Package ‘SPOT’

October 22, 2021

License GPL (>= 2)

Title Sequential Parameter Optimization Toolbox

Type Package

LazyLoad yes

LazyData true

Encoding UTF-8

Description A set of tools for model-based optimization and tuning of algorithms (hyperparameter tuning). It includes surrogate models, optimizers, and design of experiment approaches. The main interface is spot, which uses sequentially updated surrogate models for the purpose of efficient optimization. The main goal is to ease the burden of objective function evaluations, when a single evaluation requires a significant amount of resources.

Version 2.5.12

Date 2021-10-12

Depends R (>= 3.5.0)

Imports DEoptim, ggplot2, glmnet, graphics, grDevices, laGP, MASS, nloptr, plgp, plotly, rpart, randomForest, ranger, rgenoud, rsm, stats, utils

RoxygenNote 7.1.2

Suggests babsim.hospital, batchtools, car, farff, knitr, microbenchmark, rmarkdown, OpenML, party, RColorBrewer, readr, testthat

VignetteBuilder knitr

URL https://www.spotseven.de

NeedsCompilation no

Author Thomas Bartz-Beielstein [aut, cre] (<https://orcid.org/0000-0002-5938-5158>), Martin Zaefferer [aut] (<https://orcid.org/0000-0003-2372-2092>), Frederik Rehbach [aut] (<https://orcid.org/0000-0003-0922-8629>), Margarita Rebolledo [ctb],
Joerg Stork [ctb] (0000-0002-7471-3498),
Christian Lasarczyk [ctb]

Maintainer Thomas Bartz-Beielstein <tbb@bartzundbartz.de>

Repository CRAN
Date/Publication 2021-10-22 19:00:02 UTC

R topics documented:

- SPOT-package
- buildBO
- buildCVModel
- buildEnsembleStack
- buildGaussianProcess
- buildKriging
- buildKrigingDACE
- buildLasso
- buildLM
- buildLOESS
- buildPCA
- buildRandomForest
- buildRanger
- buildRSM
- buildTreeModel
- checkArrival
- code2nat
- dataGasSensor
- descentSpotRSM
- designLHD
- designUniformRandom
- diff0
- doParallel
- expectedImprovement
- funBaBSimHospital
- funBard
- funBeale
- funBox3d
- funBranin
- funBrownBs
- funCosts
- funCyclone
- funFreudRoth
- funGauss
- funGoldsteinPrice
- funGulf
- funHelical
- funIshigami
- funJennSamp
R topics documented:

- `funMeyer` .. 41
- `funOptimLecture` ... 42
- `funPowellBs` ... 42
- `funPowellS` .. 43
- `funRosen` .. 44
- `funRosen2` ... 45
- `funShiftedSphere` 45
- `funSoblev99` .. 46
- `funSphere` ... 47
- `funSring` ... 48
- `getCosts` .. 48
- `getNatDesignFromCoded` 49
- `infillEI` .. 50
- `infillExpectedImprovement` 51
- `init_ring` ... 51
- `normalizeMatrix` .. 53
- `normalizeMatrix2` 53
- `optimDE` .. 54
- `optimES` .. 55
- `optimGenoud` ... 57
- `optimLBFGSB` ... 58
- `optimLHD` ... 59
- `optimNLOPTR` ... 60
- `perceptron` ... 61
- `plotBestObj` .. 62
- `plotData` ... 62
- `plotFunction` ... 64
- `plotModel` .. 66
- `plotPCA` .. 67
- `plotPCAvariance` 68
- `predict.cvModel` .. 70
- `prepareBestObjectiveVal` 70
- `repeatsOCBA` ... 71
- `resSpot` ... 72
- `resSpot2` ... 72
- `ring` .. 73
- `sann2spot` .. 74
- `satter` .. 74
- `simulate.kriging` 75
- `simulateFunction` 76
- `spot` .. 78
- `spotAlgEs` ... 79
- `spotCleanup` .. 81
- `spotControl` .. 81
- `spotLoop` ... 83
- `spotPlotPower` ... 85
- `spotPlotSeverity` 85
- `spotPower` .. 86
Sequential Parameter Optimization Toolbox

Details

SPOT uses a combination statistic models and optimization algorithms for the purpose of parameter optimization. Design of Experiment methods are employed to generate an initial set of candidate solutions, which are evaluated with a user-provided objective function. The resulting data is used to fit a model, which in turn is subject to an optimization algorithm, to find the most promising candidate solution(s). These are again evaluated, after which the model is updated with the new results. This sequential procedure of modeling, optimization, and evaluation is iterated until the evaluation budget is exhausted.

Maintainer

Thomas Bartz-Beielstein <tbb@bartzundbartz.de>

Author(s)

Thomas Bartz-Beielstein <tbb@bartzundbartz.de>, Martin Zaefferer, and F. Rehbach with contributions from: C. Lasarczyk, M. Rebolledo, Joerg Stork.

See Also

Main interface function is spot.
Description

Bayesian Optimization Model Interface

Usage

\[\text{buildBO}(x, y, \text{control} = \text{list}()) \]

Arguments

- \(x\): matrix of input parameters. Rows for each point, columns for each parameter.
- \(y\): one column matrix of observations to be modeled.
- \(\text{control}\): list of control parameters

Value

an object of class "spotBOModel", with a predict method and a print method.

Description

Build a set of models trained on different folds of cross-validated data. Can be used to estimate the uncertainty of a given model type at any point.

Usage

\[\text{buildCVModel}(x, y, \text{control} = \text{list}()) \]

Arguments

- \(x\): design matrix (sample locations)
- \(y\): vector of observations at \(x\)
- \(\text{control}\): (list), with the options for the model building procedure:
 - \(\text{types}\): a character vector giving the data type of each variable. All but "factor" will be handled as numeric, "factor" (categorical) variables will be subject to the hamming distance.
 - \(\text{target}\): target values of the prediction, a vector of strings. Each string specifies a value to be predicted, e.g., "y" for mean, "s" for standard deviation. This can also be changed after the model has been built, by manipulating the respective object$target value.
uncertaintyEstimator a character vector specifying which uncertaintyEstimator should be used. "s" or the linearlyAdapted uncertainty "sLinear". Default is "sLinear".

modellingFunction the model that shall be fitted to each data fold

Value
set of models (class cvModel)

buildEnsembleStack Ensemble: Stacking

Description
Generates an ensemble of surrogate models with stacking (stacked generalization).

Usage
buildEnsembleStack(x, y, control = list())

Arguments
x design matrix (sample locations), rows for each sample, columns for each variable.
y vector of observations at x
control (list), with the options for the model building procedure:
modelL1 Function for fitting the L1 model (default: buildLM) which combines the results of the L0 models.
modelL1Control List of control parameters for the L1 model (default: list()).
modelL0 A list of functions for fitting the L0 models (default: list(buildLM, buildRandomForest, buildKriging)).
modelL0Control List of control lists for each L0 model (default: list(list(), list(), list())).

Value
returns an object of class ensembleStack.

Note
Loosely based on the code by Emanuele Olivetti https://github.com/emanuele/kaggle_pbr/blob/master/blend.py

References
buildGaussianProcess

Gaussian Process Model Interface

Description

Gaussian Process Model Interface

Usage

buildGaussianProcess(x, y, control = list())

Arguments

x matrix of input parameters. Rows for each point, columns for each parameter.
y one column matrix of observations to be modeled.
control list of control parameters. n subset size.

Value

an object of class "spotGaussianProcessModel", with a predict method and a print method.

Examples

N <- 200
x <- matrix(seq(from=-1, to = 1, length.out = N), ncol = 1)
y <- funSphere(x) + rnorm(N, 0, 0.1)
fit <- buildGaussianProcess(x,y)
Print model parameters
print(fit)
Predict at new location

See Also

predict.ensembleStack

Examples

Create design points
x <- cbind(runif(20)*15-5,runif(20)*15)
Compute observations at design points
y <- funBranin(x)
Create model with default settings
fit <- buildEnsembleStack(x,y)
Predict new point
predict(fit,cbind(1,2))
True value at location
funBranin(matrix(c(1,2), 1))
```
xNew <- matrix( c(-0.1, 0.1), ncol = 1)
predict(fit, xNew)
## True value at location
  t(funSphere(xNew))
```

Description

This function builds a Kriging model based on code by Forrester et al.. By default exponents (p) are fixed at a value of two, and a nugget (or regularization constant) is used. To correct the uncertainty estimates in case of nugget, re-interpolation is also by default turned on.

Usage

```r
buildKriging(x, y, control = list())
```

Arguments

- **x**: design matrix (sample locations)
- **y**: vector of observations at `x`
- **control** (list), with the options for the model building procedure:
 - **types**: a character vector giving the data type of each variable. All but "factor" will be handled as numeric, "factor" (categorical) variables will be subject to the hamming distance.
 - **thetaLower**: lower boundary for theta, default is `1e-4`
 - **thetaUpper**: upper boundary for theta, default is `1e2`
 - **algTheta**: algorithm used to find theta, default is `optimDE`.
 - **budgetAlgTheta**: budget for the above mentioned algorithm, default is `200`. The value will be multiplied with the length of the model parameter vector to be optimized.
 - **optimizeP**: boolean that specifies whether the exponents (p) should be optimized. Else they will be set to two. Default is `FALSE`.
 - **useLambda**: whether or not to use the regularization constant lambda (nugget effect). Default is `TRUE`.
 - **lambdaLower**: lower boundary for log10lambda, default is `-6`
 - **lambdaUpper**: upper boundary for log10lambda, default is `0`
 - **startTheta**: optional start value for theta optimization, default is `NULL`.
 - **reinterpolate**: whether (TRUE, default) or not (FALSE) reinterpolation should be performed target target values of the prediction, a vector of strings. Each string specifies a value to be predicted, e.g., "y" for mean, "s" for standard deviation, "ei" for expected improvement. See also `predict.kriging`. This can also be changed after the model has been built, by manipulating the respective object$target value.
Details

The model uses a Gaussian kernel:

\[k(x,z) = \exp(-\sum(\theta_i \times |x_i-z_i|^{p_i})) \]

By default, \(p_i = 2 \). Note that if dimension \(x_i \) is a factor variable (see parameter types), Hamming distance will be used instead of \(|x_i-z_i| \).

Value

an object of class kriging. Basically a list, with the options and found parameters for the model which has to be passed to the predictor function:

- \(x \) sample locations (scaled to values between 0 and 1)
- \(y \) observations at sample locations (see parameters)
- thetaLower lower boundary for theta (see parameters)
- thetaUpper upper boundary for theta (see parameters)
- algTheta algorithm to find theta (see parameters)
- budgetAlgTheta budget for the above mentioned algorithm (see parameters)
- optimizeP boolean that specifies whether the exponents (\(p \)) were optimized (see parameters)
- normalizeymin minimum in normalized space
- normalizeymax maximum in normalized space
- normalizexmin minimum in input space
- normalizexmax maximum in input space
- dmodeltheta vector of activity parameters
- Theta log_10 vector of activity parameters (i.e. \(\log_{10}(dmodeltheta) \))
- dmodellambda regularization constant (nugget)
- Lambda log_10 of regularization constant (nugget) (i.e. \(\log_{10}(dmodellambda) \))
- yonemu Ay-ones*mu
- ssq sigma square
- mu mean mu
- Psi matrix large Psi
- Psinv inverse of Psi
- nevals number of Likelihood evaluations during MLE

References

See Also

predict.kriging

Examples

```r
## Create design points
set.seed(1)
x <- cbind(runif(20)*15-5,runif(20)*15)
## Compute observations at design points (for Branin function)
# y <- as.matrix(apply(x,1,braninFunction))
y <- funBranin(x)
## Create model with default settings
```
```r
fit <- buildKriging(x,y.control = list(algTheta=optimLHD))
## Print model parameters
print(fit)
## Predict at new location
predict(fit,cbind(1,2))
## True value at location
funBranin(matrix(c(1,2), 1))
##
## Next Example: Handling factor variables
## create a test function:
braninFunctionFactor <- function (x) {
    10 * (1 - 1/(8 * pi)) * cos(x[1]) + 10
if(x[3]==1)
y <- y +1
else if(x[3]==2)
y <- y -1
y
}
## create training data
set.seed(1)
x <- cbind(runif(50)*15-5,runif(50)*15,sample(1:3,50,replace=TRUE))
y <- as.matrix(apply(x,1,braninFunctionFactor))
## fit the model (default: assume all variables are numeric)
fitDefault <- buildKriging(x,y.control = list(algTheta=optimDE))
## fit the model (give information about the factor variable)
fitFactor <- buildKriging(x,y.control =
                         list(algTheta=optimDE,types=c("numeric","numeric","factor")))
## create test data
xtest <- cbind(runif(200)*15-5,runif(200)*15,sample(1:3,200,replace=TRUE))
ytest <- as.matrix(apply(xtest,1,braninFunctionFactor))
## Predict test data with both models, and compute error
ypredDef <- predict(fitDefault,xtest)$y
ypredFact <- predict(fitFactor,xtest)$y
mean((ypredDef-ytest)^2)
mean((ypredFact-ytest)^2)
```

Description

This Kriging meta model is based on DACE (Design and Analysis of Computer Experiments). It allows to choose different regression and correlation models. The optimization of model parameters is by default done with a bounded simplex method from the `nloptr` package.

