Package ‘SeuratObject’

November 23, 2021

Type Package
Title Data Structures for Single Cell Data
Version 4.0.4
Date 2021-11-23

URL https://mojaveazure.github.io/seurat-object/,
https://github.com/mojaveazure/seurat-object

BugReports https://github.com/mojaveazure/seurat-object/issues

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.1.2

Depends R (>= 4.0.0)
Imports grDevices, grid, Matrix (>= 1.3.3), methods, Rcpp (>= 1.0.5), rlang (>= 0.4.7), stats, tools, utils
Suggests testthat

Collate 'RcppExports.R' 'utils.R' 'zzz.R' 'generics.R' 'assay.R'
 'command.R' 'data.R' 'default.R' 'jackstraw.R' 'dimreduc.R'
 'graph.R' 'neighbor.R' 'spatial.R' 'seurat.R'

LinkingTo Rcpp, RcppEigen

NeedsCompilation yes
R topics documented:

SeuratObject-package .. 3
AddMetaData ... 4
as.Graph ... 5
as.Neighbor .. 6
as.Seurat ... 7
as.sparse ... 7
Assay-class .. 8
Assay-methods ... 8
AssayData ... 11
Assays ... 12
AttachDeps .. 13
Cells ... 14
CellsByIdentities ... 15
CellsByImage .. 15
CheckGC ... 16
Command ... 16
CreateAssayObject .. 17
CreateDimReducObject ... 18
CreateSeuratObject .. 19
DefaultAssay .. 21
DefaultDimReduce ... 22
DimReduc-class ... 23
DimReduc-methods .. 24
Distances ... 26
Embeddings ... 26
FetchData .. 27
FilterObjects .. 28
GetImage ... 28
GetTissueCoordinates ... 28
Graph-class ... 29
HVFInfo ... 30
Idents ... 30

SeuratObject-package

Description

Defines S4 classes for single-cell genomic data and associated information, such as dimensionality reduction embeddings, nearest-neighbor graphs, and spatially-resolved coordinates. Provides data access methods and R-native hooks to ensure the Seurat object is familiar to other R users. See Satija R, Farrell J, Gennert D, et al (2015) <doi:10.1038/nbt.3192>, Macosko E, Basu A, Satija R, et al
Add in metadata associated with either cells or features.

Description

AddMetadata(object, metadata, col.name = NULL)

S3 method for class 'Assay'
AddMetadata(object, metadata, col.name = NULL)

S3 method for class 'Seurat'
AddMetadata(object, metadata, col.name = NULL)

Usage

AddMetadata(object, metadata, col.name = NULL)

S3 method for class 'Assay'
AddMetadata(object, metadata, col.name = NULL)

S3 method for class 'Seurat'
AddMetadata(object, metadata, col.name = NULL)
as.Graph

Arguments

- **object**: An object
- **metadata**: A vector, list, or data.frame with metadata to add
- **col.name**: A name for metadata if not a named list or data.frame

Value

- object with metadata added

Examples

```r
cluster_letters <- LETTERS[Ids(object = pbmc_small)]
names(cluster_letters) <- colnames(x = pbmc_small)
pbmc_small <- AddMetaData(
  object = pbmc_small,
  metadata = cluster_letters,
  col.name = 'letter.idents'
)
head(x = pbmc_small[[[]]])
```

Description

Convert a matrix (or Matrix) to a Graph object

Usage

```r
as.Graph(x, ...)
```

```r
## S3 method for class 'Matrix'
as.Graph(x, ...)
```

```r
## S3 method for class 'matrix'
as.Graph(x, ...)
```

```r
## S3 method for class 'Neighbor'
as.Graph(x, weighted = TRUE, ...)
```

Arguments

- **x**: The matrix to convert
- **...**: Arguments passed to other methods (ignored for now)
- **weighted**: If TRUE, fill entries in Graph matrix with value from the nn.dist slot of the Neighbor object
as.Neighbor

Value

A Graph object

Examples

converting sparse matrix
mat <- Matrix::rsparsematrix(nrow = 10, ncol = 10, density = 0.1)
rownames(x = mat) <- paste0("feature_", 1:10)
colnames(x = mat) <- paste0("cell_", 1:10)
g <- as.Graph(x = mat)

converting dense matrix
mat <- matrix(data = 1:16, nrow = 4)
rownames(x = mat) <- paste0("feature_", 1:4)
colnames(x = mat) <- paste0("cell_", 1:4)
g <- as.Graph(x = mat)

as.Neighbor

Coerce to a Neighbor Object

Description

Convert objects to Neighbor objects

Usage

as.Neighbor(x, ...)

S3 method for class 'Graph'
as.Neighbor(x, ...)

Arguments

x An object to convert to Neighbor

... Arguments passed to other methods

Value

A Neighbor object
as.Seurat

Coerce to a Seurat Object

Description

Convert objects to Seurat objects

Usage

as.Seurat(x, ...)

Arguments

x

An object to convert to class Seurat

...

Arguments passed to other methods

Value

A Seurat object generated from x

as.sparse

Cast to Sparse

Description

Convert dense objects to sparse representations

Usage

as.sparse(x, ...)

S3 method for class 'data.frame'
as.sparse(x, row.names = NULL, ...)

S3 method for class 'Matrix'
as.sparse(x, ...)

S3 method for class 'matrix'
as.sparse(x, ...)

Arguments

x

An object

...

Arguments passed to other methods

row.names

NULL or a character vector giving the row names for the data; missing values are not allowed
Value

A sparse representation of the input data

Assay-class

The Assay Class

Description

The Assay object is the basic unit of Seurat; each Assay stores raw, normalized, and scaled data as well as cluster information, variable features, and any other assay-specific metadata. Assays should contain single cell expression data such as RNA-seq, protein, or imputed expression data.

