors for each model. If new covariate data is supplied in one \(n' \times p \) matrix \(x \) each item is a vector of length \(n' \). If the data is supplied as a list of matrices each of size \(n'_i \times p_i \), each item is an array of size \(n'_1 \times \cdots \times n'_d \), with \(d \in \{1, 2, 3\} \).

Author(s)
Adam Lund

Examples
```r
## size of example
n1 <- 65; n2 <- 26; n3 <- 13; p1 <- 13; p2 <- 5; p3 <- 4

## marginal design matrices (Kronecker components)
X1 <- matrix(rnorm(n1 * p1, 0, 0.5), n1, p1)
X2 <- matrix(rnorm(n2 * p2, 0, 0.5), n2, p2)
X3 <- matrix(rnorm(n3 * p3, 0, 0.5), n3, p3)
X <- list(X1, X2, X3)

component <- rbinom(p1 * p2 * p3, 1, 0.1)
Beta1 <- array(rnorm(p1 * p2 * p3, 0, .1) + component, c(p1, p2, p3))
```
Beta2 <- array(rnorm(p1 * p2 * p3, 0, .1) + component, c(p1, p2, p3))
mu1 <- RH(X3, RH(X2, RH(X1, Beta1)))
mu2 <- RH(X3, RH(X2, RH(X1, Beta2)))
Y1 <- array(rnorm(n1 * n2 * n3, mu1), dim = c(n1, n2, n3))
Y2 <- array(rnorm(n1 * n2 * n3, mu2), dim = c(n1, n2, n3))

Y <- array(NA, c(dim(Y1), 2))
Y[,,, 1] <- Y1; Y[,,, 2] <- Y2;

fit <- softmaximin(X, Y, zeta = 10, penalty = "lasso", alg = "npg")

new data in matrix form
x <- matrix(rnorm(p1 * p2 * p3), nrow = 1)
predict(fit, x = x)[[15]]

new data in tensor component form
X1 <- matrix(rnorm(p1), nrow = 1)
X2 <- matrix(rnorm(p2), nrow = 1)
X3 <- matrix(rnorm(p3), nrow = 1)
predict(fit, X = list(X1, X2, X3))[[15]]

print.SMMA

\textbf{Print Function for objects of Class SMMA}

\textbf{Description}

This function will print some information about the SMMA object.

\textbf{Usage}

\texttt{## S3 method for class \textquote{\textquotesingle}SMMA\textquotesingle} \n\texttt{print(x, \ldots)}

\textbf{Arguments}

\begin{itemize}
 \item \texttt{x} \quad \text{a SMMA object}
 \item \texttt{\ldots} \quad \text{ignored}
\end{itemize}

\textbf{Author(s)}

Adam Lund
Examples

```r
# size of example
n1 <- 65; n2 <- 26; n3 <- 13; p1 <- 13; p2 <- 5; p3 <- 4

# marginal design matrices (Kronecker components)
X1 <- matrix(rnorm(n1 * p1, 0, 0.5), n1, p1)
X2 <- matrix(rnorm(n2 * p2, 0, 0.5), n2, p2)
X3 <- matrix(rnorm(n3 * p3, 0, 0.5), n3, p3)
X <- list(X1, X2, X3)

component <- rbinom(p1 * p2 * p3, 1, 0.1)
Beta1 <- array(rnorm(p1 * p2 * p3, 0, .1) + component, c(p1, p2, p3))
Beta2 <- array(rnorm(p1 * p2 * p3, 0, .1) + component, c(p1, p2, p3))
mu1 <- RH(X3, RH(X2, RH(X1, Beta1)))
mu2 <- RH(X3, RH(X2, RH(X1, Beta2)))
Y1 <- array(rnorm(n1 * n2 * n3, mu1), dim = c(n1, n2, n3))
Y2 <- array(rnorm(n1 * n2 * n3, mu2), dim = c(n1, n2, n3))

Y <- array(NA, c(dim(Y1), 2))
Y[, , 1] <- Y1; Y[, , 2] <- Y2;

fit <- softmaximin(X, Y, zeta = 10, penalty = "lasso", alg = "npg")
fit
```

RH
The Rotated H-transform of a 3d Array by a Matrix

Description

This function is an implementation of the \(\rho \)-operator found in Currie et al 2006. It forms the basis of the GLAM arithmetic.

Usage

```r
RH(M, A)
```

Arguments

- **M**
 a \(n \times p_1 \) matrix.
- **A**
 a 3d array of size \(p_1 \times p_2 \times p_3 \).

Details

For details see Currie et al 2006. Note that this particular implementation is not used in the routines underlying the optimization procedure.
SMMA

Value

A 3d array of size $p_2 \times p_3 \times n$.