Usage

```r
buildKrigingDACE(x, y, control = list())
```
Arguments

x design matrix (sample locations), rows for each sample, columns for each variable.

y vector of observations at x

control (list), with the options for the model building procedure:
 startTheta optional start value for theta optimization, default is NULL
 algTheta algorithm used to find theta, default is optimDE
 budgetAlgTheta budget for the above mentioned algorithm, default is 200. The value will be multiplied with the length of the model parameter vector to be optimized.
 nugget Value for nugget. Default is -1, which means the nugget will be optimized during MLE. Else it can be fixed in a range between 0 and 1.
 regr Regression function to be used: regpoly0 (default), regpoly1, regpoly2. Can be a custom user function.
 corr Correlation function to be used: corrnoisykriging (default), corrrkriging, corrnoisygauss, corrgauss, correxp, correxpg, correxp, correxp, correxcubic, corrspherical, corrspline. Can also be user supplied (if in the right form). target target values of the prediction, a vector of strings. Each string specifies a value to be predicted, e.g., "y" for mean, "s" for standard deviation, "ei" for expected improvement. See also predict.kriging. This can also be changed after the model has been build, by manipulating the respective object$target value.

Value

returns an object of class dace with the following elements:

model A list, containing model parameters
like Estimated likelihood value
theta activity parameters theta (vector)
p exponents p (vector)
lambda nugget value (numeric)
zevals Number of iterations during MLE

Author(s)

The authors of the original DACE Matlab toolbox are Hans Bruun Nielsen, Soren Nymand Lophaven and Jacob Sondergaard.
Extension of the Matlab code by Tobias Wagner <wagner@isf.de>.
Porting and adaptation to R and further extensions by Martin Zaefferer <martin.zaefferer@fh-koeln.de>.

References

buildLasso

Lasso Model Interface

Description

The purpose of this function is to provide an interface as required by `spot`, to enable modeling and model-based optimization with Lasso models.

Usage

```r
buildLasso(x, y, control = list())
```

Arguments

- **x**: matrix of input parameters. Rows for each point, columns for each parameter.
- **y**: one column matrix of observations to be modeled.
- **control**: list of control parameters, currently only with parameter `formula`. The `useStep` boolean specifies whether the `step` function is used. The `formula` is passed to the `lm` function. Without a formula, a second order model will be built.

Value

An object of class "spotLassoModel", with a `predict` method and a `print` method.
Examples

```r
## Test-function:
braninFunction <- function (x) {
  10 * (1 - 1/(8 * pi)) * cos(x[1] ) + 10
}
## Create design points
set.seed(1)
x <- cbind(runif(20)*15-5,runif(20)*15)
## Compute observations at design points (for Branin function)
y <- as.matrix(apply(x,1,braninFunction))
## Create model
fit <- buildLasso(x,y,control = list(algTheta=optimLHD))
## Print model parameters
print(fit)
## Predict at new location
predict(fit,cbind(1,2))
## True value at location
braninFunction(c(1,2))
```

buildLM

Linear Model Interface

Description

This is a simple wrapper for the lm function, which fits linear models. The purpose of this function is to provide an interface as required by SPOT, to enable modeling and model-based optimization with linear models. The linear model is built with main effects. Optionally, the model is also subject to the AIC-based stepwise algorithm, using the `step` function from the `stats` package.

Usage

```r
buildLM(x, y, control = list())
```

Arguments

- `x` matrix of input parameters. Rows for each point, columns for each parameter.
- `y` one column matrix of observations to be modeled.
- `control` list of control parameters, currently only with parameters `useStep` and `formula`. The `useStep` boolean specifies whether the `step` function is used. The `formula` is passed to the `lm` function. Without a formula, a second order model will be built.

Value

an object of class "spotLinearModel", with a `predict` method and a `print` method.
Examples

```r
## Test-function:
braninFunction <- function (x) {
  10 * (1 - 1/(8 * pi)) * cos(x[1] ) + 10
}

## Create design points
set.seed(1)
x <- cbind(runif(20)*15-5,runif(20)*15)
## Compute observations at design points (for Branin function)
y <- as.matrix(apply(x,1,braninFunction))
## Create model
fit <- buildLM(x,y,control = list(algTheta=optimLHD))
## Print model parameters
print(fit)
## Predict at new location
predict(fit,cbind(1,2))
## True value at location
braninFunction(c(1,2))
```

buildLOESS

Build LOESS Model

Description

Build an interpolation model using the `loess` function. Essentially a SPOT-style interface to that function.

Usage

```r
buildLOESS(x, y, control = list())
```

Arguments

- **x**: design matrix (sample locations), rows for each sample, columns for each variable.
- **y**: vector of observations at x
- **control**: named list, with the options for the model building procedure `loess`. These will be passed to `loess` as arguments. Please refrain from setting the formula or data arguments as these will be supplied by the interface, based on x and y.

Value

returns an object of class `spotLOESS`.

See Also

- `predict.spotLOESS`
Examples

```r
### Create a test function: branin
braninFunction <- function (x) {
  10 * (1 - 1/(8 * pi)) * cos(x[1] ) + 10
}
### Create design points
set.seed(1)
x <- cbind(runif(40)*15-5,runif(40)*15)
### Compute observations at design points
y <- as.matrix(apply(x,1,braninFunction))
### Create model with default settings
fit <- buildLOESS(x,y)
fit
### Predict new point
predict(fit,cbind(1,2))
### True value at location
braninFunction(c(1,2))
### Change model control
fit <- buildLOESS(x,y,control=list(parametric=c(TRUE,FALSE)))
fit
```

Description

buildPCA builds principal components of given dataset. It is used inside plotPCA function to build necessary object to perform principal components analysis.

Usage

```r
buildPCA(x, control = list())
```

Arguments

- `x`: dataset of parameters to be transformed
- `control`: control list

Value

returns a list with the following elements:
- `sdev` the standard deviations of the principal components (i.e., the square roots of the eigenvalues of the covariance/correlation matrix, though the calculation is actually done with the singular values of the data matrix).
- `rotation` the matrix of variable loadings (i.e., a matrix whose columns contain the eigenvectors).
- `x` transformed matrix.
- `center`, `scale` the centering and scaling used, or FALSE.
Author(s)

Alpar Gür <alpar.guer@smail.th-koeln.de>

Examples

```r
# define objective function


spotConfig <-
list(types = c('numeric', 'numeric', 'numeric', 'numeric'),
  funEvals = 15, # budget
  noise = TRUE,
  seedFun = 1,
  replicated = 2,
  seedSPOT = 1,
  design = designLHD,
  model = buildRandomForest, # surrogate model
  optimizer = optimLHD, # LHD to optimize model
  optimizerControl = list(funEvals=100)) # 100 model evals in each step

lower <- c(-20, -20, -20, -20)
upper <- c(20, 20, 20, 20)
res <- spot(x=NULL,
  fun=objFun,
  lower=lower,
  upper=upper,
  control=spotConfig)
resPCA <- buildPCA(res$x)
```

buildRandomForest

Random Forest Interface

Description

This is a simple wrapper for the randomForest function from the randomForest package. The purpose of this function is to provide an interface as required by SPOT, to enable modeling and model-based optimization with random forest.

Usage

```r
buildRandomForest(x, y, control = list())
```
Arguments

- **x**: matrix of input parameters. Rows for each point, columns for each parameter.
- **y**: one column matrix of observations to be modeled.
- **control**: list of control parameters, currently not used.

Value

an object of class "spotRandomForest", with a predict method and a print method.

Examples

```r
## Test-function:
bralinFunction <- function (x) {
  10 * (1 - 1/(8 * pi)) * cos(x[1] ) + 10
}
## Create design points
set.seed(1)
x <- cbind(runif(20)*15-5,runif(20)*15)
## Compute observations at design points (for Branin function)
y <- as.matrix(apply(x,1,bralinFunction))
## Create model
fit <- buildRandomForest(x,y)
## Print model parameters
print(fit)
## Predict at new location
predict(fit,cbind(1,2))
## True value at location
bralinFunction(c(1,2))
```

Description

This is a simple wrapper for the `ranger` function from the `ranger` package. The purpose of this function is to provide an interface as required by SPOT, to enable modeling and model-based optimization with `ranger`.

Usage

```r
buildRanger(x, y, control = list())
```
Arguments

x matrix of input parameters. Rows for each point, columns for each parameter.

y one column matrix of observations to be modeled.

control list of control parameters. These are all configuration parameters of the ranger function, and will be passed on to it.

Value

an object of class spotRanger, with a predict method and a print method. #'

Examples

Create a simple training data set

testfun <- function (x) x[1]^2
x <- cbind(sort(runif(30)*2-1))
y <- as.matrix(apply(x,1,testfun))
test data:
x <- cbind(sort(runif(3000)*2-1))
Example with default model (standard randomforest)
fit <- buildRanger(x,y)
yt <- predict(fit,data.frame(x=xt))
plot(xt,yt$y,type="l")
points(x,y,col="red",pch=20)
Example with extra trees, an interpolating model
fit <- buildRanger(x,y,
 control=list(rangerArguments =
 list(replace = FALSE,
 sample.fraction=1,
 min.node.size = 1,
 splitrule = "extratrees")))
yt <- predict(fit,data.frame(x=xt))
plot(xt,yt$y,type="l")
points(x,y,col="red",pch=20)
Arguments

- **x**: design matrix (sample locations), rows for each sample, columns for each variable.
- **y**: vector of observations at x
- **control**: (list), with the options for the model building procedure:
 - `mainEffectsOnly`: Logical, defaults to FALSE. Set to TRUE if a model with main effects only is desired (no interactions, second order effects).
 - `canonical`: Logical, defaults to FALSE. If this is TRUE, use the canonical path to descent from saddle points. Else, simply use steepest descent.

Value

returns an object of class `spotRSM`.

See Also

`predict.spotRSM`

Examples

```r
## Create a test function: branin
braninFunction <- function(x) {
  10 * (1 - 1/(8 * pi)) * cos(x[1] ) + 10
}
## Create design points
x <- cbind(runif(20)*15-5,runif(20)*15)
## Compute observations at design points
y <- as.matrix(apply(x,1,braninFunction))
## Create model with default settings
fit <- buildRSM(x,y)
## Predict new point
predict(fit,cbind(1,2))
## True value at location
braninFunction(c(1,2))
## plots
plot(fit)
descentSpotRSM(fit)
```
Usage

buildTreeModel(x, y, control = list())

Arguments

x
 matrix of input parameters. Rows for each point, columns for each parameter.
y
 one column matrix of observations to be modeled.
control
 list of control parameters, currently not used.

Value

an object of class "spotTreeModel", with a predict method and a print method.

Examples

Create design points
set.seed(1)
x <- cbind(runif(20)*15-5, runif(20)*15)
Compute observations at design points (for Branin function)
y <- funBranin(x)
Create model
fit <- buildTreeModel(x,y)
Print model parameters
print(fit)
Predict at new location
predict(fit,cbind(1,2))
True value at location
funBranin(matrix(c(1,2), 1,))
##
set.seed(123)
x <- seq(-1,1,1e-2)
y0 <- c(-10,10)
sfun0 <- stepfun(0, y0, f = 0)
y <- sfun0(x)
fit <- buildTreeModel(x,y)
plot(fit)
plot(x,y, type = "l")
yhat <- predict(fit, newdata = 1)
yhat$y == 10

Description

Calculate arrival events for S-Ring.
Usage

checkArrival(probNewCustomer)

Arguments

probNewCustomer

probability of an arrival of a new customer

Value

logical

Examples

checkArrival(0.5)

code2nat

Transform coded values to natural values

Description

Input values from the interval from zero to one, i.e., normalized values, are mapped to the interval from a to b.

Usage

code2nat(x, a, b)

Arguments

x matrix of m n-dimensional input values from the interval \([0;1]\), i.e, \(\text{dim}(x) = m \times n\)
a vector of n-dimensional lower bound, i.e., \(\text{length}(a) = n\)
b vector of n-dimensional upper bound, i.e., \(\text{length}(b) = n\)

Examples

x <- matrix(runif(10),2)
a <- c(-1,1,2,3,4)
b <- c(1,2,3,4,5)
R <- code2nat(x,a,b)
Description

A data set of a Gas Sensor, similar to the one used by Rebolledo et al. 2016. It also contains information of 10 different test/training splits, to enable comparable evaluation procedures.

Usage

dataGasSensor

Format

A data frame with 280 rows and 20 columns (1 output, 7 input, 2 disturbance, 10 training/test split):

Y Measured Sensor Output
X1 Sensor Input 1
X2 Sensor Input 2
X3 Sensor Input 3
X4 Sensor Input 4
X5 Sensor Input 5
X6 Sensor Input 6
X7 Sensor Input 7
Batch Disturbance variable, measurement batch
Sensor Disturbance variable, sensor ID
Set1 test/training split, 1 is training data, 2 is test data
Set2 test/training split
Set3 test/training split
Set4 test/training split
Set5 test/training split
Set6 test/training split
Set7 test/training split
Set8 test/training split
Set9 test/training split
Set10 test/training split

Details

Two different modeling tasks are of interest for this data set:

Y ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + Batch + Sensor
and
X1 ~ Y + X7 + Batch + Sensor.
References

Margarita A. Rebolledo C., Sebastian Krey, Thomas Bartz-Beielstein, Oliver Flasch, Andreas Fischbach and Joerg Stork.
2016.
Modeling and Optimization of a Robust Gas Sensor.
7th International Conference on Bioinspired Optimization Methods and their Applications (BIOMA 2016).

descentSpotRSM

Descent RSM model

Description

Generate steps along the path of steepest descent for a RSM model. This is only intended as a manual tool to use together with buildRSM.