Slots

counts Unnormalized data such as raw counts or TPMs
data Normalized expression data
scale.data Scaled expression data
key Key for the Assay
assay.orig Original assay that this assay is based off of. Used to track assay provenance
var.features Vector of features exhibiting high variance across single cells
meta.features Feature-level metadata
misc Utility slot for storing additional data associated with the assay

See Also

Assay-methods

Assay-methods

Assay Methods

Description

Methods for Assay objects for generics defined in other packages
Usage

```r
## S3 method for class 'Assay'
x[i, j, ...]

## S3 method for class 'Assay'
x[[i, ..., drop = FALSE]]

## S3 method for class 'Assay'
dim(x)

dimnames(x)

## S3 method for class 'Assay'
head(x, n = 10L, ...)

## S3 method for class 'Assay'
merge(x = NULL, y = NULL, add.cell.ids = NULL, merge.data = TRUE, ...)

## S3 method for class 'Assay'
subset(x, cells = NULL, features = NULL, ...)

tail(x, n = 10L, ...)

## S4 replacement method for signature 'Assay'
x[[i, j, ...]] <- value

## S4 method for signature 'Assay'
colMeans(x, na.rm = FALSE, dims = 1, ..., slot = "data")

colSums(x, na.rm = FALSE, dims = 1, ..., slot = "data")

rowMeans(x, na.rm = FALSE, dims = 1, ..., slot = "data")

rowSums(x, na.rm = FALSE, dims = 1, ..., slot = "data")

## S4 method for signature 'Assay'
show(object)
```

Arguments

- **x, object**: An `Assay` object
- **i, features**: For `[]` metadata names; for all other methods, feature names or indices
- **j, cells**: Cell names or indices
... Arguments passed to other methods

drop See drop

n an integer vector of length up to \texttt{dim(x)} (or 1, for non-dimensioned objects). Values specify the indices to be selected in the corresponding dimension (or along the length) of the object. A positive value of \(n[i]\) includes the first/last \(n[i]\) indices in that dimension, while a negative value excludes the last/first \(\text{abs}(n[i])\), including all remaining indices. NA or non-specified values (when \(\text{length}(n) < \text{length}(\text{dim}(x))\)) select all indices in that dimension. Must contain at least one non-missing value.

y A vector or list of one or more objects to merge

add.cell.ids A character vector of \(\text{length}(x = c(x,y))\); appends the corresponding values to the start of each objects’ cell names

merge.data Merge the data slots instead of just merging the counts (which requires renormalization); this is recommended if the same normalization approach was applied to all objects

value Additional metadata to add

na.rm logical. Should missing values (including \(\text{NaN}\)) be omitted from the calculations?

dims completely ignored by the Matrix methods.

slot Name of assay expression matrix to calculate column/row means/sums on

Value

\([\cdot]\): The data slot for features \(i\) and cells \(j\)

\([\cdot]\): The feature-level metadata for \(i\)

dim: The number of features (\texttt{nrow}) and cells (\texttt{ncol})

dimnames: Feature (row) and cell (column) names

head: The first \(n\) rows of feature-level metadata

merge: Merged object

subset: A substracted Assay

tail: The last \(n\) rows of feature-level metadata

\([\cdot]<-\): \(x\) with metadata value added as \(i\)

colMeans: The column (cell-wise) means of \texttt{slot}

colSums: The column (cell-wise) sums of \texttt{slot}

rowMeans: The row (feature-wise) means of \texttt{slot}

rowSums: The row (feature-wise) sums of \texttt{slot}

show: Prints summary to stdout and invisibly returns NULL
AssayData

Functions

- [.Assay: Get expression data from an Assay
- [[.Assay: Get feature-level metadata
- dim.Assay: Number of cells and features for an Assay
- dimnames.Assay: Cell- and feature-names for an Assay
- head.Assay: Get the first rows of feature-level metadata
- merge.Assay: Merge Assay objects
- subset.Assay: Subset an Assay
- tail.Assay: Get the last rows of feature-level metadata
- [[<-,Assay-method: Add feature-level metadata
- colMeans,Assay-method: Calculate \(\text{colMeans} \) on an Assay
- colSums,Assay-method: Calculate \(\text{colSums} \) on an Assay
- rowMeans,Assay-method: Calculate \(\text{rowMeans} \) on an Assay
- rowSums,Assay-method: Calculate \(\text{rowSums} \) on an Assay
- show,Assay-method: Overview of an Assay object

AssayData

Get and Set Assay Data

Description

General accessor and setter functions for Assay objects. GetAssayData can be used to pull information from any of the expression matrices (eg. "counts", "data", or "scale.data"). SetAssayData can be used to replace one of these expression matrices

Usage

GetAssayData(object, slot, ...)

SetAssayData(object, slot, new.data, ...)

S3 method for class 'Seurat'
GetAssayData(object, slot = "data", assay = NULL, ...)

S3 method for class 'Seurat'
SetAssayData(object, slot = "data", new.data, assay = NULL, ...)

S3 method for class 'Assay'
GetAssayData(object, slot = c("data", "scale.data", "counts"), ...)

S3 method for class 'Assay'
SetAssayData(object, slot = c("data", "scale.data", "counts"), new.data, ...)
Assays

Arguments

object An object
slot Specific assay data to get or set
... Arguments passed to other methods
new.data New assay data to add
assay Specific assay to get data from or set data for; defaults to the default assay

Value

GetAssayData: returns the specified assay data
SetAssayData: object with the assay data set

Examples

Get assay data from the default assay in a Seurat object
GetAssayData(object = pbmc_small, slot = "data")[1:5,1:5]

Set an Assay slot through the Seurat object
count.data <- GetAssayData(object = pbmc_small[["RNA"]], slot = "counts")
count.data <- as.matrix(x = count.data + 1)
new.seurat.object <- SetAssayData(
 object = pbmc_small,
 slot = "counts",
 new.data = count.data,
 assay = "RNA"
)

Get the data directly from an Assay object
GetAssayData(pbmc_small[["RNA"]], slot = "data")[1:5,1:5]

Set an Assay slot directly
count.data <- GetAssayData(pbmc_small[["RNA"]], slot = "counts")
count.data <- as.matrix(x = count.data + 1)
new.assay <- SetAssayData(pbmc_small[["RNA"]], slot = "counts", new.data = count.data)

Assays

Query Specific Object Types

Description

List the names of Assay, DimReduc, Graph, Neighbor objects
Usage

Assays(object, slot = NULL)

Graphs(object, slot = NULL)

Neighbors(object, slot = NULL)

Reductions(object, slot = NULL)

Arguments

object A Seurat object

slot Name of component object to return

Value

If slot is NULL, the names of all component objects in this Seurat object. Otherwise, the specific object specified.

