Package ‘SSDL’

March 10, 2021

Type Package
Title Sketched Stochastic Dictionary Learning
Version 1.1
Date 2021-03-03
Maintainer Olga Permiakova <olga.permiakova@gmail.com>
Description Toolbox for learning a dictionary from large-scale data collection
using the Sketched Stochastic Dictionary Learning method (see Permiakova O, Burger T.
``Sketched Stochastic Dictionary Learning for large-scale data and application to large-scale
mass spectrometry data'', 2021). It includes the routines for the dictionary initialization.
License GPL (>= 2)
Encoding UTF-8
Depends R (>= 3.6)
Imports Rcpp, bigstatsr (>= 1.2.3), chickn (>= 1.2.3), RcppParallel,
 glmnet, parallel, foreach, doParallel, doRNG, reshape2, stats,
 utils, pracma, Rdpack
LinkingTo Rcpp, RcppArmadillo, RcppParallel, rmio
SystemRequirements C++11
RoxygenNote 7.1.1
RdMacros Rdpack
NeedsCompilation yes
Author Olga Permiakova [aut, cre],
 Thomas Burger [aut]
Repository CRAN
Date/Publication 2021-03-10 19:40:08 UTC

R topics documented:

CDL ... 2
COMP_initialization .. 5
Gradient_COMP_cpp .. 7
Compressive Dictionary Learning

Implementation of the Sketched Stochastic Dictionary Learning (SSDL) method, which learns a dictionary from a large-scale matrix-like dataset by operating on a compressed version of data (a.k.a. data sketch).

Usage

CDL(
 Data,
 K,
 SK_Data = NULL,
 Frequencies = NULL,
 D = NULL,
 pos.dic = TRUE,
 learn_rate = 0.1,
 alpha = 0.9,
 gamma = 0,
 maxEpoch = 5,
 batch_size,
 lambda = 0,
 ncores = 1,
 typeOptim = "Nesterov",
 DIR_tmp = tempdir(),
 grad_t_1 = NULL,
 verbose = 0,
 m = nrow(Frequencies),
 ...
)

Arguments

Data is a Filebacked Big Matrix $s \times N$ with data vectors stored in the matrix columns.

K is a dictionary size.

SK_Data is a data sketch. It is a $2m$-dimensional complex vector. The first m coordinates correspond to the real parts and the last m coordinates to the imaginary parts. If it is NULL, the sketch is computed using Sketch function of chicken package.
Frequencies is a frequency matrix $m \times s$ with frequency vectors in the matrix rows. If NULL, the frequencies are generated using GenerateFrequencies function of chickn package.

D is an initial dictionary. If it is NULL, the dictionary is initialized by random selection of K signals from Data and it is saved in the DIR_tmp directory.

pos.dic indicates whether the dictionary is positive (default) or not.

learn_rate is a learning rate value. The default value is 0.1.

alpha is a momentum weight.

gamma is a decay parameter. The default value is 0, which corresponds to the constant learning rate.

maxEpoch is a number of epochs.

batch_size is a batch size.

lambda is a regularization parameter.

ncores is a number of cores. The default value is 1.

typeOptim is a type of the optimization scheme used in the dictionary update. Possible values are c('Nesterov', 'Momentum'). It is suggested to use 'Nesterov' scheme.

DIR_tmp is a directory to save the initial dictionary and intermediate results.

grad_t_1 is an initial momentum matrix. By default it is NULL, and it is initialized as a zero matrix.

verbose controls how much output is shown and saved during the optimization process. Possible values:

- 0 no output (default value)
- 1 show iteration number and value of objective function
- 2 1 + save a dictionary and a momentum matrix at the end of each epoch.

m is a number of the frequency vectors.

... are additional parameters passed to GenerateFrequencies function.

Details

CDL builds a dictionary by alternating two steps: calculating the code matrix that contains the weights of the dictionary elements, and updating the dictionary. For computational efficiency, the code matrix is computed only for a randomly selected subset of data vectors x_1, \ldots, x_n (a.k.a. batch). The code matrix is obtained as a solution of the following optimization problem:

$$\min_{A \in R^{K \times n}} \sum_{i=1}^{n} \|x_i - D \cdot \alpha_i\|^2 + \lambda \cdot \|\alpha_i\|_1,$$

where n denotes a batch size, $A = \{\alpha_1, \ldots, \alpha_n\}$ is a code matrix and λ is a regularization parameter which defines the data sparsity level.

The dictionary is updated by taking one step along the gradient of the objective function $F(D, A) = \|SK(Data) - SK(A \cdot D)\|^2$. Two gradient descent update rules are available: Nesterov accelerated and momentum.