Usage

descentSpotRSM(object)

Arguments

object RSM model (settings and parameters) of class spotRSM.

Value

list with

x list of points along the path of steepest descent
y corresponding predicted values

See Also

buildRSM
designLHD

Latin Hypercube Design Generator

Description

Creates a latin Hypercube Design (LHD) with user-specified dimension and number of design points. LHDs are created repeatedly created at random. For each each LHD, the minimal pair-wise distance between design points is computed. The design with the maximum of that minimal value is chosen.

Usage

```r
designLHD(x = NULL, lower, upper, control = list())
```

Arguments

- `x`
 optional matrix `x`, rows for points, columns for dimensions. This can contain one or more points which are part of the design, but specified by the user. These points are added to the design, and are taken into account when calculating the pair-wise distances. They do not count for the design size. E.g., if `x` has two rows, `control$replicates` is one and `control$size` is ten, the returned design will have 12 points (12 rows). The first two rows will be identical to `x`. Only the remaining ten rows are guaranteed to be a valid LHD.

- `lower`
 vector with lower boundary of the design variables (in case of categorical parameters, please map the respective factor to a set of contiguous integers, e.g., with lower = 1 and upper = number of levels)

- `upper`
 vector with upper boundary of the design variables (in case of categorical parameters, please map the respective factor to a set of contiguous integers, e.g., with lower = 1 and upper = number of levels)

- `control`
 list of controls:
 - `size`
 number of design points
 - `retries`
 number of retries during design creation
 - `types`
 this specifies the data type for each design parameter, as a vector of either "numeric","integer","factor". (here, this only affects rounding)
 - `inequalityConstraint`
 inequality constraint function, smaller zero for infeasible points. Used to replace infeasible points with random points.
 - `replicates`
 integer for replications of each design point. E.g., if `replications` is two, every design point will occur twice in the resulting matrix.

Value

matrix design
- design has `length(lower)` columns and `size + nrow(x)*control$replicates` rows. All values should be within `lower <= design <= upper`
Author(s)

Original code by Christian Lasarczyk, adaptations by Martin Zaefferer

Examples

```r
set.seed(1) #set RNG seed to make examples reproducible
design <- designLHD(1,2) #simple, 1-D case
design
design <- designLHD(1,2,control=list(replicates=3)) #with replications
design
design <- designLHD(-1,-2,1,0),c(1,4,9,1),
control=list(size=5, retries=100, types=c("numeric","integer","factor","factor"))
design
x <- designLHD(1,-10),c(2,10),control=list(size=5,retries=100)
x2 <- designLHD(x,1,-10),c(2,10),control=list(size=5,retries=100))
plot(x2)
points(x2, pch=19)
```

designUniformRandom
Uniform Design Generator

Description

Create a simple experimental design based on uniform random sampling.

Usage

```r
designUniformRandom(x = NULL, lower, upper, control = list())
```

Arguments

- **x**: optional data.frame x to be part of the design
- **lower**: vector with lower boundary of the design variables (in case of categorical parameters, please map the respective factor to a set of contiguous integers, e.g., with lower = 1 and upper = number of levels)
- **upper**: vector with upper boundary of the design variables (in case of categorical parameters, please map the respective factor to a set of contiguous integers, e.g., with lower = 1 and upper = number of levels)
- **control**: list of controls:
 - `size`: number of design points
 - `types`: this specifies the data type for each design parameter, as a vector of either "numeric","integer","factor". (here, this only affects rounding)
 - `replicates`: integer for replications of each design point. E.g., if replicates is two, every design point will occur twice in the resulting matrix.
Value

- design has length(lower) columns and (size + nrow(x))*control$replicates rows. All values should be within lower <= design <= upper.

Examples

```r
set.seed(1) # set RNG seed to make examples reproducible
design <- designUniformRandom(1,2) # simple, 1-D case
design
design <- designUniformRandom(1,2,control=list(replicates=3)) # with replications
design
design <- designUniformRandom(c(-1,-2,1,0),c(1,4,9,1),
control=list(size=5, types=c("numeric","integer","factor","factor")))
design
x <- designUniformRandom(c(-10),c(10),control=list(size=5))
x2 <- designUniformRandom(x,c(-10),c(10),control=list(size=5))
plot(x2)
points(x, pch=19)
```

diff0

Description

Calculate differences.

Usage

diff0(x)

Arguments

- x: input vector

Details

Input vector length = output vector length.

Value

- vector of differences

Examples

```r
x <- 1:10
diff0(x)
```
doParallel

Parallel execution of code, dependent on the operating system

Description

mclapply is only supported on Linux and macOS. On Windows parlapply should be used. This function switches between both dependent on the operating system of the user.

Usage

doParallel(X, FUN, nCores = 2, ...)

Arguments

- **X**
 - vector with arguments to parallelize over
- **FUN**
 - function that shall be applied to each element of X
- **nCores**
 - integer. Defines the number of cores.
- **...**
 - optional arguments to FUN

expectedImprovement

Expected Improvement

Description

Compute the negative logarithm of the Expected Improvement of a set of candidate solutions. Based on mean and standard deviation of a candidate solution, this estimates the expectation of improvement. Improvement considers the amount by which the best known value (best observed value) is exceeded by the candidates.

Usage

expectedImprovement(mean, sd, min)

Arguments

- **mean**
 - vector of predicted means of the candidate solutions.
- **sd**
 - vector of estimated uncertainties / standard deviations of the candidate solutions.
- **min**
 - minimal observed value.

Value

- a vector with the negative logarithm of the expected improvement values, -log10(EI).
funBaBSimHospital

Optimization of the BaBSim.Hospital Simulator

Description

funBaBSimHospital implements an interface to the babsim.hospital package. babsim.hospital is a discrete-event simulation model for a hospital resource planning problem. The project is motivated by the challenges faced by health care institutions in the COVID-19 pandemic. It can be used by health departments to forecast demand for intensive care beds, ventilators, and staff resources. funBaBSimHospital provides an interface to getTrainTestObjFun.

Usage

funBaBSimHospital(
 x,
 region = 5374,
 nCores = 2,
 verbosity = 0,
 rkiEndDate = "2020-12-09",
 icuEndDate = "2020-12-09",
 trainingWeeksSimulator = 10,
 trainingWeeksField = 6,
 totalRepeats = 10
)

Arguments

x matrix of points to evaluate with the simulator. Rows for points and columns for dimension.
region integer. Represents the region code. Default: 5374 (Oberberg).
nCores integer. Defines the number of cores.
verbosity integer. Handles output. Default: 0
rkiEndDate characters. Last day of rki data. Default "2020-12-09"
icuEndDate characters. Last day of icu data. Default "2020-12-09"
trainingWeeksSimulator integer. Training period using rki data. Default: 10. Should be larger than trainingWeeksField.

Examples

```r
mean <- 1:10  # mean of the candidates
sd <- 10:1    # st. dev. of the candidates
min <- 5      # best known value
EI <- expectedImprovement(mean, sd, min)
EI
```

funBaBSimHospital

Optimization of the BaBSim.Hospital Simulator

Examples

```r
mean <- 1:10  # mean of the candidates
sd <- 10:1    # st. dev. of the candidates
min <- 5      # best known value
EI <- expectedImprovement(mean, sd, min)
EI
```
funBard

trainingWeeksField
 trainingWeeksSimulator.

totalRepeats
 integer. Number of repeats for each configuration. Should be a multiple of
 nCores. Default: 10.

Value
 y numeric function value.

Examples
 ## babsim.hospital version must be greater equal 11.7:
 # ver <- unlist(packageVersion("babsim.hospital"))
 # x <- matrix(as.numeric(babsim.hospital::getParaSet(5374)[1,-1]),1,)
 # funBabSimHospital(x)
 # }

funBard

Description
 The Bard Test Function

Usage
 funBard(x)

Arguments
 x
 matrix of points to evaluate with the function. Rows for points and columns for
dimension.

Details
 x0 = (1,1,1) f = 8.21487...1e-3 f = 17.4286... at (0.8406..., -infty, -infty)

Value
 1-column matrix with resulting function values

References
Examples

```r
x1 <- matrix(c(1,1),1,)
funBard(x1)
```

Description

Beale Test Function

Usage

```r
funBeale(x)
```

Arguments

- `x`: matrix of points to evaluate with the function. Rows for points and columns for dimension.

Value

1-column matrix with resulting function values

References

Examples

```r
x1 <- matrix(c(1,1),1,)
funBeale(x1)

res <- spot(funBeale,c(1,-1),c(5,2),control=list(funEvals=15))
plotModel(res$model)
```
funBox3d

Description
Box three-dimensional Test Function

Usage
funBox3d(x)

Arguments

x
matrix of points to evaluate with the function. Rows for points and columns for
dimension.

Value
1-column matrix with resulting function values

References

@examples
x <- matrix(c(1,10,1),1,)
funBox3d(x)

res <- spot(funBox3d,c(5,15,-5),c(15,5,5),control=list(funEvals=20)) # plotting the graphs
plotModel(res$model,which=1:2) plotModel(res$model,which=2:3) plotModel(res$model,which=c(1,3))

funBranin

Description
Branin Test Function

Usage
funBranin(x)

Arguments

x
matrix of points to evaluate with the function. Rows for points and columns for
dimension.
funBrownBs

Value

1-column matrix with resulting function values

Examples

```r
x1 <- matrix(c(-pi, 12.275),1,)
funBranin(x1)
```

funBrownBs funbrownBs

Description

Brown badly scaled Test Function

Usage

```r
funBrownBs(x)
```

Arguments

- `x` matrix of points to evaluate with the function. Rows for points and columns for dimension.

Details

n=2, m=3 x0 = (1,1) f=0 at (1e6, 2e-6)

Value

1-column matrix with resulting function values

References

Examples

```r
x1 <- matrix(c(1,1),1,)
funBrownBs(x1)
res <- spot(fun=funBrownBs,c(-10,-10),c(10,10),control=list(funEvals=20))
plotModel(res$model, points = rbind(c(res$xbest[1], res$xbest[2]),c(1.098e-5,9.106)))
```
funCosts

Description

optimWrapper for getCosts

Usage

funCosts(x)

Arguments

- **x**: vector: weight multiplier sigma and number of elevators ne

Details

Evaluate synthetic cost function that is based on the number of waiting customers and the number of elevators

Value

fitness (costs) as matrix

Examples

```r
sigma = 1
e = 10
x <- matrix(c(sigma, ne), 1,)
funCosts(x)
```

funCyclone

Objective function - Cyclone Simulation: Barth/Muschelknautz

Description

Calculate cyclone collection efficiency. A simple, physics-based optimization problem (potentially bi-objective). See the references [1,2].
funCyclone

Usage

funCyclone(
x,
deterministic = c(TRUE, TRUE, TRUE),
cyclone = list(Da = 1.26, H = 2.5, Dt = 0.42, Ht = 0.65, He = 0.6, Be = 0.2),
fluid = list(Mu = 1.85e-05, Ve = (50/36)/0.12, lambdag = 1/200, Rhop = 2000, Rhof = 1.2, Croh = 0.05),
noiseLevel = list(Vp = 0.1, Rhop = 0.05),
model = "Barth-Muschelknautz",
intervals = c(0, 2, 4, 6, 8, 10, 15, 20, 30) * 1e-06,
delta = c(0, 0.02, 0.03, 0.05, 0.1, 0.3, 0.3, 0.2)
)

Arguments

x vector of length at least one and up to six, specifying non-default geometrical parameters in [m]: Da, H, Dt, Ht, He, Be
deterministic binary vector. First element specifies whether volume flow is deterministic or not. Second element specifies whether particle density is deterministic or not. Third element specifies whether particle diameters are deterministic or not. Default: All are deterministic (TRUE).
cyclone list of a default cyclone’s geometrical parameters: fluid$Da, fluid$H, fluid$Dt, fluid$Ht, fluid$He and fluid$Be
fluid list of default fluid parameters: fluid$Mu, fluid$Vp, fluid$Rhop, fluid$Rhof and fluid$Croh
noiseLevel list of noise levels for volume flow (noiseLevel$Vp) and particle density (noiseLevel$Rhop), only used if non-deterministic.
model type of the model (collection efficiency only): either "Barth-Muschelknautz" or "Mothes"
intervals vector specifying the particle size interval bounds.
delta vector of densities in each interval (specified by intervals). Should have one element less than the intervals parameter.

Value

returns a function that calculates the fractional efficiency for the specified diameter, see example.