Examples

Assays(object = pbmc_small)

Graphs(pbmc_small)

Reductions(object = pbmc_small)

AttachDeps

Attach Required Packages

Description

Helper function to attach required packages. Detects if a package is already attached and if so, skips it. Should be called in .onAttach

Usage

AttachDeps(deps)

Arguments

deps A character vector of packages to attach

Value

Invisibly returns NULL
Examples

Use in your .onAttach hook
if (FALSE) {
 .onAttach <- function(libname, pkgname) {
 AttachDeps(c("SeuratObject", "rlang"))
 }
}

Description

Get cells present in an object

Usage

Cells(x)

Default S3 method:
Cells(x)

S3 method for class 'DimReduc'
Cells(x)

S3 method for class 'Neighbor'
Cells(x)

Arguments

x An object

Value

A vector of cell names

Examples

Cells(x = pbmc_small)
CellsByIdentities

Get cell names grouped by identity class

Description

Get cell names grouped by identity class

Usage

CellsByIdentities(object, ids = NULL, cells = NULL, return.null = FALSE)

Arguments

- object: A Seurat object
- ids: A vector of identity class levels to limit resulting list to; defaults to all identity class levels
- cells: A vector of cells to grouping to
- return.null: If no cells are request, return a NULL; by default, throws an error

Value

A named list where names are identity classes and values are vectors of cells belonging to that class

Examples

CellsByIdentities(object = pbmc_small)

CellsByImage

Get a vector of cell names associated with an image (or set of images)

Description

Get a vector of cell names associated with an image (or set of images)

Usage

CellsByImage(object, images = NULL, unlist = FALSE)

Arguments

- object: Seurat object
- images: Vector of image names
- unlist: Return as a single vector of cell names as opposed to a list, named by image name.
Value

A vector of cell names

Examples

Not run:
CellsByImage(object = object, images = "slice1")
End(Not run)

CheckGC

Conditional Garbage Collection

Description

Call gc only when desired

Usage

CheckGC(option = "SeuratObject.memsafe")

Arguments

- option

Value

Invisibly returns NULL

Command

Get SeuratCommands

Description

Pull information on previously run commands in the Seurat object.

Usage

Command(object, ...)

S3 method for class 'Seurat'
Command(object, command = NULL, value = NULL, ...)
CreateAssayObject

Arguments

- **object**: An object
- **command**: Name of the command to pull, pass NULL to get the names of all commands run
- **value**: Name of the parameter to pull the value for

Value

Either a SeuratCommand object or the requested parameter value

CreateAssayObject

Create an Assay object

Description

Create an Assay object from a feature (e.g. gene) expression matrix. The expected format of the input matrix is features x cells.

Usage

```r
CreateAssayObject(
  counts,
  data,
  min.cells = 0,
  min.features = 0,
  check.matrix = FALSE,
  ...
)
```

Arguments

- **counts**: Unnormalized data such as raw counts or TPMs
- **data**: Prenormalized data; if provided, do not pass counts
- **min.cells**: Include features detected in at least this many cells. Will subset the counts matrix as well. To reintroduce excluded features, create a new object with a lower cutoff.
- **min.features**: Include cells where at least this many features are detected.
- **check.matrix**: Check counts matrix for NA, NaN, Inf, and non-integer values
- **...**: Arguments passed to `as.sparse`

Details

Non-unique cell or feature names are not allowed. Please make unique before calling this function.
CreateDimReducObject

Create a DimReduc object

Description

Create a DimReduc object

Usage

CreateDimReducObject(
 embeddings = new(Class = "matrix"),
 loadings = new(Class = "matrix"),
 projected = new(Class = "matrix"),
 assay = NULL,
 stdev = numeric(),
 key = NULL,
 global = FALSE,
 jackstraw = NULL,
 misc = list()
)

Arguments

embeddings A matrix with the cell embeddings
loadings A matrix with the feature loadings
projected A matrix with the projected feature loadings
assay Assay used to calculate this dimensional reduction
stdev Standard deviation (if applicable) for the dimensional reduction
key A character string to facilitate looking up features from a specific DimReduc
global Specify this as a global reduction (useful for visualizations)
CreateSeuratObject

JackStraw

Results from the JackStraw function

Misc

List for the user to store any additional information associated with the dimensional reduction

Value

A DimReduc object

Examples

data <- GetAssayData(pbmcsmall["RNA"], slot = "scale.data")
pcs <- prcomp(x = data)
pca.dr <- CreateDimReducObject(
 embeddings = pcs$rotation,
 loadings = pcs$x,
 stdev = pcs$sdev,
 key = "PC",
 assay = "RNA"
)

Description

Create a Seurat object from raw data

Usage

CreateSeuratObject(
 counts,
 project = "CreateSeuratObject",
 assay = "RNA",
 names.field = 1,
 names.delim = ",",
 meta.data = NULL,
 ...)