$SK(\cdot)$ is a sketch operator, which compresses a matrix into a fixed size complex vector referred to as a data sketch. It has been introduced in Keriven N, Bourrier A, Gribonval R, Pérez P (2018). “Sketching for large-scale learning of mixture models.” Information and Inference: A Journal of the IMA, 7(3), 447–508. and it is defined as $SK(Data) = \frac{1}{N} \sum_{i=1}^{N} \exp(-1i \cdot W \cdot x_i)$, where W
CDL is a frequency matrix and x_1, \ldots, x_N are data vectors. The data compression is performed using routines from chickn package.

CDL allows also to use the decaying learning rate, i.e. $\text{learn_rate}' = \frac{\text{learn_rate}}{1 + (t-1) \gamma}$, where t is the iteration number.

Value

a list

- D is the obtained dictionary,
- objFunProcess is objective function values computed at the end of each iteration,
- learning_rate is learning rate values.

References

See Also

Gradient_D_cpp_parallel, chickn, chickn::Sketch, chickn::GenerateFrequencies

Examples

```r
X = matrix(abs(rnorm(n = 1000)), ncol = 100, nrow = 10)
X_fbm = bigstatsr::as_FBM(X)$save()
W = chickn::GenerateFrequencies(Data = X_fbm, m = 64, N0 = ncol(X_fbm),
                                  ncores = 1, niter = 3, nblocks = 2, sigma_start = 0.001)
SK = chickn::Sketch(X_fbm, W)
D = CDL(Data = X_fbm, K = 10, SK_Data = SK, Frequencies = W,
         D = NULL, pos.dic = TRUE, maxEpoch = 3, batch_size = 50,
         lambda = 0, learn_rate = 0.1, alpha = 0.9,
         gamma = 0, ncores = 2, DIR_tmp = tempdir(),
         verbose = 0, typeOptim = "Nesterov")
```

COMP_initialization

COMP_initialization

Description

Dictionary initialization using the Compressive Orthogonal Matching Pursuit (COMP) method

Usage

COMP_initialization(
 K,
 Data,
 SK_Data = NULL,
 Frequencies = NULL,
 lower = -Inf,
 upper = Inf,
 maxIter = 1500,
 HardThreshold = FALSE,
 print_level = 0,
 ncores = 1,
 m = nrow(Frequencies),
 ...
)

Arguments

K is a dictionary size.

Data is a Filebacked Big Matrix $s \times N$ with data vectors stored in the matrix columns.

SK_Data is a data sketch. It is a $2m$-dimensional complex vector. The first m coordinates correspond to the real parts and the last m coordinates to the imaginary parts. If it is NULL, the sketch is computed using Sketch function of chickn package.

Frequencies is a frequency matrix $m \times s$ with frequency vectors in the matrix rows. If NULL, the frequencies are generated using GenerateFrequencies function of chickn package.

lower is a lower boundary. It is an s-dimensional vector.

upper is an upper boundary. It is an s-dimensional vector.

maxIter is a maximum number of iterations in the computation of new dictionary element. The default value is 1500.

HardThreshold indicates whether to execute the hard thresholding step. The default is FALSE.

print_level controls how much output is shown during the optimization process. Possible values:

- 0 no output (default value)
- 1 show iteration number and value of objective function
- 2 1 + show values of weights
ncores is a number of cores. The default value is 1.
m is a number of the frequency vectors.
... are additional parameters passed to GenerateFrequencies function.

Details

The initialization routine is based on the Compressive Orthogonal Matching Pursuit (COMP) algorithm. COMP is an iterative greedy method that builds a dictionary operating on a compressed data version (a.k.a. data sketch). It alternates between expanding the dictionary D with a new element d_i, whose sketch $SK(d_i)$ is the most correlated to the residue, and calculating the weights of the dictionary elements w_1, \ldots, w_K by minimizing the difference between the data sketch $SK(Data)$ and a linear combination of dictionary sketches, i.e. $\|SK(Data) - \sum_{i=1}^{K} w_i \cdot SK(d_i)\|$. Unlike COMP, the implemented dictionary initialization routine does not perform an additional global optimization with respects to both variables: weights and dictionary elements.