References

Examples

```r
## Call directly
funCyclone(c(1.26,2.5))
## create vectorized target funcion, vectorized, first objective only
## Also: negated, since SPOT always does minimization.
tfunvecF1 <- function(x){-apply(x,1,funCyclone)[1,]}
tfunvecF1(matrix(c(1.26,2.5,1,2),2,2,byrow=TRUE))
## optimize with spot
res <- spot(fun=tfunvecF1,lower=c(1,2),upper=c(2,3),
            control=list(modelControl=list(target="ei"),
            model=buildKriging,optimizer=optimLBFGSB,plots=TRUE))
## best found solution ...
res$xbest
## ... and its objective function value
res$ybest
```

funFreudRoth

Description

Freundenstein and Roth Test Function

Usage

```r
funFreudRoth(x)
```

Arguments

- `x` matrix of points to evaluate with the function. Rows for points and columns for dimension.

Value

1-column matrix with resulting function values

References

funGauss

Examples

```r
x1 <- matrix(c(1,1),1,)
funFreudRoth(x1)

# Running SPOT with 20 function evaluations with default configurations
res <- spot(funFreudRoth,c(0,0),c(10,10),control=list(funEvals=20))
plotModel(res$model)
```

Description

Gaussian Test Function

Usage

```r
funGauss(x)
```

Arguments

- `x` matrix of points to evaluate with the function. Rows for points and columns for dimension.

Value

1-column matrix with resulting function values

References

Unpublished

Examples

```r
x1 <- matrix(c(1,1),1,)
funGauss(x1)

res1 <- spot(funGauss,
c(-0.001,-0.007,-0.003),
c(0.5,1.0,1.1),
control=list(funEvals=15))
plotModel(res1$model, which = 1:2)
```
funGoldsteinPrice

Goldstein–Price Test Function

Description
An implementation of Booker et al.’s method on a re-scaled/coded version of the 2-dim Goldstein–Price function

Usage
funGoldsteinPrice(x)

Arguments
x (m,2)-matrix of points to evaluate with the function. Rows for points and columns for dimension.

Value
1-column matrix with resulting function values

Examples
x1 <- matrix(c(-pi, 12.275),1,)
funGoldsteinPrice(x1)

funGulf

funGulf

Description
Gulf research and development Test Function

Usage
funGulf(x, ...)

Arguments
x matrix of points to evaluate with the function. Rows for points and columns for dimension.
... additional parameters. The Gulf function supports an additional parameter m in the range from 3 to 100
funHelical

Value

1-column matrix with resulting function values

References

Examples

```r
x1 <- matrix(c(50,25,1.5),1,)
funGulf(x1)

funGulf(x1,m=50)

resGulf <- spot(funGulf,c(0,0,0),c(100,50,5))
resGulf$xbest
resGulf$ybest
plotModel(resGulf$model, which=1:2)
plotModel(resGulf$model, which=2:3)

# x0 is an optional start point (or set of start points), specified as a matrix.
# One row for each point, and one column for each optimized parameter.
x0 = matrix(c(5,2.5,0.15),1,3)
resGulf <- spot(x0,funGulf,c(0,0,0),c(100,50,5))
resGulf$xbest
resGulf$ybest
```

funHelical

Description

Helical Test Function

Usage

`funHelical(x)`

Arguments

- **x**

matrix of points to evaluate with the function. Rows for points and columns for dimension.

Value

1-column matrix with resulting function values
funIshigami

References

Examples

```r
x1 <- matrix(c(1,1),1,)  # matrix with values 1
funHelical(x1)            # function call
res <- spot(funHelical,c(-40,-40,-40),c(40,40,40),control=list(funEvals=20))
plotModel(res$model,which=c(1,2),type="persp",border="NA")
plotModel(res$model,which=c(2,3),type="persp",border="NA")
plotModel(res$model,which=c(1,3),type="persp",border="NA")
plotModel(res$model, which=c(1,2))
plotModel(res$model, which=c(1,3))
plotModel(res$model, which=c(2,3))
```

funIshigami

Ishigami Test Function

Description

An implementation of the 3-dim Ishigami function.

\[
f(x) = \sin(x_1) + a \sin^2(x_2) + b x_3^4 \sin(x_1)
\]

The Ishigami function of Ishigami & Homma (1990) is used as an example for uncertainty and sensitivity analysis methods, because it exhibits strong nonlinearity and nonmonotonicity. It also has a peculiar dependence on \(x_3 \), as described by Sobol’ & Levitan (1999). The independent distributions of the input random variables are usually: \(x_i \sim \text{Uniform}[-\pi, \pi] \), for all \(i = 1, 2, 3 \).

Usage

```r
funIshigami(x, a = 7, b = 0.1)
```

Arguments

- `x` : \((m,2)\)-matrix of points to evaluate with the function. Values should be \(\geq 0 \) and \(\leq 1 \), i.e., \(x_i \) in \([0,1]\).
- `a` : coefficient (optional), with default value 7
- `b` : coefficient (optional), with default value 0.1

Value

1-column matrix with resulting function values
References

Examples

```r
x1 <- matrix(c(-pi, 0, pi),1,)
funIshigami(x1)
```

funJennSamp

Description

Jennrich and Sampson Function Test Function

Usage

```r
funJennSamp(x)
```

Arguments

- `x`: matrix of points to evaluate with the function. Rows for points and columns for dimension.

Value

1-column matrix with resulting function values

References

Examples

```r
x1 <- matrix(c(1,1),1,)
funJennSamp(x1)

res <- spot(,funJennSamp,c(0,0),c(0.3,0.3))
plotModel(res$model)
```
funMeyer

Description

Meyer Test Function

Usage

funMeyer(x)

Arguments

x matrix of points to evaluate with the function. Rows for points and columns for dimension.

Value

1-column matrix with resulting function values

References

Examples

x1 <- matrix(c(1,1,1),1,)
funMeyer(x1)

set.seed(13)
resMeyer <- spot(matrix(c(0.02,4000,250),1,3),
 funMeyer,c(0,1000,200),c(3,8000,500),
 control= list(funEvals=15))
resMeyer$xbest
resMeyer$ybest
print("Model with parameters")
plotModel(resMeyer$model)
plotModel(resMeyer$model,which=2:3)
funOptimLecture

Description
A test function used in the optimization lecture of the AIT Masters course at TH Koeln

Usage
funOptimLecture(vec)

Arguments
vec input vector or matrix of candidate solution

Value
vector of objective function values

funPowellBs

Description
Powell Badly Scaled Test Function

Usage
funPowellBs(x)

Arguments
x matrix of points to evaluate with the function. Rows for points and columns for dimension.

Value
1-column matrix with resulting function values

References
funPowellS

Examples

x1 <- matrix(c(-1,1),1,)
funPowellBs(x1)

Running SPOT with 20 function evaluations with default configurations
res <- spot(fun=funPowellBs,c(-10,-10),c(10,10),control=list(funEvals=20))
plotModel(res$model, points = rbind(c(res$xbest[1], res$xbest[2]),c(1.098e-5,9.106)))

funPowellS funpowellS

Description

Powells Test Function

Usage

funPowellS(x)

Arguments

x
 matrix of points to evaluate with the function. Rows for points and columns for
dimension.

Value

1-column matrix with resulting function values

References

ware. Trond Steihaug and Sara Suleiman Global convergence and the Powell singular function ACM
Transactions on Mathematical Software (TOMS), 7(1), 17-41. doi: 10.1145/355934.355936 http:
~/blob/master/Jupyter.d/01spotNutshell.ipynbhttps://www.mat.univie.ac.at/~neum/
glopt/bounds.html

Powells Test function, M. J. D. Powell, 1962 An automatic method for finding the local minimum
html
funRosen

Examples

```r
x1 <- matrix(c(0,0,0,0),1,)
funPowellS(x1)
x2 <- matrix(c(3,-1,0,1),1,)
funPowellS(x2)
x3 <- matrix(c(0,0,0,-2),1,)
funPowellS(x3)
# optimization run with SPOT and 15 evaluations
res_fun <- spot(funPowellS,c(-4,-4,-4,-4 ),c(5,5,5,5),control=list(funEvals=15))
res_fun
```

funRosen

Description

Rosenbrock Test Function

Usage

```r
funRosen(x)
```

Arguments

- `x`: matrix of points to evaluate with the function. Rows for points and columns for dimension.

Value

1-column matrix with resulting function values

References

Examples

```r
x1 <- matrix(c(1,1),1,)
funRosen(x1)
```
funRosen2

Description
Rosenbrock Test Function (2-dim)

Usage
funRosen2(x)

Arguments
x matrix of points to evaluate with the function. Rows for points and columns for dimension.

Value
1-column matrix with resulting function values

Examples
x1 <- matrix(c(-pi, 12.275),1,)
funRosen2(x1)

funShiftedSphere

Description
Shifted Sphere Test Function with optimum at x_opt = a and f(x_opt) = 0

Usage
funShiftedSphere(x, a)

Arguments
x matrix of points to evaluate with the function. Rows for points and columns for dimension.
a offset added, i.e., f = sum (x-a)^2

Value
1-column matrix with resulting function values
funSoblev99

See Also

funSphere

Examples

```r
x1 <- matrix(c(-pi, 12.275), 1,)
a <- 1
funShiftedSphere(x1, a)
```

funSoblev99

Sobol and Levitan Test Function

Description

An implementation of the Sobol-Levitan function.

\[
f(x) = \exp(\sum b_i x_i) - I_d + c_0, \text{ where } I_d = \prod (\exp(b_i) - 1) / b_i
\]

The value of the elements in the b-vector \((b_1, \ldots, b_d)\) affect the importance of the corresponding x-variables. Sobol’ & Levitan (1999) use two different b-vectors: \((1.5, 0.9, 0.9, 0.9, 0.9, 0.9),\) for \(d = 6,\) and \((0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4),\) for \(d = 20.\) Our implementation uses the default b vector: \(b = (0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4)\) (when \(d\leq 20)\).

Moon et al. (2012) scale the output to have a variance of 100. For \(d = 20,\) they use three different b-vectors: \((2, 1.95, 1.9, 1.85, 1.8, 1.75, 1.7, 1.65, 0.4228, 0.3077, 0.2169, 0.1471, 0.0951, 0.0577, 0.0323, 0.0161, 0.0068, 0.0021, 0.0004, 0), (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),\) and \((2.6795, 2.2289, 1.8351, 1.4938, 1.2004, 0.9507, 0.7406, 0.5659, 0.4228, 0.3077, 0.2169, 0.1471, 0.0951, 0.0577, 0.0323, 0.0161, 0.0068, 0.0021, 0.0004, 0)\).

The generally used value of \(c_0\) is \(c_0 = 0.\) The function is evaluated on \(x_i\) in \([0, 1]\), for all \(i = 1, \ldots, d).\)

Usage

```r
funSoblev99(x, b = c(rep(0.6, 10), rep(0.4, 10)), c0 = 0)
```

Arguments

- \(x\) \((m, 2)\)-matrix of points to evaluate with the function. Values should be \(\geq 0\) and \(\leq 1,\) i.e., \(x_i\) in \([0, 1]\).
- \(b\) \(d\)-dimensional vector (optional), with default value \(b = c(0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4)\) (when \(d\leq 20)\)
- \(c0\) constant term (optional), with default value \(0\)

Value

1-column matrix with resulting function values
References

Examples

```r
x1 <- matrix(c(-pi, 12.275),1,)
funSoblev99(x1)
```

funSphere

Description

Sphere Test Function

Usage

```r
funSphere(x)
```

Arguments

- `x`: matrix of points to evaluate with the function. Rows for points and columns for dimension.

Value

1-column matrix with resulting function values

See Also

`funShiftedSphere`

Examples

```r
x1 <- matrix(c(-pi, 12.275),1,)
funSphere(x1)
```
funSring

Description
wrapper for sring

Usage
funSring(x, opt = list(), ...)

Arguments
x perceptron weights
opt list of optional parameters, e.g.,
 nElevators number of elevators
 probNewCustomer probability of a customer arrival
 nIterations Number of iterations
 randomSeed random seed
 ... additional parameters

Value
fitness (matrix with one column)

Examples
set.seed(123)
numberStates = 200
sigma = 1
x = matrix(rnorm(n = 2*numberStates, 1, sigma), 1,)
funSring(x)

gCosts

Description
Evaluate synthetic cost function that is based on the number of waiting customers and the number
elevators

Usage
gCosts(x, ...)

getNatDesignFromCoded

Arguments

- `x` vector with `sigma` weight multiplier and `ne` number of elevators
- `...` optional parameters passed to `funString`

Details

Note: To accelerate testing, `nIterations` was set to 1e3 (instead of 1e6)

Value

fitness (costs)

Examples

```r
set.seed(123)
sigma = 1
ne = 10
x <- c(sigma, ne)
getCosts(x)
```

getNatDesignFromCoded Get natural parameter values from coded +1 representation

Description

For given lower and upper bounds, `a` and `b`, respectively, coded input values are mapped to their natural values

Usage

`getNatDesignFromCoded(x, a, b)`

Arguments

- `x` (n,m)-dim matrix of coded values, i.e., lower values are coded as -1, upper values as +1.
- `a` m-dim vector of lower bounds (natural values)
- `b` m-dim vector of upper bounds (natural values)
Examples

Note: donttest is used, because platform x86_64-w64-mingw32 (64-bit)
does not provide the package babsim.hospital.

```r
require(babsim.hospital)
x <- matrix(rep(-1,29),1,)
bounds <- get Bounds()
lower <- bounds$lower
upper <- bounds$upper
getNatDesignFromCoded(x, a = lower, b = upper)
```

infillEI

Expected Improvement Infill Criterion

Description

Compute the negative of the Expected Improvement of a set of candidate solutions. Based on mean and standard deviation of a candidate solution, this estimates the expectation of improvement. Improvement considers the amount by which the best known value (best observed value) is exceeded by the candidates. Expected Improvement infill criterion that can be passed to control$modelControl$infillCriterion in order to be used during the optimization in SPOT. Parameters dont have to be specified as this function is meant to be internally by SPOT.