Author(s)

Adam Lund

References

Examples

```r
n1 <- 65; n2 <- 26; n3 <- 13; p1 <- 13; p2 <- 5; p3 <- 4

##marginal design matrices (Kronecker components)
X1 <- matrix(rnorm(n1 * p1), n1, p1)
X2 <- matrix(rnorm(n2 * p2), n2, p2)
X3 <- matrix(rnorm(n3 * p3), n3, p3)

Beta <- array(rnorm(p1 * p2 * p3, 0, 1), c(p1, p2, p3))
max(abs(c(RH(X3, RH(X2, RH(X1, Beta)))) - kronecker(X3, kronecker(X2, X1)) %*% c(Beta)))
```

SMMA

Soft Maximin Estimation for Large Scale Array Data with Known Groups

Description

Efficient design matrix free procedure for solving a soft maximin problem for large scale array-tensor structured models, see *Lund et al., 2020*. Currently Lasso and SCAD penalized estimation is implemented.

Usage

```r
softmaximin(X, 
Y, 
zeta, 
penalty = c("lasso", "scad"), 
alg = c("npg", "fista"), 
nlambda = 30, 
lambda.min.ratio = 1e-04, 
lambda = NULL, 
penalty.factor = NULL,
```
realtol = 1e-05,
maxiter = 15000,
steps = 1,
btmax = 100,
c = 0.0001,
tau = 2,
M = 4,
nu = 1,
Lmin = 0,
log = TRUE)

Arguments

- **X**: list containing the Kronecker components (1, 2 or 3) of the Kronecker design matrix. These are matrices of sizes \(n_i \times p_i\).
- **Y**: array of size \(n_1 \times \cdots \times n_d \times G\) containing the response values.
- **zeta**: strictly positive float controlling the softmaximin approximation accuracy.
- **penalty**: string specifying the penalty type. Possible values are "lasso", "scad".
- **alg**: string specifying the optimization algorithm. Possible values are "npg", "fista".
- **nlambda**: positive integer giving the number of lambda values. Used when lambda is not specified.
- **lambda.min.ratio**: strictly positive float giving the smallest value for lambda, as a fraction of \(\lambda_{max}\): the (data dependent) smallest value for which all coefficients are zero. Used when lambda is not specified.
- **lambda**: sequence of strictly positive floats used as penalty parameters.
- **penalty.factor**: array of size \(p_1 \times \cdots \times p_d\) of positive floats. Is multiplied with each element in lambda to allow differential penalization on the coefficients.
- **realtol**: strictly positive float giving the convergence tolerance for the inner loop.
- **maxiter**: positive integer giving the maximum number of iterations allowed for each lambda value, when summing over all outer iterations for said lambda.
- **steps**: strictly positive integer giving the number of steps used in the multi-step adaptive lasso algorithm for non-convex penalties. Automatically set to 1 when penalty = "lasso".
- **btmax**: strictly positive integer giving the maximum number of backtracking steps allowed in each iteration. Default is \(btmax = 100\).
- **c**: strictly positive float used in the NPG algorithm. Default is \(c = 0.0001\).
- **tau**: strictly positive float used to control the stepsize for NPG. Default is \(\tau = 2\).
- **M**: positive integer giving the look back for the NPG. Default is \(M = 4\).
- **nu**: strictly positive float used to control the stepsize. A value less than 1 will decrease the stepsize and a value larger than one will increase it. Default is \(\nu = 1\).
- **Lmin**: non-negative float used by the NPG algorithm to control the stepsize. For the default \(Lmin = 0\) the maximum step size is the same as for the FISTA algorithm.
- **log**: logical variable indicating whether to use log-loss. TRUE is default and yields the loss below.
Details

Following Lund et al., 2020 this package solves the optimization problem for a linear model for heterogeneous d-dimensional array data ($d = 1, 2, 3$) organized in G known groups, and with identical tensor structured design matrix X across all groups. Specifically $n = \prod_{i=1}^{d} n_i$ is the number of observations in each group, Y_g the $n_1 \times \cdots \times n_d$ response array for group $g \in \{1, \ldots, G\}$, and X a $n \times p$ design matrix, with tensor structure

$$X = \bigotimes_{i=1}^{d} X_i.$$

For $d = 1, 2, 3$, X_1, \ldots, X_d are the marginal $n_i \times p_i$ design matrices (Kronecker components). Using the GLAM framework the model equation for group $g \in \{1, \ldots, G\}$ is expressed as

$$Y_g = \rho(X_d, \rho(X_{d-1}, \ldots, \rho(X_1, B_g))) + E_g,$$

where ρ is the so called rotated H-transform (see Currie et al., 2006), B_g for each g is a (random) $p_1 \times \cdots \times p_d$ parameter array and E_g is a $n_1 \times \cdots \times n_d$ error array.