Value

a list

- D is the obtained dictionary,
- weights is the resulting weights,
- $ObjF$ is the objective function values computed at each iteration.
- Sketch is the data sketch
- Frequencies is the frequency matrix

Note

See Also

ObjFun_COMP_cpp, Gradient_COMP_cpp, chickn::Sketch, chickn::GenerateFrequencies, chickn

Examples

```r
X = matrix(abs(rnorm(n = 1000)), ncol = 100, nrow = 10)
lb = apply(X, 1, min)
ub = apply(X, 1, max)
X_fbm = bigstatsr::FBM(init = X, ncol = ncol(X), nrow = nrow(X))
m = 64
W = chickn::GenerateFrequencies(Data = X_fbm, m = m, N0 = ncol(X_fbm),
ncores = 1, niter= 3, nblocks = 2, sigma_start = 0.001)$W
SK= chickn::Sketch(X_fbm, W)
D0 = COMP_initialization(K = 10, Data = X_fbm, SK_Data = SK, Frequencies = W,
lower = lb, upper = ub)$Dictionary
```
Description

The gradient of the objective function from the Compressive Orthogonal Matching Pursuit with respect to a dictionary element.

Usage

Gradient_COMP_cpp(d, W, residue)

Arguments

d is a dictionary element
W is a frequency matrix \(m \times s \) with frequency vectors in matrix rows.
residue is a residue vector.

Details

Gradient_COMP_cpp computes the gradient of the objective function \(OF(d) = -\frac{SK(d) \cdot r}{\|SK(d)\|} \), where \(SK(d) \) denotes a sketch of the dictionary element \(d \) and \(r \) is the residue vector. The gradient is given as \(\nabla_d OF(d) = -\frac{G(SK(d), y, W)}{\|SK(d)\|} \), where a vector \(y = r - (r^T \cdot SK(d)) \cdot SK(d) \) and a function \(G(x, y, W) \) is given as: \(G(x, y, W) = (x[1 : m] \odot y[m + 1 : 2m] - x[m + 1] \odot y[1 : m])^T \cdot W \), where \(\odot \) denotes an element-wise vector multiplication.

Value

a gradient vector

See Also

ObjFun_COMP_cpp, COMP_initialization

Examples

```r
X = matrix(abs(rnorm(n = 1000)), ncol = 100, nrow = 10)
X_fbm = bigstatsr::as_FBM(X)$save()
W = chickn::GenerateFrequencies(Data = X_fbm, m = 64, N0 = ncol(X_fbm),
                              ncores = 1, niter = 3, nblocks = 2, sigma_start = 0.001)$W
SK = chickn::Sketch(X_fbm, W)
D = X_fbm[, sample(ncol(X_fbm), 10)]
weights = sample(10, 10)/10
SK_D = rbind(cos(W*%D), sin(W*%D))
d = D[, 1]
r = SK - SK_D*%weights
Grad = Gradient_COMP_cpp(d, W, r)
```
Gradient_D_cpp_parallel

Description

Parallel computation of the gradient with respect to a dictionary matrix and the objective function computation.

Usage

Gradient_D_cpp_parallel(D, A, W, SK, ComputeGrad = TRUE)

Arguments

- **D** is a dictionary $s \times K$.
- **A** is a code matrix $K \times n$.
- **W** is a frequency matrix $m \times s$ with frequency vectors in matrix rows.
- **SK** is a data sketch. It is a $2m$-dimensional vector.
- **ComputeGrad** indicates whether to compute the gradient or only the objective function value.

Details

The objective function is given as $\|SK - SK(D \cdot A)\|^2$, where SK is a data sketch, $A = \{\alpha_1, \ldots, \alpha_n\}$ is a code matrix, and $SK(D \cdot A)$ denotes a decomposition sketch, which is defined as: $SK(D \cdot A) = \frac{1}{n} [\sum_{i=1}^{n} \cos(W \cdot D \cdot \alpha_i), \sum_{i=1}^{n} \sin(W \cdot D \cdot \alpha_i)]$. The gradient of this objective function with respect to a dictionary element $d_l \in \mathbb{R}^s$ is given as: $-2 \left(\nabla_{d_l} SK(D \cdot A) \right)^\top \cdot r$, where $r = SK - SK(D \cdot A)$, $\frac{\partial}{\partial d_l} SK(D \cdot A) = 1 \cdot \left(\frac{1}{n} \sum_{i=1}^{n} A_{li} \cdot \prod_{k=1}^{K} SK_j(A_{ki} \cdot d_k) \right) \cdot w_j^\top$, and $SK_j(\cdot)$ is the j^{th} coordinate of the sketch vector.

Value

a list

- **grad** is a computed gradient
- **ObjFun** is a objective function value
- **diff** is a vector of the difference between the data sketch and the decomposition sketch

Examples

RcppParallel::setThreadOptions(numThreads = 2)
X = matrix(abs(rnorm(n = 1000)), ncol = 100, nrow = 10)
X_fbm = bigstatsr::as_FBM(X)$save()
W = chickn::GenerateFrequencies(Data = X_fbm, m = 64, N0 = ncol(X_fbm),
ncores = 1, niter = 3, nblocks = 2, sigma_start = 0.001)$W
SK= chickn::Sketch(X_fbm, W)
D = X_fbm[, sample(ncol(X_fbm), 10)]
A = sapply(sample(ncol(X_fbm), 5), function(i){
 as.vector(glmnet::glmnet(x = D, y = X_fbm[,i],
 lambda = 0, intercept = FALSE, lower.limits = 0)$beta))
}
G = Gradient_D_cpp_parallel(D, A, W, SK)$grad

ObjFun_COMP_cpp
COMP objective function

Description
Computation of the objective function from the Compressive Orthogonal Matching Pursuit algorithm.