Usage

```r
infillEI(predictionList, model)
```

Arguments

- **predictionList**: The results of a predict.model call
- **model**: The surrogate model which was used for the prediction

Value

numeric vector, expected improvement results

Examples

```r
spot(fun=funSphere, c(-2,-3), c(1,2), control =
  list(infillCriterion = infillEI, modelControl = list(target = c("y","s"))))
```
infillExpectedImprovement

Description

Compute the negative logarithm of the Expected Improvement of a set of candidate solutions. Based on mean and standard deviation of a candidate solution, this estimates the expectation of improvement. Improvement considers the amount by which the best known value (best observed value) is exceeded by the candidates. Expected Improvement infill criterion that can be passed to control$\text{modelControl}\text{infillCriterion}$ in order to be used during the optimization in SPOT. Parameters don't have to be specified as this function is meant to be internally by SPOT.

Usage

\text{infillExpectedImprovement}(\text{predictionList}, \text{model})

Arguments

\text{predictionList} \quad \text{The results of a predict.model call}
\text{model} \quad \text{The surrogate model which was used for the prediction}

Value

numeric vector, expected improvement results

Examples

\begin{verbatim}
spot\left(\text{funSphere, c(-2,-3), c(1,2)}, \text{control} = \\
\text{list(\text{infillCriterion} = \text{infillExpectedImprovement}, \text{modelControl} = \text{list(\text{target} = c("y", "s"))})}
\end{verbatim}

init_ring

Description

Initialize ring parameters: generate arrival probabilities for S-Ring. - set beginning states to 0 and initialize random customer states and nElevators - nStates = (number of floors * 2) - 2. For example for 4 floors, its 6 states because the upper and lower state have only one direction and all other have 2 (UP and DOWN)

Usage

\text{init_ring}(\text{params})
Arguments

params list of
randomSeed random seed
nStates number of S-Ring states
nElevators number of elevators
probNewCustomer probability of a customer arrival
counter Counter: number of waiting customers
sElevator Vector representing elevators (s)
sCustomer Vector representing customers (c)
currentState Current state that is calculated
nextState Next state that is calculated
nWeights Number of weights for the perceptron (= 2 * nStates)

Value

list (params) of
randomSeed random seed
nStates number of S-Ring states
nElevators number of elevators
probNewCustomer probability of a customer arrival
counter Counter: number of waiting customers
sElevator Vector representing elevators (s)
sCustomer Vector representing customers (c)
currentState Current state that is calculated
nextState Next state that is calculated
nWeights Number of weights for the perceptron (= 2 * nStates)

Examples

params <- list(sElevator=NULL,
sCustomer=NULL,
currentState=NULL,
nextState=NULL,
counter=NULL,
nStates=12,
nElevators=2,
probNewCustomer=0.1,
weightsPerceptron=rep(0.1, 24),
nWeights=NULL,
nIterations=100,
randomSeed=1234)

init_ring(params)
normalizeMatrix

Normalize design

Description

Normalize design by using minimum and maximum of the design values for input space. Supportive function for Kriging model, not to be used directly.

Usage

```r
normalizeMatrix(x, ymin, ymax)
```

Arguments

- `x`: design matrix in input space
- `ymin`: minimum vector of normalized space
- `ymax`: maximum vector of normalized space

Value

normalized design matrix

See Also

`buildKriging`

normalizeMatrix2

Normalize design 2

Description

Normalize design with given maximum and minimum in input space. Supportive function for Kriging model, not to be used directly.

Usage

```r
normalizeMatrix2(x, ymin, ymax, xmin, xmax)
```

Arguments

- `x`: design matrix in input space (n rows for each point, k columns for each parameter)
- `ymin`: minimum vector of normalized space
- `ymax`: maximum vector of normalized space
- `xmin`: minimum vector of input space
- `xmax`: maximum vector of input space
optimDE

Value
normalized design matrix

See Also
buildKriging

optimDE

Minimization by Differential Evolution

Description
For minimization, this function uses the "DEoptim" method from the codeDEoptim package. It is basically a wrapper, to enable DEoptim for usage in SPOT.

Usage
optimDE(x = NULL, fun, lower, upper, control = list(), ...)

Arguments
x
optional start point
fun
objective function, which receives a matrix x and returns observations y
lower
boundary of the search space
upper
boundary of the search space
control
list of control parameters
 funEvals Budget, number of function evaluations allowed. Default is 200.
 populationSize Population size or number of particles in the population. De-
 fault is 10*dimension.
...
passed to fun

Value
list, with elements
 x archive of the best member at each iteration
 y archive of the best value of fn at each iteration
 xbest best solution
 ybest best observation
 count number of evaluations of fun
Examples

```r
c <- c(-10, -20)
res <- optimDE(lower = c(-10, -20), upper = c(20, 8), fun = funSphere)
res$ybest

optimDE(x = matrix(rep(1, 6), 3, 2), lower = c(-10, -20), upper = c(20, 8), fun = funSphere,
        control = list(funEvals = 100, populationSize = 20))

# Compare to DEoptim:
require(DEoptim)
set.seed(1234)
DEoptim(function(x){funRosen(matrix(x,1))}, lower = c(-10, -10), upper = c(10, 10),
        DEoptim.control(strategy = 2, bs = FALSE, N = 20, itermax = 28, CR = 0.7, F = 1.2,
        trace = FALSE, p = 0.2, c = 0, reltol = sqrt(.Machine$double.eps), steptol = 200 ))
```

optimES

Description

This is an implementation of an Evolution Strategy.

Usage

```r
optimES(x = NULL, fun, lower, upper, control = list(), ...)
```

Arguments

- **x**: optional start point, not used
- **fun**: objective function, which receives a matrix x and returns observations y
- **lower**: is a vector that defines the lower boundary of search space (this also defines the dimensionality of the problem)
- **upper**: is a vector that defines the upper boundary of search space (same length as lower)
- **control**: list of control parameters. The control list can contain the following settings:
 - **funEvals**: number of function evaluations, stopping criterion, default is 500
 - **mue**: number of parents, default is 10
 - **nu**: selection pressure. That means, number of offspring (lambda) is mue multiplied with nu. Default is 10
 - **mutation**: string of mutation type, default is 1
 - **sigmaInit**: initial sigma value (step size), default is 1.0
 - **nSigma**: number of different sigmas, default is 1
 - **tau0**: number, default is 0.0. tau0 is the general multiplier.
 - **tau**: number, learning parameter for self adaption, i.e. the local multiplier for step sizes (for each dimension). default is 1.0
rho number of parents involved in the procreation of an offspring (mixing number), default is "bi"

sel number of selected individuals, default is 1

maxGen number of generations, stopping criterion, default is Inf

seed number, random seed, default is 1

noise number, value of noise added to fitness values, default is 0.0

verbosity defines output verbosity of the ES, default is 0

plotResult boolean, specifies if results are plotted, default is FALSE

logPlotResult boolean, defines if plot results should be logarithmic, default is FALSE

sigmaRestart number, value of sigma on restart, default is 0.1

preScanMult initial population size is multiplied by this number for a pre-scan, default is 1

globalOpt termination criterion on reaching a desired optimum value, default is rep(0,dimension)

... additional parameters to be passed on to fun

Value

list, with elements

- x NULL, currently not used
- y NULL, currently not used
- xbest best solution
- ybest best observation
- count number of evaluations of fun

Examples

```r
cont <- list(funEvals=100)
optimES(fun=funSphere,lower=rep(0,2), upper=rep(1,2), control= cont)
```
optimGenoud

Minimization by GENetic Optimization Using Derivatives

Description
For minimization, this function uses the "genoud" method from the codergenoud package. It is basically a wrapper, to enable genoud for usage in SPOT.

Usage

optimGenoud(x = NULL, fun, lower, upper, control = list(), ...)

Arguments

x optional start point, not used
fun objective function, which receives a matrix x and returns observations y
lower boundary of the search space
upper boundary of the search space
control list of control parameters
 funEvals Budget, number of function evaluations allowed. Default is 100.
 populationSize Population size, number of individuals in the population. Default is 10*dimension.
... passed to fun

Value

list, with elements
 x NULL, currently not used
 y NULL, currently not used
 xbest best solution
 ybest best observation
 count number of evaluations of fun

Examples

res <- optimGenoud(fun = funSphere, lower = c(-10,-20), upper = c(20,8))
res$ybest
optimLBFGSB

Minimization by L-BFGS-B

Description

For minimization, this function uses the "L-BFGS-B" method from the optim function, which is part of the codestats package. It is basically a wrapper, to enable L-BFGS-B for usage in SPOT.

Usage

optimLBFGSB(x = NULL, fun, lower, upper, control = list(), ...)

Arguments

x optional matrix of points. Only first point (row) is used as startpoint.
fun objective function, which receives a matrix x and returns observations y
lower boundary of the search space
upper boundary of the search space
control list of control parameters

funEvals Budget, number of function evaluations allowed. Default is 100.
All other control parameters accepted by the optim function can be used, too, and are passed to optim.

... passed to fun

Value

list, with elements

x NA, not used
y NA, not used
xbest best solution
ybest best observation
count number of evaluations of fun (estimated from the more complicated "counts" variable returned by optim)
message termination message returned by optim

Examples

res <- optimLBFGSB(fun = funSphere, lower = c(-10,-20), upper = c(20,8))
res$ybest
Description

This uses Latin Hypercube Sampling (LHS) to optimize a specified target function. A Latin Hypercube Design (LHD) is created with `designLHD`, then evaluated by the objective function. All results are reported, including the best (minimal) objective value, and corresponding design point.

Usage

```r
optimLHD(x = NULL, fun, lower, upper, control = list(), ...)
```

Arguments

- `x` optional matrix of points to be included in the evaluation
- `fun` objective function, which receives a matrix `x` and returns observations `y`
- `lower` boundary of the search space
- `upper` boundary of the search space
- `control` list of control parameters
 - `funEvals` Budget, number of function evaluations allowed. Default: 100.
 - `retries` Number of retries for design generation, used by `designLHD`. Default: 100.
 - `...` passed to `fun`

Value

list, with elements

- `x` archive of evaluated solutions
- `y` archive of observations
- `xbest` best solution
- `ybest` best observation
- `count` number of evaluations of `fun`
- `message` success message

Examples

```r
res <- optimLHD(fun = funSphere, lower = c(-10, -20), upper = c(20, 8))
res$ybest
```
optimNLOPTR

optimNLOPTR. Minimization by NLOPT

Description

This is a wrapper that employs the nloptr function from the package of the same name. The nloptr function itself is an interface to the nlopt library, which contains a wide selection of different optimization algorithms.

Usage

optimNLOPTR(x = NULL, fun, lower, upper, control = list(), ...)

Arguments

x optional matrix of points to be included in the evaluation (only first row will be used)
fun objective function, which receives a matrix x and returns observations y
lower boundary of the search space
upper boundary of the search space
control named list, with the options for nloptr. These will be passed to nloptr as arguments. In addition, the following parameter can be used to set the function evaluation budget:

 funEvals Budget, number of function evaluations allowed. Default: 100.
... passed to fun

Note that the arguments x, fun, lower and upper will be mapped to the corresponding arguments of nloptr: x0, eval_f, lb and ub.

Value

list, with elements

 x archive of evaluated solutions
 y archive of observations
 xbest best solution
 ybest best observation
 count number of evaluations of fun
 message success message
Examples

```r
## simple example:
res <- optimNLOPTR(fun = funSphere, lower = c(-10,-20), upper=c(20,8))
res
## with an inequality constraint:
contr <- list() # control list
## specify constraint
contr$eval_g_ineq <- function(x) 1+x[1]-x[2]
res <- optimNLOPTR(fun=funSphere, lower=c(-10,-20), upper=c(20,8), control=contr)
res
```

perceptron

Description

Perceptron to calculate decisions

Usage

```r
perceptron(currentState, nStates, sElevator, sCustomer, weightsPerceptron)
```

Arguments

- `currentState`: current state for decision (num)
- `nStates`: number of states (int)
- `sElevator`: elevators vector (logical)
- `sCustomer`: customer vector (logical)
- `weightsPerceptron`: Weight vector (num)

Details

Number of weights in NN controller is 2xnStates, for each state (sElevator/sCustomer) there is one input

Value

logical pass or take decision
plotBestObj
Plot Best Objective Value

Description
Plot Best Objective Value

Usage
```
plotBestObj(y, end = length(y))
```

Arguments
- `y` result vector
- `end` length. Default: `length(y)`

Value
- `plot`

plotData
Interpolated plot

Description
A (filled) contour or perspective plot of a data set with two independent and one dependent variable. The plot is generated by some interpolation or regression model. By default, the `loess` function is used.