Default S3 method:
CreateSeuratObject(
 counts,
 project = "SeuratProject",
 assay = "RNA",
 names.field = 1,
 names.delim = ",",
 meta.data = NULL,
CreateSeuratObject

min.cells = 0,
min.features = 0,
row.names = NULL,
...
)

S3 method for class 'Assay'
CreateSeuratObject(
 counts,
 project = "SeuratProject",
 assay = "RNA",
 names.field = 1,
 names.delim = "_",
 meta.data = NULL,
 ...
)

Arguments

counts Either a matrix-like object with unnormalized data with cells as columns and features as rows or an Assay-derived object

project Project name for the Seurat object

assay Name of the initial assay

names.field For the initial identity class for each cell, choose this field from the cell’s name. E.g. If your cells are named as BARCODE_CLUSTER_CELLTYPE in the input matrix, set names.field to 3 to set the initial identities to CELLTYPE.

names.delim For the initial identity class for each cell, choose this delimiter from the cell’s column name. E.g. If your cells are named as BARCODE-CLUSTER-CELLTYPE, set this to "-" to separate the cell name into its component parts for picking the relevant field.

meta.data Additional cell-level metadata to add to the Seurat object. Should be a data.frame where the rows are cell names and the columns are additional metadata fields. Row names in the metadata need to match the column names of the counts matrix.

... Arguments passed to other methods

min.cells Include features detected in at least this many cells. Will subset the counts matrix as well. To reintroduce excluded features, create a new object with a lower cutoff.

min.features Include cells where at least this many features are detected.

row.names When counts is a data.frame or data.frame-derived object: an optional vector of feature names to be used

Value

A Seurat object
DefaultAssay

Note
In previous versions (<3.0), this function also accepted a parameter to set the expression threshold for a ‘detected’ feature (gene). This functionality has been removed to simplify the initialization process/assumptions. If you would still like to impose this threshold for your particular dataset, simply filter the input expression matrix before calling this function.

Examples

```r
## Not run:
pbmc_raw <- read.table(
  file = system.file('extdata', 'pbmc_raw.txt', package = 'Seurat'),
  as.is = TRUE
)
pbmc_small <- CreateSeuratObject(counts = pbmc_raw)
pbmc_small

## End(Not run)
```

DefaultAssay | Default Assay

Description
Get and set the default assay

Usage

```r
DefaultAssay(object, ...)

DefaultAssay(object, ...) <- value
```

S3 method for class 'Assay'
DefaultAssay(object, ...)

S3 replacement method for class 'Assay'
DefaultAssay(object, ...) <- value

S3 method for class 'SeuratCommand'
DefaultAssay(object, ...)

S3 method for class 'DimReduc'
DefaultAssay(object, ...)

S3 replacement method for class 'DimReduc'
DefaultAssay(object, ...) <- value
```
## S3 method for class 'Graph'
DefaultAssay(object, ...)

## S3 replacement method for class 'Graph'
DefaultAssay(object, ...) <- value

## S3 method for class 'Seurat'
DefaultAssay(object, ...)

## S3 replacement method for class 'Seurat'
DefaultAssay(object, ...) <- value

### Arguments

- **object**
  - An object

- **...**
  - Arguments passed to other methods

- **value**
  - Name of assay to set as default

### Value

- DefaultAssay: The name of the default assay
- DefaultAssay<-: An object with the default assay updated

### Examples

```r
Get current default assay
DefaultAssay(object = pbmc_small)

Create dummy new assay to demo switching default assays
new.assay <- pbmc_small[["RNA"]]
Key(object = new.assay) <- "RNA2_"
pbmc_small[["RNA2"]]<- new.assay

switch default assay to RNA2
DefaultAssay(object = pbmc_small) <- "RNA2"
DefaultAssay(object = pbmc_small)
```

### Description

Searches for DimReducts matching “umap”, “tsne”, or “pca”, case-insensitive, and in that order. Priority given to DimReducts matching the DefaultAssay or assay specified (eg. “pca” for the default assay weights higher than “umap” for a non-default assay)
Usage

DefaultDimReduc(object, assay = NULL)

Arguments

object A Seurat object
assay Name of assay to use; defaults to the default assay of the object

Value

The default DimReduc, if possible

Examples

DefaultDimReduc(pbmc_small)

---

DimReduc-class The Dimensional Reduction Class

Description

The DimReduc object stores a dimensionality reduction taken out in Seurat; each DimReduc consists of a cell embeddings matrix, a feature loadings matrix, and a projected feature loadings matrix.

Slots

- cell.embeddings Cell embeddings matrix (required)
- feature.loadings Feature loadings matrix (optional)
- feature.loadings.projected Projected feature loadings matrix (optional)
- assay.used Name of assay used to generate DimReduc object
- global Is this DimReduc global/persistent? If so, it will not be removed when removing its associated assay
- stdev A vector of standard deviations
- key Key for the DimReduc, must be alphanumeric characters followed by an underscore
- jackstraw A JackStrawData-class object associated with this DimReduc
- misc Utility slot for storing additional data associated with the DimReduc (e.g. the total variance of the PCA)
Description

Methods for `DimReduc` objects for generics defined in other packages

Usage

```r
S3 method for class 'DimReduc'
x[i, j, drop = FALSE, ...]

S3 method for class 'DimReduc'
x[[i, j, drop = FALSE, ...]]

S3 method for class 'DimReduc'
dim(x)

S3 method for class 'DimReduc'
dimnames(x)

S3 method for class 'DimReduc'
length(x)

S3 method for class 'DimReduc'
merge(x = NULL, y = NULL, add.cell.ids = NULL, ...)

S3 method for class 'DimReduc'
names(x)

S3 method for class 'DimReduc'
print(x, dims = 1:5, nfeatures = 20, projected = FALSE, ...)

S4 method for signature 'DimReduc'
subset(x, cells = NULL, features = NULL, ...)