Usage

ObjFun_COMP_cpp(d, W, residue)

Arguments
- **d** is a dictionary element
- **W** is a frequency matrix \(m \times s \) with frequency vectors in matrix rows.
- **residue** is a residue vector.

Details
The objective function of the Compressive Orthogonal Matching Pursuit is defined as:

\[
- \frac{SK(d) \cdot r}{\|SK(d)\|}
\]

where \(SK(d) \) denotes a sketch of the dictionary element \(d \) and \(r \) is the residue vector, which is defined as the difference between the data sketch \(SK \) and the weighted sum of the dictionary elements’ sketches, i.e. \(SK - \sum_{i=1}^{K} \beta_i \cdot SK(d_i) \). This function is involved in **COMP_initialization** routine.

Value
an objective function value

See Also
- COMP_initialization, Gradient_COMP_cpp

Examples

\[X = \text{matrix(abs(rnorm(n = 1000)), ncol = 100, nrow = 10)}\]
\[X_{fbm} = \text{bigstatsr::as_FBM}(X)\text{$save()}\]
\[W = \text{chickn::GenerateFrequencies(Data = X_{fbm}, m = 64, N0 = ncol(X_{fbm}), ncores = 1, niter= 3, nblocks = 2, sigma_start = 0.001)}\text{$W} \]
\[SK = \text{chickn::Sketch(X_{fbm}, W)}\]
\[D = X_{fbm}[1, \text{sample(ncol(X_{fbm}), 10)]} \]
weights = sample(10, 10)/10
SK_D = rbind(cos(W%*%D), sin(W%*%D))
d = D[,1]
r = SK - SK_D%*%weights
OF = ObjFun_COMP_cpp(d, W, r)

SSDL

SSDL-package

Description

R package SSDL implements the Sketched Stochastic Dictionary Learning method that builds a dictionary from large-scale data collection by operating on a compressed data version referred to as a data sketch. The chickn package is used to carry out the data compression. SSDL package is designed to handle voluminous data encoded as a matrix, which cannot be loaded in memory. To do this, SSDL package relies on the Filebacked Big Matrix class of bigstatsr package, which allows to access and manipulate matrix-like data stored in files on disk.

Author(s)

Olga Permiakova, Thomas Burger

See Also

CDL

TV_initialization

TV norm dictionary initialization

Description

Dictionary initialization using a TV norm criterion

Usage

TV_initialization(
 Data,
 K,
 cutoff = 0.5,
 Npattern = 8,
 set_size = ncol(Data),
 DoCopies = FALSE,
 ncores = 4,
 DIR_tmp = tempdir()
)
Arguments

- **Data**: is a Filebacked Big Matrix $s \times N$ with data vectors stored in the matrix columns.
- **K**: is a dictionary size.
- **cutoff**: is a cut off value, the default value is 0.5.
- **Npattern**: is a number of patterns selected in the dataset to create the dictionary.
- **set_size**: is a maximum size of the set of possible patterns.
- **DoCopies**: indicates whether to duplicate patterns.
- **ncores**: is a number of cores.
- **DIR_tmp**: is a directory to save temporary files.

Details

The dictionary is initialized by extracting and duplicating patterns with the highest TV norm values. To limit the set of possible patterns, only signals with the correlation less then a fixed threshold `cutoff` are taken into account. If the set of possible patterns is too large, it can be further reduced by taking only `set_size` less correlated patterns. The implemented initialization routine can only be applied to positive value data.

Value

- a dictionary matrix

Examples

```r
X = matrix(abs(rnorm(n = 1000)), ncol = 100, nrow = 10)
X_fbm = bigstatsr::FBM(init = X, ncol = ncol(X), nrow = nrow(X))
D0 = TV_initialization(X_fbm, K = 20, Npattern = 5, DoCopies = TRUE, ncores = 1)
```
Index

CDL, 2, 10
COMP_initialization, 5, 7, 9

GenerateFrequencies, 3, 6
Gradient_COMP_cpp, 6, 7, 9
Gradient_D_cpp_parallel, 4, 8

ObjFun_COMP_cpp, 6, 7, 9

SSDL, 10

TV_initialization, 10