This package solves the penalized soft maximin problem from Lund et al., 2020, given by

$$\min_{\beta} \frac{1}{\zeta} \log \left(\sum_{g=1}^{G} \exp\left(-\zeta \hat{V}_g(\beta)\right) \right) + \lambda \|\beta\|_1, \quad \zeta > 0, \lambda \geq 0$$

for the setup described above. Note that

$$\hat{V}_g(\beta) := \frac{1}{n} (2 \beta^T X^T \text{vec}(Y_g) - \beta^T X^T X \beta),$$

is the empirical explained variance from Meinshausen and Buhlmann, 2015. See Lund et al., 2020 for more details and references.

For $d = 1, 2, 3$, using only the marginal matrices X_1, X_2, \ldots (for $d = 1$ there is only one marginal), the function softmaximin solves the soft maximin problem for a sequence of penalty parameters $\lambda_{max} > \cdots > \lambda_{min} > 0$.

Two optimization algorithms are implemented, a non-monotone proximal gradient (NPG) algorithm and a fast iterative soft thresholding algorithm (FISTA). We note that this package also solves the problem above with the penalty given by the SCAD penalty, using the multiple step adaptive lasso procedure to loop over the proximal algorithm.

Value

An object with S3 Class "SMMA".

spec A string indicating the array dimension (1, 2 or 3) and the penalty.
coef A $p_1 \cdots p_d \times n\lambda$ matrix containing the estimates of the model coefficients (beta) for each lambda-value.
lambda A vector containing the sequence of penalty values used in the estimation procedure.
obj A matrix containing the objective values for each iteration and each model.
df
The number of nonzero coefficients for each value of lambda.

dimcoef
A vector giving the dimension of the model coefficient array β.

dimobs
A vector giving the dimension of the observation (response) array Y.

Iter
A list with 4 items: bt_iter is total number of backtracking steps performed, bt_enter is the number of times the backtracking is initiated, and iter_mat is a vector containing the number of iterations for each lambda value and iter is total number of iterations i.e. \text{sum}(Iter).

Author(s)
Adam Lund
Maintainer: Adam Lund, <adam.lund@math.ku.dk>

References

Examples
##size of example
n1 <- 65; n2 <- 26; n3 <- 13; p1 <- 13; p2 <- 5; p3 <- 4

##marginal design matrices (Kronecker components)
X1 <- matrix(rnorm(n1 * p1), n1, p1)
X2 <- matrix(rnorm(n2 * p2), n2, p2)
X3 <- matrix(rnorm(n3 * p3), n3, p3)
X <- list(X1, X2, X3)

component <- rbinom(p1 * p2 * p3, 1, 0.1)
Beta1 <- array(rnorm(p1 * p2 * p3, 0, 0.1) + component, c(p1 , p2, p3))
mu1 <- RH(X3, RH(X2, RH(X1, Beta1)))
Y1 <- array(rnorm(n1 * n2 * n3), dim = c(n1, n2, n3)) + mu1
Beta2 <- array(rnorm(p1 * p2 * p3, 0, 0.1) + component, c(p1 , p2, p3))
mu2 <- RH(X3, RH(X2, RH(X1, Beta2)))
Y2 <- array(rnorm(n1 * n2 * n3), dim = c(n1, n2, n3)) + mu2
Beta3 <- array(rnorm(p1 * p2 * p3, 0, 0.1) + component, c(p1 , p2, p3))
mu3 <- RH(X3, RH(X2, RH(X1, Beta3)))
Y3 <- array(rnorm(n1 * n2 * n3), dim = c(n1, n2, n3)) + mu3
Beta4 <- array(rnorm(p1 * p2 * p3, 0, 0.1) + component, c(p1 , p2, p3))
mu4 <- RH(X3, RH(X2, RH(X1, Beta4)))
Y4 <- array(rnorm(n1 * n2 * n3), dim = c(n1, n2, n3)) + mu4
Beta5 <- array(rnorm(p1 * p2 * p3, 0, 0.1) + component, c(p1 , p2, p3))
mu5 <- RH(X3, RH(X2, RH(X1, Beta5)))
Y5 <- array(rnorm(n1 * n2 * n3), dim = c(n1, n2, n3)) + mu5

Y <- array(NA, c(dim(Y1), 5))

fit <- softmaximin(X, Y, zeta = 10, penalty = "lasso", alg = "npg")
Betafit <- fit$coef

modelno <- 15
m <- min(Betafit[, modelno], c(component))
M <- max(Betafit[, modelno], c(component))
plot(c(component), type="l", ylim = c(m, M))
lines(Betafit[, modelno], col = "red")
Index

* package
 SMMA, 5

glamlasso_RH (RH), 4

H (RH), 4

pga (SMMA), 5
predict.SMMA, 2
print.SMMA, 3

RH, 4
Rotate (RH), 4

SMMA, 5
softmaximin (SMMA), 5