S4 method for signature 'DimReduc'
show(object)
```

Arguments

- **x, object**  
  A `DimReduc` object

- **i**  
  For `[]`: feature names or indices; for `[[`: cell names or indices

- **j**  
  Dimensions to pull for

- **drop**  
  See `drop`

- **...**  
  Arguments passed to other methods
DimReduc-methods

y  A vector or list of one or more objects to merge
add.cell.ids  A character vector of length(x = c(x,y)); appends the corresponding values to the start of each objects’ cell names
dims  Number of dimensions to display
nfeatures  Number of genes to display
projected  Use projected slot
cells, features  Cells and features to keep during the subset

Value

[,] : Feature loadings for features i and dimensions j
[[,] : Cell embeddings for cells i and dimensions j
dim: The number of cells (nrow) and dimensions (ncol)
dimnames: The cell (row) and dimension (column) names
length: The number of dimensions
names: The names for the dimensions (eg. “PC_1”)
print: Displays set of features defining the components and invisibly returns x
subset: x for cells cells and features features
show: Prints summary to stdout and invisibly returns NULL

Functions

• [,.DimReduc: Pull feature loadings
• [[,.DimReduc: Pull cell embeddings
• dim.DimReduc: The number of cells and dimensions for a DimReduc
• dimnames.DimReduc: The cell and dimension names for a DimReduc object
• length.DimReduc: The number of dimensions for a DimReduc object
• merge.DimReduc: Merge two or more DimReduc objects together
• names.DimReduc: The dimension names for a DimReduc object
• print.DimReduc: Prints a set of features that most strongly define a set of components; note: requires feature loadings to be present in order to work
• subset.DimReduc: Subset a DimReduc object
• show,.DimReduc-method: Show basic summary of a DimReduc object

See Also

cat
Distances

Get the Neighbor nearest neighbors distance matrix

Description

Get the Neighbor nearest neighbors distance matrix

Usage

Distances(object, ...)

## S3 method for class 'Neighbor'
Distances(object, ...)

Arguments

object An object
... Arguments passed to other methods

Value

The distance matrix

Embeddings

Get Cell Embeddings

Description

Get Cell Embeddings

Usage

Embeddings(object, ...)

## S3 method for class 'DimReduc'
Embeddings(object, ...)

## S3 method for class 'Seurat'
Embeddings(object, reduction = "pca", ...)

Arguments

object An object
... Arguments passed to other methods
reduction Name of reduction to pull cell embeddings for
**FetchData**

**Value**

The embeddings matrix

**Examples**

```r
Get the embeddings directly from a DimReduc object
Embeddings(object = pbmc_small[["pca"]][1:5, 1:5]

Get the embeddings from a specific DimReduc in a Seurat object
Embeddings(object = pbmc_small, reduction = "pca")[1:5, 1:5]
```

---

**FetchData**  
*Access cellular data*

**Description**

Retrieves data (feature expression, PCA scores, metrics, etc.) for a set of cells in a Seurat object

**Usage**

```r
FetchData(object, vars, cells = NULL, slot = "data")
```

**Arguments**

- `object`: Seurat object
- `vars`: List of all variables to fetch, use keyword “ident” to pull identity classes
- `cells`: Cells to collect data for (default is all cells)
- `slot`: Slot to pull feature data for

**Value**

A data frame with cells as rows and cellular data as columns

**Examples**

```r
pc1 <- FetchData(object = pbmc_small, vars = 'PC_1')
head(x = pc1)
head(x = FetchData(object = pbmc_small, vars = c('groups', 'ident')))```
FilterObjects
Find Sub-objects of a Certain Class

Description

Get the names of objects within a Seurat object that are of a certain class

Usage

FilterObjects(object, classes.keep = c("Assay", "DimReduc"))

Arguments

- **object**: A Seurat object
- **classes.keep**: A vector of names of classes to get

Value

A vector with the names of objects within the Seurat object that are of class classes.keep

Examples

FilterObjects(pbmc_small)

GetImage
Get image data

Description

Get image data

Usage

GetImage(object, mode = c("grob", "raster", "plotly", "raw"), ...)

```r
## S3 method for class 'Seurat'
GetImage(
  object,
  mode = c("grob", "raster", "plotly", "raw"),
  image = NULL,
  ...
)
```

S3 method for class 'Seurat'
GetImage(object, mode = c("grob", "raster", "plotly", "raw"), image = NULL, ...)

GetTissueCoordinates

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>An object</td>
</tr>
<tr>
<td>mode</td>
<td>How to return the image; should accept one of “grob”, “raster”, “plotly”, or “raw”</td>
</tr>
<tr>
<td>...</td>
<td>Arguments passed to other methods</td>
</tr>
<tr>
<td>image</td>
<td>Name of SpatialImage object to pull image data for; if NULL, will attempt to select an image automatically</td>
</tr>
</tbody>
</table>

Value

Image data, varying depending on the value of mode:

“grob” An object representing image data inheriting from grob objects (e.g., rastergrob)
“raster” An object of class raster
“plotly” A list with image data suitable for Plotly rendering, see plotly::layout for more details
“raw” The raw image data as stored in the object

See Also

layout

GetTissueCoordinates

Description

Get tissue coordinates

Usage

GetTissueCoordinates(object, ...)

S3 method for class 'Seurat'
GetTissueCoordinates(object, image = NULL, ...)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>An object</td>
</tr>
<tr>
<td>...</td>
<td>Arguments passed to other methods</td>
</tr>
<tr>
<td>image</td>
<td>Name of SpatialImage object to get coordinates for; if NULL, will attempt to select an image automatically</td>
</tr>
</tbody>
</table>

Value

A data frame with tissue coordinates
Graph-class

The Graph Class

Description

The Graph class inherits from dgCMatrix. We do this to enable future expandability of graphs.

Slots

assay.used
Optional name of assay used to generate Graph object

See Also

dgCMatrix-class

HVFInfo

Highly Variable Features

Description

Get and set variable feature information for an Assay object. HVFInfo and VariableFeatures utilize generally variable features, while SVFInfo and SpatiallyVariableFeatures are restricted to spatially variable features.

Usage

HVFInfo(object, selection.method, status = FALSE, ...)

VariableFeatures(object, selection.method = NULL, ...)

