Title The Sparse Online Principal Component Estimation Algorithm

Description The sparse online principal component can not only process the real-time updated data set and stream data set, but also obtain the sparse solution of the updated data set. The philosophy of the package is described in Guo G. (2018) <doi:10.1080/10485252.2018.1531130>.

License MIT + file LICENSE

Encoding UTF-8

R topics documented:

Hugging ... 2
OPC ... 3
PC ... 3
PSA ... 4
SOPC .. 5
SPC .. 5
Description
The EMG Physical Action-Hugging data set.

Usage
data("Hugging")

Format
A data frame with 9752 observations on the following 8 variables.

A a numeric vector
B a numeric vector
C a numeric vector
D a numeric vector
E a numeric vector
F a numeric vector
G a numeric vector
H a numeric vector

Details
The data set is a body movement data set, including 10 normal and 10 aggressive body movements. The data frame with 9752 observations on the following 8 variables.

Source
The Hugging data set comes from the UCI database.

References

Examples
data(Hugging)
maybe str(Hugging); plot(Hugging) ...
The online principal components can handle data sets that are updated in real time and streaming data.

Usage

OPC(data, m, eta)

Arguments

data is a highly correlated online data set
m is the number of principal component
eta is the proportion of online data to total data

Value

Ao, Do

Examples

OPC(data=PSA, m=3, eta=0.8)

The traditional principal component method. This method can estimate the eigen space of the data set.

Usage

PC(data, m = m)

Arguments

data is a set of highly correlated variables
m is the number of principal component
Value

Ahat, Dhat

Examples

```
PC(data=PSA,m=3)
```

PSA

Prostate Specific Antigen

Description

The prostate specific antigen (PSA) data set.

Usage

```
data("PSA")
```

Format

- lcavol: a numeric vector
- lweight: a numeric vector
- age: a numeric vector
- lbph: a numeric vector
- svi: a numeric vector
- lcp: a numeric vector
- gleason: a numeric vector
- pgg45: a numeric vector
- lpsa: a numeric vector

Details

The data set comes from the prostate specific antigen (PSA) data of 96 patients collected by Stanford University Medical Center. These patients all underwent radical prostatectomy.

Source

The Stanford University Medical Center.

References

NA

Examples

```
data(PSA)
## maybe str(PSA) ; plot(PSA) ...
```
The sparse online principal component can not only process the real-time updated data set and stream data set, but also obtain the sparse solution of the updated data set.

Description

The sparse online principal component can not only process the real-time updated data set and stream data set, but also obtain the sparse solution of the updated data set.

Usage

SOPC(data, m, gamma, eta)

Arguments

- **data**: is a highly correlated online data set
- **m**: is the number of principal component
- **gamma**: is a sparse parameter
- **eta**: is the proportion of online data to total data

Value

Aso,Dso

Examples

SOPC(data=PSA, m=3, gamma=0.03, eta=0.6)

The sparse principal component can obtain sparse solutions of the eigenmatrix to better explain the relationship between principal components and original variables.

Description

The sparse principal component can obtain sparse solutions of the eigenmatrix to better explain the relationship between principal components and original variables.

Usage

SPC(data, m, gamma)
Arguments
 data: is a set of highly correlated variables
 m: is the number of principal component
 gamma: is a sparse parameter

Value
 As, Ds

Examples
 SPC(data=PSA, m=3, gamma=0.03)
Index

* datasets
 Hugging, 2
 PSA, 4

Hugging, 2

OPC, 3

PC, 3
PSA, 4

SOPC, 5
SPC, 5