Usage
```
plotData(
  x,
  y,
  which = 1:2,
  constant = x[which.min(y), ],
  model = buildLOESS,
  modelControl = list(),
  xlab = c("x1", "x2"),
  ylab = "y",
  type = "filled.contour",
  ...
)
```
Arguments

x
independent variables, or input variables. This should be a matrix of at least two columns and several rows. If more than two columns are present, all will be used for fitting the model. The parameter which will determine which of these will be plotted, and the parameter constant will determine the values of all parameters that are not varied.

y
dependent, or observed output variable to be interpolated/regressed and plotted.

which
a vector with two elements, each an integer giving the two independent variables of the plot (the integers are indices of the respective data set, i.e., columns of x). All other parameters will be fixed to the best known solution, i.e., the one with minimal y-value.

constant
a numeric vector that states for each variable a constant value that it will take on if it is not varied in the plot. This affects the parameters not selected by the which parameter. By default, this will be fixed to the best known solution, i.e., the one with minimal y-value, according to which.min(object$y). The length of this numeric vector should be the same as the number of columns in object$x

model
the model building function to be used, by default buildLOESS.

modelControl
control list of the chosen model building function.

xlab
a vector of characters, giving the labels for each of the two independent variables

ylab
character, the value of the dependent variable predicted by the corresponding model

type
string describing the type of the plot: "filled.contour" (default), "contour", "persp" (perspective), or "persp3d" plot. Note that "persp3d" is based on the plotly package and will work in RStudio, but not in the standard RGui.

...
additional parameters passed to the contour or filled.contour function

See Also

plotFunction, plotModel

Examples

```r
## generate random test data

testfun <- function (x) sum(x^2)

set.seed(1)
k <- 30
x <- cbind(runif(k)*15-5,runif(k)*15)
y <- as.matrix(apply(x,1,testfun))
plotData(x,y)
plotData(x,y,type="contour")
plotData(x,y,type="persp")
```

plotFunction

Surface plot of a function

Description

A (filled) contour plot or perspective / surface plot of a function.

Usage

```r
plotFunction(
  f = function(x) { rowSums(x^2) },
  lower = c(0, 0),
  upper = c(1, 1),
  type = "filled.contour",
  s = 100,
  xlab = "x1",
  ylab = "x2",
  zlab = "y",
  color.palette = terrain.colors,
  title = "",
  levels = NULL,
  points1,
  points2,
  pch1 = 20,
  pch2 = 8,
  lwd1 = 1,
  lwd2 = 1,
  cex1 = 1,
  cex2 = 1,
  col1 = "red",
  col2 = "black",
  theta = -40,
  phi = 40,
  ...
)
```

Arguments

- **f**
 - function to be plotted. The function should either be able to take two vectors or one matrix specifying sample locations. i.e. \(Z = f(X) \) or \(Z = f(x_2, x_1) \) where \(Z \) is a two column matrix containing the sample locations \(x_1 \) and \(x_2 \).
- **lower**
 - boundary for \(x_1 \) and \(x_2 \) (defaults to \(\mathbb{C}(0,0) \)).
- **upper**
 - boundary (defaults to \(\mathbb{C}(1,1) \)).
- **type**
 - string describing the type of the plot: "filled.contour" (default), "contour", "persp" (perspective), or "persp3d" plot. Note that "persp3d" is based on the plotly package and will work in RStudio, but not in the standard RGui.
plotFunction

s number of samples along each dimension. e.g. f will be evaluated s^2 times.
xlab label of first axis
ylab label of second axis
zlab label of third axis
color.palette colors used, default is terrain.color
title title of the plot
levels number of levels for the plotted function value. Will be set automatically with
... default NULL.. (contour plots only)
points1 can be omitted, but if given the points in this matrix are added to the plot in
... form of dots. Contour plots and persp3d only. Contour plots expect matrix with
two columns for coordinates. 3Dperspective expects matrix with three columns,
third column giving the corresponding observed value of the plotted function.
points2 can be omitted, but if given the points in this matrix are added to the plot in form
... of crosses. Contour plots and persp3d only. Contour plots expect matrix with
two columns for coordinates. 3Dperspective expects matrix with three columns,
third column giving the corresponding observed value of the plotted function.
pch1 pch (symbol) setting for points1 (default: 20). (contour plots only)
pch2 pch (symbol) setting for points2 (default: 8). (contour plots only)
lwd1 line width for points1 (default: 1). (contour plots only)
lwd2 line width for points2 (default: 1). (contour plots only)
cex1 cex for points1 (default: 1). (contour plots only)
cex2 cex for points2 (default: 1). (contour plots only)
col1 color for points1 (default: "black"). (contour plots only)
col2 color for points2 (default: "black"). (contour plots only)
theta angle defining the viewing direction. theta gives the azimuthal direction and phi
... the colatitude. (persp plot only)
phi angle defining the viewing direction. theta gives the colatitude. (persp plot only)
... additional parameters passed to contour or filled.contour

See Also

plotData, plotModel

Examples

plotFunction(function(x){rowSums(x^2)},c(-5,0),c(10,15))
plotFunction(function(x){rowSums(x^2)},c(-5,0),c(10,15),type="contour")
plotFunction(function(x){rowSums(x^2)},c(-5,0),c(10,15),type="persp")
plotModel

Surface plot of a model

Description

A (filled) contour or perspective plot of a fitted model.

Usage

plotModel(
 object,
 which = if (ncol(object$x) > 1 & tolower(type) != "singledim") { 1:2 } else { 1 },
 constant = object$x[which.min(object$y),],
 xlab = paste("x", which, sep = ""),
 ylab = "y",
 type = "filled.contour",
 ...
)

Arguments

object fit created by a modeling function, e.g., buildRandomForest.
which a vector with two elements, each an integer giving the two independent variables of the plot (the integers are indices of the respective data set).
constant a numeric vector that states for each variable a constant value that it will take on if it is not varied in the plot. This affects the parameters not selected by the which parameter. By default, this will be fixed to the best known solution, i.e., the one with minimal y-value, according to which.min(object$y). The length of this numeric vector should be the same as the number of columns in object$x
xlab a vector of characters, giving the labels for each of the two independent variables.
ylab character, the value of the dependent variable predicted by the corresponding model.
type string describing the type of the plot: "filled.contour" (default), "contour", "persp" (perspective), or "persp3d" plot. Note that "persp3d" is based on the plotly package and will work in RStudio, but not in the standard RGui.
...

additional parameters passed to the contour or filled.contour function.

See Also

plotFunction, plotData
Examples

```r
# generate random test data
testfun <- function (x) sum(x^2)
set.seed(1)
k <- 30
x <- cbind(runif(k)*15-5,runif(k)*15,runif(k)*2-7,runif(k)*5+22)
y <- as.matrix(apply(x,1,testfun))
fit <- buildLM(x,y)
plotModel(fit)
plotModel(fit,type="contour")
plotModel(fit,type="persp")
plotModel(fit,which=c(1,4))
plotModel(fit,which=2:3)
```

Description

`plotPCA` returns a 2D plot of optimization data in its own space using `buildPCA`. It plots first two PCAs by default.

Usage

```r
plotPCA(x, control = list())
```

Arguments

- `x`: dataset of parameters to be transformed & plotted
- `control`: control list

Value

It returns a plot image.

Author(s)

Alpar Gür <alpar.guer@smail.th-koeln.de>

See Also

`buildPCA`, `biplot`
Examples

define objective function
funGauss <- function (x) {
 gauss <- function(par) {
 y <- c(0.0009, 0.0044, 0.0175, 0.0540, 0.1295, 0.2420, 0.3521, 0.3989,
 0.3989, 0.3521, 0.2420, 0.1295, 0.0540, 0.0175, 0.0044, 0.0009)
 m <- 15
 x1 <- par[1]
 x2 <- par[2]
 x3 <- par[3]

 fsum <- 0
 for (i in 1:m) {
 ti <- (8 - i) * 0.5
 f <- x1 * exp(-0.5 * x2 * (ti - x3) ^ 2) - y[i]
 fsum <- fsum + f * f
 }
 return(fsum)
 }
 matrix(apply(x, 1, gauss), , 1) # number of columns
}

define starting point
x1 <- matrix(c(1,1,1),1,)
funGauss(x1)

define boundaries
lower = c(-0.001,-0.007,-0.003)
upper = c(0.5,1.0,1.1)
res <- spot(,funGauss, lower=lower, upper=upper, control=list(funEvals=15))
control = list(scale=TRUE) # pca control list, # scale the variables
plotPCA(res$x, control=control) # plot first two PCAs

Description

plotPCAvariance illustrates the total variance within the dataset. It plots the effectiveness of each principal component and can be used to decide how many and which principal components to plot. In order to create this plot, users don’t need to build PCA beforehand since it handles this process automatically.
Usage

plotPCAvariance(x)

Arguments

x dataset of parameters to be transformed & plotted

Value

It returns a plot image.

Author(s)

Alpar Gür <alpar.guer@smail.th-koeln.de>

See Also

buildPCA

Examples

objective function
funBard <- function (x) {
 bard <- function(par) {
 y <- c(0.14, 0.18, 0.22, 0.25, 0.29, 0.32, 0.35, 0.39, 0.37, 0.58,
 0.73, 0.96, 1.34, 2.10, 4.39)
 m <- 15
 x1 <- par[1]
 x2 <- par[2]
 x3 <- par[3]
 fsum <- 0
 for (u in 1:m) {
 v <- 16 - u
 w <- min(u, v)
 f <- y[u] - (x1 + u / (v * x2 + w * x3))
 fsum <- fsum + f * f
 }
 return(fsum)
 }
 matrix(apply(x, # matrix
 1, # margin (apply over rows)
 bard),
 , 1) # number of columns
}

starting point
x1 <- matrix(c(1,1),1,)
funBard(x1)

boundaries
lower = c(-0.001,-0.007,-0.003)
prepareBestObjectiveVal

Preprocess y Values to Plot Best Objective Value

Description
Preprocess y Values to Plot Best Objective Value

Usage
prepareBestObjectiveVal(y, end = length(y))

Arguments
- y: result vector
- end: length. Default: length(y)

predict.cvModel

Description
Predict with the cross validated model produced by buildCVModel.

Usage
S3 method for class 'cvModel'
predict(object, newdata, ...)

Arguments
- object: CV model (settings and parameters) of class cvModel.
- newdata: design matrix to be predicted
- ...: Additional parameters passed to the model

Value
prediction results: list with predicted mean ('y'), estimated uncertainty ('y'), linearly adapted uncertainty ('sLinear')

prepareBestObjectiveVal

Preprocess y Values to Plot Best Objective Value

Description
Preprocess y Values to Plot Best Objective Value

Usage
prepareBestObjectiveVal(y, end = length(y))

Arguments
- y: result vector
- end: length. Default: length(y)
Description

A simple interface to the Optimal Computing Budget Allocation algorithm.

Usage

repeatsOCBA(x, y, budget)

Arguments

x matrix of samples. Identical rows indicate repeated evaluations. Any sample should be evaluated at least twice, to get an estimate of the variance.
y observations of the respective samples. For repeated evaluations, y should differ (variance not zero).
budget of additional evaluations to be allocated to the samples.

Value

A vector that specifies how often each solution should be evaluated.

References

See Also

repeatsOCBA calls OCBA, which also provides some additional details.

Examples

```r
x <- matrix(c(1:3,1:3),9,2)
y <- runif(9)
repeatsOCBA(x, y, 10)
```
Description

A data set based on evaluations of the `funCosts` function. Second experiment (extension of the first design) The corresponding code can be found in the vignette SPOTVignetteElevator.