VariableFeatures(object, ...) <- value

SVFInfo(object, selection.method, status, ...)

SpatiallyVariableFeatures(object, selection.method, status, ...)

S3 method for class 'Seurat'
HVFInfo(object, selection.method = NULL, status = FALSE, assay = NULL, ...)

S3 method for class 'Seurat'
VariableFeatures(object, selection.method = NULL, assay = NULL, ...)

S3 replacement method for class 'Seurat'
VariableFeatures(object, assay = NULL, ...) <- value
S3 method for class 'Seurat'
SVFInfo(
 object,
 selection.method = c("markvariogram", "moransi"),
 status = FALSE,
 assay = NULL,
 ...
)

S3 method for class 'Seurat'
SpatiallyVariableFeatures(
 object,
 selection.method = "markvariogram",
 assay = NULL,
 decreasing = TRUE,
 ...
)

S3 method for class 'Assay'
HVFInfo(object, selection.method, status = FALSE, ...)

S3 method for class 'Assay'
SpatiallyVariableFeatures(
 object,
 selection.method = "markvariogram",
 decreasing = TRUE,
 ...
)

S3 method for class 'Assay'
SVFInfo(
 object,
 selection.method = c("markvariogram", "moransi"),
 status = FALSE,
 ...
)

S3 method for class 'Assay'
VariableFeatures(object, selection.method = NULL, ...)

S3 replacement method for class 'Assay'
VariableFeatures(object, ...) <- value

Arguments

- **object**: An object
- **selection.method**: Which method to pull. For HVFInfo and VariableFeatures, choose one from one of the following:
• “vst”
• “sctransform” or “sct”
• “mean.var.plot”, “dispersion”, “mvp”, or “disp”

For SVFInfo and SpatiallyVariableFeatures, choose from:
• “markvariogram”
• “moransi”

status
... Add variable status to the resulting data frame
Arguments passed to other methods
value A character vector of variable features
assay Name of assay to pull highly variable feature information for
decreasing Return features in decreasing order (most spatially variable first).

Value

HVFInfo: A data frame with feature means, dispersion, and scaled dispersion
VariableFeatures: a vector of the variable features
SVFInfo: a data frame with the spatially variable features
SpatiallyVariableFeatures: a character vector of the spatially variable features

Examples

Get the HVF info from a specific Assay in a Seurat object
HVFInfo(object = pbmc_small, assay = "RNA")[1:5,]

Get the HVF info directly from an Assay object
HVFInfo(pbmc_small[["RNA"]], selection.method = 'vst')[1:5,]

Idents

Get, set, and manipulate an object’s identity classes

Description

Get, set, and manipulate an object’s identity classes

Usage

Idents(object, ...)
Idents(object, ...) <- value
RenameIdents(object, ...)
ReorderIdent(object, var, ...)
SetIdent(object, ...)

StashIdent(object, save.name, ...)

S3 method for class 'Seurat'
Idents(object, ...)

S3 replacement method for class 'Seurat'
Idents(object, cells = NULL, drop = FALSE, ...) <- value

S3 method for class 'Seurat'
ReorderIdent(
 object,
 var,
 reverse = FALSE,
 afxn = mean,
 reorder.numeric = FALSE,
 ...
)

S3 method for class 'Seurat'
RenameIdents(object, ...)

S3 method for class 'Seurat'
SetIdent(object, cells = NULL, value, ...)

S3 method for class 'Seurat'
StashIdent(object, save.name = "orig.ident", ...)

S3 method for class 'Seurat'
droplevels(x, ...)

S3 method for class 'Seurat'
levels(x)

S3 replacement method for class 'Seurat'
levels(x) <- value

Arguments

... Arguments passed to other methods; for RenameIdents: named arguments as
old.ident = new.ident; for ReorderIdent: arguments passed on to FetchData
value The name of the identities to pull from object metadata or the identities them-
var selves
save.name Store current identity information under this name
cells Set cell identities for specific cells
Idents

drop
Drop unused levels

reverse
Reverse ordering

afxn
Function to evaluate each identity class based on; default is `mean`

reorder.numeric
Rename all identity classes to be increasing numbers starting from 1 (default is `FALSE`)

x, object
An object

Value

Idents: The cell identities

Idents<-: object with the cell identities changed

RenameIdents: An object with selected identity classes renamed

ReorderIdent: An object with

SetIdent: An object with new identity classes set

StashIdent: An object with the identities stashed

Examples

```r
# Get cell identity classes
Idents(pbmc_small)

# Set cell identity classes
# Can be used to set identities for specific cells to a new level
Idents(pbmc_small, cells = 1:4) <- 'a'
head(Idents(pbmc_small))

# Can also set ids from a value in object metadata
colnames(pbmc_small[[1]])
Idents(pbmc_small) <- 'RNA_snn_res.1'
levels(pbmc_small)

# Rename cell identity classes
# Can provide an arbitrary amount of ids to rename
levels(pbmc_small)
pbmc_small <- RenameIdents(pbmc_small, '0' = 'A', '2' = 'C')
levels(pbmc_small)

## Not run:
head(Idents(pbmc_small))
pbmc_small <- ReorderIdent(pbmc_small, var = 'PC_1')
head(Idents(pbmc_small))

## End(Not run)

# Set cell identity classes using SetIdent
cells.use <- WhichCells(pbmc_small, idents = '1')
pbmc_small <- SetIdent(pbmc_small, cells = cells.use, value = 'B')
```
head(pbmc_small[[]])
pbmc_small <- StashIdent(pbmc_small, save.name = 'idents')
head(pbmc_small[[]])

Get the levels of identity classes of a Seurat object
levels(x = pbmc_small)

Reorder identity classes
levels(x = pbmc_small)
levels(x = pbmc_small) <- c('C', 'A', 'B')
levels(x = pbmc_small)

Images

Pull spatial image names

Description

List the names of SpatialImage objects present in a Seurat object. If assay is provided, limits search to images associated with that assay.

Usage

```
Images(object, assay = NULL)
```

Arguments

- `object` A Seurat object
- `assay` Name of assay to limit search to

Value

A list of image names

Examples

```
## Not run:
Images(object)
## End(Not run)
```
Indices

Index

Get Neighbor algorithm index

Description

Get Neighbor algorithm index

Usage

```r
Index(object, ...)

Index(object, ...) <- value

## S3 method for class 'Neighbor'
Index(object, ...)

## S3 replacement method for class 'Neighbor'
Index(object, ...) <- value
```

Arguments

- `object`: An object
- `...`: Arguments passed to other methods;
- `value`: The index to store

Value

Returns the value in the alg.idx slot of the Neighbor object

`Idents<-`: A Neighbor object with the index stored

Indices

Get Neighbor nearest neighbor index matrices

Description

Get Neighbor nearest neighbor index matrices

Usage

```r
Indices(object, ...)

## S3 method for class 'Neighbor'
Indices(object, ...)
```
Arguments

object An object
...
Arguments passed to other methods:

Value

A matrix with the nearest neighbor indices

IsGlobal

Is an object global/persistent?

Description

Typically, when removing Assay objects from an Seurat object, all associated objects (e.g., DimReduc, Graph, and SeuratCommand objects) are removed as well. If an associated object is marked as global/persistent, the associated object will remain even if its original assay was deleted.

Usage

```
IsGlobal(object, ...)
```

Default S3 method:

```
IsGlobal(object, ...)
```

S3 method for class 'DimReduc'

```
IsGlobal(object, ...)
```

Arguments

object An object
...
Arguments passed to other methods

Value

TRUE if the object is global/persistent otherwise FALSE

Examples

```
IsGlobal(pbmc_small[['pca']])
```
IsMatrixEmpty

Check if a matrix is empty

Description

Takes a matrix and asks if it’s empty (either 0x0 or 1x1 with a value of NA)

Usage

```r
IsMatrixEmpty(x)
```

Arguments

- **x**: A matrix

Value

Whether or not `x` is empty

Examples

```r
IsMatrixEmpty(new("matrix"))
IsMatrixEmpty(matrix())
IsMatrixEmpty(matrix(1:3))
```

JackStrawData-class

The JackStrawData Class

Description

The JackStrawData is used to store the results of a JackStraw computation.

Slots

- **empirical.p.values**: Empirical p-values
- **fake.reduction.scores**: Fake reduction scores
- **empirical.p.values.full**: Empirical p-values on full
- **overall.p.values**: Overall p-values from ScoreJackStraw
Description

Methods for JackStrawData objects for generics defined in other packages

Usage

S3 method for class 'JackStrawData'
\$DollarNames(x, pattern = "")

S3 method for class 'JackStrawData'
x$i, ...

S3 method for class 'JackStrawData'
as.logical(x, ...)

S4 method for signature 'JackStrawData'
show(object)

Arguments

x, object A JackStrawData object
pattern A regular expression. Only matching names are returned.
i A JackStrawData slot name
... Ignored

Value

\$: Slot i from x

as.logical: TRUE if empirical p-values have been calculated otherwise FALSE

show: Prints summary to stdout and invisibly returns NULL

Functions

- \$DollarNames.JackStrawData: Autocompletion for \$ access on a JackStrawData object
- \$.JackStrawData: Access data from a JackStrawData object
- as.logical.JackStrawData: Have empirical p-values for a JackStrawData object been calculated
- show,JackStrawData-method: Overview of a JackStrawData object
Description

Get and set JackStraw information

Usage

```r
JS(object, ...)  
JS(object, ...) <- value
```

```r
## S3 method for class 'JackStrawData'  
JS(object, slot, ...)  
```

```r
## S3 replacement method for class 'JackStrawData'  
JS(object, slot, ...) <- value
```

```r
## S3 method for class 'DimReduc'  
JS(object, slot = NULL, ...)  
```

```r
## S3 replacement method for class 'DimReduc'  
JS(object, slot = NULL, ...) <- value
```

Arguments

- **object**: An object
- **...**: Arguments passed to other methods
- **value**: JackStraw information
- **slot**: Name of slot to store JackStraw scores to. Can shorten to 'empirical', 'fake', 'full', or 'overall'

Value

- **JS**: either a `JackStrawData` object or the specified jackstraw data
- **JS<-**: object with the update jackstraw information
Key

Get and set object keys

Description

Get and set object keys

Usage

Key(object, ...)

Key(object, ...) <- value

S3 method for class 'Assay'
Key(object, ...)

S3 replacement method for class 'Assay'
Key(object, ...) <- value

S3 method for class 'DimReduc'
Key(object, ...)

S3 replacement method for class 'DimReduc'
Key(object, ...) <- value

S3 method for class 'Seurat'
Key(object, ...)

Arguments

object An object
...
Arguments passed to other methods
value Key value

Value

Key: the object key
Key<-=: object with an updated key

Examples

Get an Assay key
Key(pbmc_small[["RNA"]])

Set the key for an Assay
Key(pbmc_small[["RNA"]]) <- "newkey_"
Key(pbmc_small[["RNA"]])
Get a DimReduc key
Key(object = pbmc_small[['pca']])

Set the key for DimReduc
Key(object = pbmc_small[['pca']]) <- "newkey2_"
Key(object = pbmc_small[['pca']])

Show all keys associated with a Seurat object
Key(object = pbmc_small)

Loadings

Get and set feature loadings

Description

Get and set feature loadings

Usage

Loadings(object, ...)