Usage

```
resSpot
```

Format

A list of 7:

- `xbest` num [1, 1:2] 188 45
- `ybest` num [1, 1] 1e+07
- `x` num [1:87, 1:2] 17.4 143.6 89.9 28.7 51.4 ...
- `y` num [1:87, 1] 1e+07 1e+07 1e+07 1e+07 1e+07 ...
- `count` num 0.1 0.1 0.1 0.1 0.1 1 1 1 1 1 1 ...
- `msg` chr "budget exhausted"
- `modelFit` List of 32
Description

main function which iterates the ring

Usage

```
ring(params)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>params</code></td>
<td>list of</td>
</tr>
<tr>
<td><code>randomSeed</code></td>
<td>random seed</td>
</tr>
<tr>
<td><code>nStates</code></td>
<td>number of S-Ring states</td>
</tr>
<tr>
<td><code>nElevators</code></td>
<td>number of elevators</td>
</tr>
<tr>
<td><code>probNewCustomer</code></td>
<td>probability of a customer arrival</td>
</tr>
<tr>
<td><code>counter</code></td>
<td>Counter: number of waiting customers</td>
</tr>
<tr>
<td><code>sElevator</code></td>
<td>Vector representing elevators (s)</td>
</tr>
<tr>
<td><code>sCustomer</code></td>
<td>Vector representing customers (c)</td>
</tr>
<tr>
<td><code>currentState</code></td>
<td>Current state that is calculated</td>
</tr>
<tr>
<td><code>nextState</code></td>
<td>Next state that is calculated</td>
</tr>
<tr>
<td><code>nWeights</code></td>
<td>Number of weights for the perceptron (= 2 * nStates)</td>
</tr>
</tbody>
</table>

Value

number of waiting customers (estimation)
sann2spot

Interface SANN to SPOT

Description

Provide an interface for tuning SANN. The interface function receives a matrix where each row is proposed parameter setting (‘temp’, ‘tmax’), and each column specifies the parameters. It generates a $(n,1)$-matrix as output, where n is the number of (‘temp’, ‘tmax’) parameter settings.

Usage

`sann2spot(algpar, par = c(10, 10), fn, maxit = 100, ...)`

Arguments

- `algpar` matrix algorithm parameters.
- `par` Initial values for the parameters to be optimized over.
- `fn` A function to be minimized (or maximized), with first argument the vector of parameters over which minimization is to take place. It should return a scalar result.
- `maxit` Total number of function evaluations: there is no other stopping criterion. Defaults to 10000.
- `...` further arguments for `optim`

Value

matrix of results (performance values)

Examples

```r
sphere <- function(x){sum(x^2)}
algpar <- matrix(c(1:10, 1:10), 10,2)
sann2spot(algpar, fn = sphere)
```

satter

Satterthwaite Function

Description

The Satterthwaite function can be used to estimate the magnitude of the variance component $(\sigma_{\beta})^2$, when the random factor has significant main effects.

Usage

`satter(MScoeff, MSi, dfi, alpha = 0.05)`
simulate.kriging

Arguments

- **MScoeff**: coefficients c_1, c_2
- **MSi**: mean squared values
- **dfi**: degrees of freedom
- **alpha**: error probability

Details

Note, the output from the `satter()` procedure is `sigma_beta`.

Value

- vector with 1. estimate of variance
- 2. degrees of freedom
- 3. lower value of 1-alpha confint
- 4. upper value of 1-alpha confint

Examples

```r
res <- satter(MScoeff = c(1/4, -1/4),
              MSi = c(394.9, 73.3),
              dfi = c(4,3),
              alpha = 0.1)
```

simulate.kriging Kriging Simulation

Description

(Conditional) Simulation at given locations, with a model fit resulting from `buildKriging`. In contrast to prediction or estimation, the goal is to reproduce the covariance structure, rather than the data itself. Note, that the conditional simulation also reproduces the training data, but has a two times larger error than the Kriging predictor.

Usage

```r
## S3 method for class 'kriging'
simulate(
  object,
  nsim = 1,
  seed = NA,
  xsim,
  method = "decompose",
  conditionalSimulation = TRUE,
  Ncos = 10,
  returnAll = FALSE,
  ...
)
```
simulateFunction

Arguments

object fit of the Kriging model (settings and parameters), of class kriging.
nsim number of simulations
seed random number generator seed. Defaults to NA, in which case no seed is set
xsim list of samples in input space, to be simulated at
method "decompose" (default) or "spectral", specifying the method used for simulation. Note that "decompose" is can be preferable, since it is exact but may be computationally infeasible for high-dimensional xsim. On the other hand, "spectral" yields a function that can be evaluated at arbitrary sample locations.
conditionalSimulation logical, if set to TRUE (default), the simulation is conditioned with the training data of the Kriging model. Else, the simulation is non-conditional.
Ncos number of cosine functions (used with method="spectral" only)
returnAll if set to TRUE, a list with the simulated values (y) and the corresponding covariance matrix (covar) of the simulated samples is returned.
... further arguments, not used

Value

Returned value depends on the setting of object$simulationReturnAll

References

See Also

buildKriging, predict.kriging

Description

Simulation-based Function Generator. Generate functions via simulation of Kriging models, e.g., for assessment of optimization algorithms with non-conditional or conditional simulation, based on real-world data.
simulateFunction

Usage

simulateFunction(
 object,
 nsim = 1,
 seed = NA,
 method = "spectral",
 xsim = NA,
 Ncos = 10,
 conditionalSimulation = TRUE
)

Arguments

 object an object generated by buildKriging
 nsim the number of simulations, or test functions, to be created
 seed a random number generator seed. Defaults to NA; which means no seed is set. For sake of reproducibility, set this to some integer value.
 method "decompose" (default) or "spectral", specifying the method used for simulation. Note that "decompose" is can be preferable, since it is exact but may be computationally infeasible for high-dimensional xsim. On the other hand, "spectral" yields a function that can be evaluated at arbitrary sample locations.
 xsim list of samples in input space, for simulation (only used for decomposition-based simulation, not for spectral method)
 Ncos number of cosine functions (used with method="spectral" only)
 conditionalSimulation whether (TRUE) or not (FALSE) to use conditional simulation

Value

 a list of functions, where each function is the interpolation of one simulation realization. The length of the list depends on the nsim parameter.

References

See Also

 buildKriging, simulate.kriging
Description

Sequential Parameter Optimization. This is one of the main interfaces for using the SPOT package. Based on a user-given objective function and configuration, spot finds the parameter setting that yields the lowest objective value (minimization). To that end, it uses methods from the fields of design of experiment, statistical modeling / machine learning and optimization.

Usage

```
spot(x = NULL, fun, lower, upper, control = list(), ...)
```

Arguments

- `x` is an optional start point (or set of start points), specified as a matrix. One row for each point, and one column for each optimized parameter.

- `fun` is the objective function. It should receive a matrix `x` and return a matrix `y`. In case the function uses external code and is noisy, an additional seed parameter may be used, see the `control$seedFun` argument below for details. Mostly, `fun` must have format `y = f(x, ...)`. If a noisy function requires some specific seed handling, e.g., in some other non-R code, a seed can be passed to `fun`. For that purpose, the user must specify `control$noise = TRUE` and `fun` should be `fun(x, seed, ...)`

- `lower` is a vector that defines the lower boundary of search space. This determines also the dimensionality of the problem.

- `upper` is a vector that defines the upper boundary of search space.

- `control` is a list with control settings for `spot`. See `spotControl`.

- `...` additional parameters passed to `fun`.

Value

This function returns a list with:

- `xbest` Parameters of the best found solution (matrix).
- `ybest` Objective function value of the best found solution (matrix).
- `x` Archive of all evaluation parameters (matrix).
- `y` Archive of the respective objective function values (matrix).
- `count` Number of performed objective function evaluations.
- `msg` Message specifying the reason of termination.
- `modelFit` The fit of the last build model, i.e., an object returned by the last call to the function specified by `control$model`.

Examples

Only a few examples. More examples can be found in the vignette and in
the paper "In a Nutshell -- The Sequential Parameter Optimization Toolbox",
see https://arxiv.org/abs/1712.04076

1. Most simple example: Kriging + LHS search + predicted mean optimization
(not expected improvement)
set.seed(1)
res <- spot(sphere,c(-2,-3),c(1,2),
 control=list(funEvals=15))
res$xbest
res$ybest

2. With expected improvement
set.seed(1)
res <- spot(sphere,c(-2,-3),c(1,2),
 control=list(funEvals=15,
 modelControl=list(target="ei")))
res$xbest
res$ybest

3. Use local optimization instead of LHS search
set.seed(1)
res <- spot(sphere,c(-2,-3),c(1,2),
 control=list(funEvals=15,
 modelControl=list(target="ei"),
 optimizer=optimLBFGSB))
res$xbest
res$ybest

spotAlgEs

Evolution Strategy Implementation

Description

This function is used by `optimES` as a main loop for running the Evolution Strategy with the given
parameter set specified by SPOT.

Usage

```r
spotAlgEs(
  mue = 10,
  nu = 10,
  dimension = 2,
  mutation = 2,
  sigmaInit = 1,
  nSigma = 1,
```
tau0 = 0,
tau = 1,
rho = "bi",
set = -1,
stratReco = 1,
objReco = 2,
maxGen = Inf,
maxIter = Inf,
seed = 1,
nnoise = 0,
fName = funSphere,
lowerLimit = -1,
upperLimit = 1,
verbosity = 0,
plotResult = FALSE,
logPlotResult = FALSE,
sigmaRestart = 0.1,
preScanMult = 1,
globalOpt = NULL,
...
}
}

Arguments

mue number of parents, default is 10
nu selection pressure. That means, number of offspring (lambda) is mue multiplied with nu. Default is 10
dimension dimension number of the target function, default is 2
mutation mutation type, either 1 or 2, default is 1
sigmaInit initial sigma value (step size), default is 1.0
nSigma number of different sigmas, default is 1
tau0 number, default is 0.0. tau0 is the general multiplier.
tau number, learning parameter for self adaption, default is 1.0. tau is the local multiplier for step sizes (for each dimension).
rho number of parents involved in the procreation of an offspring (mixing number), default is "bi"
set number of selected individuals, default is -1
maxGen number of generations, stopping criterion, default is Inf
maxIter number of iterations (function evaluations), stopping criterion, default is 100
seed number, random seed, default is 1
spotCleanup

Clean up

Description

Remove objects

Usage

`spotCleanup(control)`

Arguments

`control` list of spot control parameters.

spotControl

`spotControl`

Description

Default Control list for spot. This function returns the default controls for the functions `spot` and `spotLoop`.

Usage

`spotControl(dimension)`
Arguments

dimension problem dimension, that is, the number of optimized parameters.

Details

Control is a list of the settings:

funEvals This is the budget of function evaluations (spot uses no more than funEvals evaluations of fun), defaults to 20.
types Vector of data type of each variable as a string, defaults "numeric" for all variables.
subsetSelect A function that selects a subset from a given set of design points. Default is selectAll.
subsetControl A list of controls passed to the control list of the subsetSelect function. See help of the respective function for details. Default is an empty list.
design A function that creates an initial design of experiment. Functions that accept the same parameters, and return a matrix like designLHD or designUniformRandom can be used. Default is designLHD.
designControl A list of controls passed to the control list of the design function. See help of the respective function for details. Default is an empty list.
model A function that builds a statistical model of the observed data. Functions that accept the same parameters, and return a matrix like buildKriging or buildRandomForest can be used. Default is buildKriging.
modelControl A list of controls passed to the control list of the model function. See help of the respective function for details. Default is an empty list.
optimizer A function that is used to optimize based on model, finding the most promising candidate solutions. Functions that accept the same parameters, and return a matrix like optimLHD or optimDE can be used. Default is optimLHD.
optimizerControl A list of controls passed to the control list of the optimizer function. See help of the respective function for details. Default is an empty list.
directOpt A function that is used to optimize after the spot run is finished. Functions that accept the same parameters, and return a matrix like optimNLOPTR or optimDE can be used. Default is optimNLOPTR.
directOptControl A list of controls passed to the control list of the directOpt function. See help of the respective function for details. Default is list(funEvals = 0).
noise Boolean, whether the objective function has noise or not. Default is non-noisy, that is, FALSE.
OCBA Boolean, indicating whether Optimal Computing Budget Allocation (OCBA) should be used in case of a noisy objective function or not. OCBA controls the number of replications for each candidate solution. Note, that replicates should be larger than one in that case, and that the initial experimental design (see design) should also have replicates larger one. Default is FALSE.
OCBAbudget The number of objective function evaluations that OCBA can distribute in each iteration. Default is 3.
replicates The number of times a candidate solution is initially evaluated, that is, in the initial
design, or when created by the optimizer. Default is 1.

seedFun An initial seed for the objective function in case of noise, by default NA. The default
means that no seed is set. The user should be very careful with this setting. It is intended to
generate reproducible experiments for each objective function evaluation, e.g., when tuning
non-deterministic algorithms. If the objective function uses a constant number of random
number generations, this may be undesirable. Note, that this seed is by default set prior to each
evaluation. A replicated evaluation will receive an incremented value of the seed. Sometimes,
the user may want to call external code using random numbers. To allow for that case, the
user can specify an objective function (fun), which has a second parameter seed, in addition
to first parameter (matrix x). This seed can then be passed to the external code, for random
number generator initialization. See end of examples section for a demonstration.

seedSPOT This value is used to initialize the random number generator. It ensures that experiments
are reproducible. Default is 1.

duplicate In case of a deterministic (non-noisy) objective function, this handles duplicated can-
didate solutions. By default (duplicate = "EXPLORE"), duplicates are replaced by new can-
didate solutions, generated by random sampling with uniform distribution. If desired, the user
can set this to "STOP", which means that the optimization stops and results are returned to the
user (with a warning). This may be desirable, as duplicates can be a indicator for convergence,
or for a problem with the configuration. In case of noise, duplicates are allowed.

plots Whether progress should be tracked by a line plot, default is FALSE

progress Whether progress should be visualized, default is FALSE

infillCriterion A function defining an infillCriterion to be used while optimizing a model. De-
default: NULL. For example check infillExpectedImprovement

verbosity Integer level specifying how much output should be given by SPOT. 0 (default) ignores
warnings of internal optimizers /models. I will show warnings and output.

maxTime num Maximum allowed run time (in minutes) for spot or spotLoop. The default value for
maxTime (in minutes) is Inf and can be overwritten by the user. The internal value startTime,
that is used to control maxTime, will be set by spotFillControlList. Note: maxTime is only
an approximate value. It does not affect the directOpt run.

Value

a list

spotLoop Sequential Parameter Optimization Main Loop

Description

SPOT is usually started via the function spot. However, SPOT runs can be continued (i.e., with
a larger budget specified in control$funEvals) by using spotLoop. This is the main loop of SPOT
iterations. It requires the user to give the same inputs as specified for spot. Note: control$funEvals
must be larger than the value used in the previous run, because it specifies the total number of func-
tion evaluations and not the additional number of evaluations.
Usage

spotLoop(x, y, fun, lower, upper, control, ...)

Arguments

- **x**
 (m,n) matrix that contains the known candidate solutions. The SPOT loop is started with these values. Each row represents one n dimensional data point. Each of the m columns represents one optimized parameter.

- **y**
 (m,p) matrix that represents observations for each point in x. Each of the m rows represents solutions for one data point.

- **fun**
 function that represents the objective function. It should receive a matrix x and return a matrix y. In case the function uses external code and is noisy, an additional seed parameter may be used, see the control$seedFun argument below for details.

- **lower**
 is a vector that defines the lower boundary of search space. This determines also the dimension of the problem.

- **upper**
 is a vector that defines the upper boundary of search space.

- **control**
 is a list with control settings for spot. See spotControl.

- **...**
 additional parameters passed to fun.

Value

This function returns a list with:

- **xbest** Parameters of the best found solution (matrix).

- **ybest** Objective function value of the best found solution (matrix).

- **x** Archive of all evaluation parameters (matrix).

- **y** Archive of the respective objective function values (matrix).

- **count** Number of performed objective function evaluations.

- **msg** Message specifying the reason of termination.

- **modelFit** The fit of the last build model, i.e., an object returned by the last call to the function specified by control$model.

Examples

```r
## Most simple example: Kriging + LHS + predicted
## mean optimization (not expected improvement)
control <- list(funEvals=20)
res <- spot(,funSphere,c(-2,-3),c(1,2),control)
## now continue with larger budget.
## 5 additional runs will be performed.
control$funEvals <- 25
res2 <- spotLoop(res$x,res$y,funSphere,c(-2,-3),c(1,2),control)
res2$xbest
res2$ybest
```
spotPlotPower

Description

Plot power

Usage

```r
spotPlotPower(y0, y1, alpha = 0.05, add = FALSE, n = NA, rightLimit = 1)
```

Arguments

- `y0`: First input vector
- `y1`: Second input vector
- `alpha`: description of alpha, default value is 0.05
- `add`: Boolean, default value is FALSE
- `n`: number of vector elements that should be evaluated, default value is NA, which means the whole vector
- `rightLimit`: description of rightLimit, default value is 1

Value

description of return value

spotPlotSeverity

Description

spotPlotSeverity

Usage

```r
spotPlotSeverity(y0, y1, add = FALSE, n = NA, alpha, rightLimit = 1)
```

Arguments

- `y0`: first input vector
- `y1`: second input vector
- `add`: default value is FALSE
- `n`: default value is NA, which means length of y0 will be used for n
- `alpha`: description
- `rightLimit`: description of rightLimit, default value is 1
spotPower

Value
description of return value

Examples

Example from D G Mayo and A Spanos.

Severe Testing as a Basic Concept in a NeymanPearson Philosophy of Induction.

British Journal for the Philosophy of Science, 57:323357, 2006. (fig 2):

```r
x0 <- 12.1
mu1 <- seq(11.9,13,0.01)
n <- 100
sigma <- 2
alpha <- 0.025
plot(mu1, spotSeverity(x0, mu1, n, sigma, alpha), type = "l", ylim=c(0,1), col="blue")
abline(h=0)
abline(h=1)
abline(h=0.95)
abline(v=12.43)
### plot power:
mu0 <- 12
points(mu1, spotPower(alpha, mu0, mu1, n, sigma), type = "l", ylim=c(0,1), col="green")
abline(v=12.72)
```

spotPower

Description

Calculate power

Usage

spotPower(alpha, mu0, mu1, n, sigma)

Arguments

- **alpha**: description of alpha
- **mu0**: description of mu0
- **mu1**: description of mu1
- **n**: vector length
- **sigma**: standart deviation

Value

description of return value
Description

spotSeverity

Usage

spotSeverity(x0, mu1, n, sigma, alpha)

Arguments

x0 sample mean value
mu1 description
n description
sigma description
alpha description

Value

description of return value

Description

simple elevator simulator

Usage

sring(x, opt = list(), ...)

Arguments

x perceptron weights
opt list of optional parameters, e.g.,
nElevators number of elevators
probNewCustomer probability of a customer arrival
nIterations Number of iterations
randomSeed random seed
... additional parameters
Value

fitness

Examples

set.seed(123)
nStates = 6
nElevators = 2
sigma = 1
x = matrix(rnorm(n = 2*nStates, 1, sigma), 1,)
sring(x, opt = list(nElevators=nElevators,
 nStates= nStates))

sringRes1 S-Ring Simulation Data

Description

A data set based on evaluations of the funCosts function. The corresponding code can be found in
the vignette SPOTVignetteElevator

Usage

sringRes1

Format

A data frame with 20 obs. of 3 variables:

 y num 10 10 10 10 10 ...
 sigma num 0.1 0.1 0.1 0.1 0.1 1 1 1 1 1 ..
 ne num 5 5 5 5 5 5 5 5 5 5 ...

sringRes2 S-Ring Simulation Data

Description

A data set based on evaluations of the funCosts function. Second experiment (extension of the first
design) The corresponding code can be found in the vignette SPOTVignetteElevator

Usage

sringRes2
sringRes3

Format

A data frame with 22 obs. of 3 variables:

- **y** num 10 10 10 10 ...
- **sigma** num 0.1 0.1 0.1 0.1 1 1 1 1 1 ...
- **ne** num 5 5 5 5 5 5 5 5 5 ...

**sringRes3
S-Ring Simulation Data**

Description

A data set based on evaluations of the `funCosts` function. Second experiment (extension of the first design) The corresponding code can be found in the vignette SPOTVignetteElevator

Usage

`sringRes3`

thetaNugget
thetaNugget

Description

get theta (distance, lengthscale) and nugget (noise) parameters gradient

Usage

`thetaNugget(par, X, Y)`

Arguments

- **par** parameter vector. First dim(x) entries are theta values, last entry is nugget parameter.
- **X** x coordinates
- **Y** y values at x

Value

`negLogLikelihood`
thetaNuggetGradient

Description
get theta (distance, lengthscale) and nugget (noise) parameters gradient

Usage
thetaNuggetGradient(par, X, Y)

Arguments
par parameter vector. First dim(x) entries are theta values, last entry is nugget parameter.
X x coordinates
Y y values at x

wrapBatchTools

Description
Wrap a given objective function to be evaluated via the batchtools package and make it accessible for SPOT.

Usage
wrapBatchTools(
 fun,
 reg = NULL,
 clusterFunction = batchtools::makeClusterFunctionsInteractive(),
 resources = NULL
)

Arguments
fun function to wrap
reg batchtools registry, if none is provided, then one will be created automatically
clusterFunction batchtools clusterFunction, default: makeClusterFunctionsInteractive()
resources resource list that is passed to batchtools, default NULL

Value
callable function for SPOT
wrapFunction

Function Evaluation Wrapper

Description

This is a simple wrapper that turns a function of type $y=f(x)$, where x is a vector and y is a scalar, into a function that accepts and returns matrices, as required by `spot`. Note that the wrapper essentially makes use of the `apply` function. This is effective, but not necessarily efficient. The wrapper is intended to make the use of `spot` easier, but it could be faster if the user spends some time on a more efficient vectorization of the target function.

Usage

```r
wrapFunction(fun)
```

Arguments

- `fun` the function $y=f(x)$ to be wrapped, with x a vector and y a numeric

Value

a function in the style of $y=f(x)$, accepting and returning a matrix

Examples

```r
## example function
branin <- function (x) {
  10 * (1 - 1/(8 * pi)) * cos(x[1] ) + 10
  y
}
## vectorize / wrap
braninWrapped <- wrapFunction(branin)
## test original
branin(c(1,2))
branin(c(2,2))
branin(c(2,1))
## test wrapped
braninWrapped(matrix(c(1,2,2,2,2,1),3,2,byrow=TRUE))
```
wrapFunctionParallel
Parallelized Function Evaluation Wrapper

Description
This is a simple wrapper that turns a function of type $y=f(x)$, where x is a vector and y is a scalar, into a function that accepts and returns matrices, as required by SPOT. While doing so, the wrapper will use the parallel package in order to parallelize the execution of each function evaluation. This function will create a computation cluster if no cluster is specified and there is no default cluster setup!

Usage
```
wrapFunctionParallel(fun, cl = NULL, nCores = NULL)
```

Arguments
- **fun**
 the function that shall be evaluated in parallel
- **cl**
 Optional, an existing computation cluster
- **nCores**
 Optional, amount of cores to use for creating a new computation cluster. Default is all cores.

Value
numeric vector, result of the parallelized evaluation

wrapSystemCommand
wrapSystemCommand

Description
Optimize parameters for a script that is accessible via Command Line

Usage
```
wrapSystemCommand(systemCall)
```

Arguments
- **systemCall**
 String that calls the command line script.

Value
callable function for SPOT
Examples

```r
# exampleScriptLocation <- system.file("consoleCallTrialScript.R", package = "SPOT")
# f <- wrapSystemCommand(paste("$(R_HOME)/bin/Rscript", exampleScriptLocation))
# spot(f, c(1, 1), c(100, 100))
```
Index

* datasets
 - dataGasSensor, 22
 - resSpot, 72
 - resSpot2, 72
 - sringRes1, 88
 - sringRes2, 88
 - sringRes3, 89

* package
 - SPOT-package, 4

* spotTools
 - diff0, 26

 - biplot, 67
 - buildBO, 5
 - buildCVModel, 5, 70
 - buildEnsembleStack, 6
 - buildGaussianProcess, 7
 - buildKriging, 8, 53, 54, 75–77, 82
 - buildKrigingDACE, 10
 - buildLasso, 12
 - buildLM, 13
 - buildLOESS, 14
 - buildPCA, 15, 67, 69
 - buildRandomForest, 16, 66, 82
 - buildRanger, 17
 - buildRSM, 18, 23
 - buildTreeModel, 19

 - checkArrival, 20
 - code2nat, 21
 - corr cubic, 11
 - corr exp, 11
 - correxp, 11
 - corr gauss, 11
 - corrgauss, 11
 - corrkri ging, 11
 - corrlin, 11
 - corrnoisygauss, 11
 - corrnoisyKri ging, 11
 - corr spherical, 11
 - corrspline, 11

 - dataGasSensor, 22
 - descentSpotRSM, 23
 - designLHD, 24, 59, 82
 - designUniformRandom, 25, 82
 - diff0, 26
 - doParallel, 27
 - expectedImprovement, 27
 - funBaBSimHospital, 28
 - funBard, 29
 - funBeale, 30
 - funBox3d, 31
 - funBr anin, 31
 - funBrownBs, 32
 - funCosts, 33
 - funCyclone, 33
 - funFreudRoth, 35
 - funGauss, 36
 - funGoldsteinPrice, 37
 - funGulf, 37
 - funHelical, 38
 - funIshigami, 39
 - funJennSamp, 40
 - funMeyer, 41
 - funOptimLecture, 42
 - funPowellBs, 42
 - funPower15, 43
 - funRosen, 44
 - funRosen2, 45
 - funSobolev99, 46
 - funSphere, 46, 47, 81
 - funSring, 48
 - getCosts, 48
 - getNatDesignFromCoded, 49
 - getTrainTestObjFun, 28
 - infillEI, 50
INDEX

infillExpectedImprovement, 51
init_ring, 51

normalizeMatrix, 53
normalizeMatrix2, 53

OCBA, 71
optimDE, 54, 82
optimES, 55, 79
optimGenoud, 57
optimLBFGSB, 58
optimLHD, 59, 82
optimNLOPT, 60, 82

perceptron, 61
plotBestObj, 62
plotData, 62, 65, 66
plotFunction, 63, 64, 66
plotModel, 63, 65, 66
plotPCA, 15, 67
plotPCAvariance, 68
predict.cvModel, 70
predict.dace, 12
predict.ensembleStack, 7
predict.kriging, 8, 9, 11, 76
predict.spotLOESS, 14
predict.spotRSM, 19
prepareBestObjectiveVal, 70

regpoly0, 11
regpoly1, 11
regpoly2, 11
repeatsOCBA, 71
resSpot, 72
resSpot2, 72
ring, 73

sann2spot, 74
satter, 74
selectAll, 82
simulate.kriging, 75, 77
simulateFunction, 76
SPOT (SPOT-package), 4
spot, 4, 12, 78, 81, 83, 91, 92
SPOT-package, 4
spotAlgEs, 79
spotCleanup, 81
spotControl, 78, 81, 84
spotFillControllList, 83

spotLoop, 81, 83
spotPlotPower, 85
spotPlotSeverity, 85
spotPower, 86
spotSeverity, 87
sring, 48, 87
sringRes1, 88
sringRes2, 88
sringRes3, 89
thetaNugget, 89
thetaNuggetGradient, 90
wrapBatchTools, 90
wrapFunction, 91
wrapFunctionParallel, 92
wrapSystemCommand, 92