Loadings(object, ...) <- value

```r
## S3 method for class 'DimReduc'
Loadings(object, projected = FALSE, ...)

## S3 replacement method for class 'DimReduc'
Loadings(object, projected = TRUE, ...) <- value

## S3 method for class 'Seurat'
Loadings(object, reduction = "pca", projected = FALSE, ...)
```

Arguments

- **object**: An object
- **...**: Arguments passed to other methods
- **value**: Feature loadings to add
- **projected**: Pull the projected feature loadings?
- **reduction**: Name of reduction to pull feature loadings for

Value

- **Loadings**: the feature loadings for object
- **Loadings<-.object**: object with the updated loadings
Examples

Get the feature loadings for a given DimReduc
Loadings(object = pbmc_small[["pca"]][1:5,1:5])

Set the feature loadings for a given DimReduc
new.loadings <- Loadings(object = pbmc_small[["pca"]])
new.loadings <- new.loadings + 0.01
Loadings(object = pbmc_small[["pca"]]) <- new.loadings

Get the feature loadings for a specified DimReduc in a Seurat object
Loadings(object = pbmc_small, reduction = "pca")[1:5,1:5]

LogSeuratCommand

Log a command

Description

Logs command run, storing the name, timestamp, and argument list. Stores in the Seurat object

Usage

LogSeuratCommand(object, return.command = FALSE)

Arguments

object Name of Seurat object
return.command Return a SeuratCommand object instead

Value

If return.command, returns a SeuratCommand object. Otherwise, returns the Seurat object with command stored

See Also

Command
Misc

Get and set miscellaneous data

Description

Get and set miscellaneous data

Usage

Misc(object, ...)

Misc(object, ...) <- value

S3 method for class 'Assay'
Misc(object, slot = NULL, ...)

S3 replacement method for class 'Assay'
Misc(object, slot, ...) <- value

S3 method for class 'DimReduc'
Misc(object, slot = NULL, ...)

S3 replacement method for class 'DimReduc'
Misc(object, slot, ...) <- value

S3 method for class 'Seurat'
Misc(object, slot = NULL, ...)

S3 replacement method for class 'Seurat'
Misc(object, slot, ...) <- value

Arguments

object An object

... Arguments passed to other methods

value Data to add

slot Name of specific bit of meta data to pull

Value

Miscellaneous data

An object with miscellaneous data added
Examples

```r
# Get the misc info
Misc(object = pbmc_small, slot = "example")

# Add misc info
Misc(object = pbmc_small, slot = "example") <- "testing_misc"
```

Description

The Neighbor class is used to store the results of neighbor finding algorithms.

Slots

- `nn.idx`: Matrix containing the nearest neighbor indices.
- `nn.dist`: Matrix containing the nearest neighbor distances.
- `alg.idx`: The neighbor finding index (if applicable). E.g. the annoy index.
- `alg.info`: Any information associated with the algorithm that may be needed downstream (e.g. distance metric used with annoy is needed when reading in from stored file).
- `cell.names`: Names of the cells for which the neighbors have been computed.

Usage

```r
## S3 method for class 'Neighbor'
head(x)

## S4 method for signature 'Neighbor'
show(object)
```

Arguments

- `x, object`: A Neighbor object.
PackageCheck

Value

- `dim`: Dimensions of the indices matrix
- `show`: Prints summary to `stdout` and invisibly returns `NULL`

Functions

- `dim.Neighbor`: Dimensions of the neighbor indices
- `show.Neighbor-method`: Overview of a Neighbor object

Description

Check the existence of a package

Usage

```r
PackageCheck(..., error = TRUE)
```

Arguments

- `...`: Package names
- `error`: If true, throw an error if the package doesn’t exist

Value

Invisibly returns boolean denoting if the package is installed

Examples

```r
PackageCheck("SeuratObject", error = FALSE)
```
A small example version of the PBMC dataset

Description
A subsetted version of 10X Genomics’ 3k PBMC dataset

Usage
pbmc_small

Format
A Seurat object with the following slots filled

- **assays** Currently only contains one assay ("RNA" - scRNA-seq expression data)
 - counts - Raw expression data
 - data - Normalized expression data
 - scale.data - Scaled expression data
 - var.features - names of the current features selected as variable
 - meta.features - Assay level metadata such as mean and variance

- **meta.data** Cell level metadata
- **active.assay** Current default assay
- **active.ident** Current default ident
- **graphs** Neighbor graphs computed, currently stores the SNN
- **reductions** Dimensional reductions: currently PCA and tSNE
- **version** Seurat version used to create the object
- **commands** Command history

Source
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc3k
Project

Get and set project information

Description

Get and set project information

Usage

```r
Project(object, ...) 

Project(object, ...) <- value
```

```r
## S3 method for class 'Seurat'
Project(object, ...)
```

```r
## S3 replacement method for class 'Seurat'
Project(object, ...) <- value
```

Arguments

<table>
<thead>
<tr>
<th>object</th>
<th>An object</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>Arguments passed to other methods</td>
</tr>
<tr>
<td>value</td>
<td>Project information to set</td>
</tr>
</tbody>
</table>

Value

Project information

An object with project information added

Radius

Get the spot radius from an image

Description

Get the spot radius from an image

Usage

```r
Radius(object)
```

Arguments

| object | An image object |
RandomName

Value

The radius size

RandomName

Generate a random name

Description

Make a name from randomly sampled lowercase letters, pasted together with no spaces or other characters

Usage

RandomName(length = 5L, ...)

Arguments

- **length**
 - How long should the name be
- **...**
 - Extra parameters passed to `sample`

Value

A character with `nchar == length` of randomly sampled letters

See Also

- `sample`

Examples

```r
set.seed(42L)
RandomName()
RandomName(7L, replace = TRUE)
```
RenameAssays

Rename assays in a Seurat object

Description

Rename assays in a Seurat object

Usage

```
RenameAssays(object, ...)  
```

Arguments

- `object`: A Seurat object
- `...`: Named arguments as `old.assay = new.assay`

Value

Object with assays renamed

Examples

```
RenameAssays(object = pbmc_small, RNA = 'rna')  
```

RenameCells

Rename cells

Description

Change the cell names in all the different parts of an object. Can be useful before combining multiple objects.

Usage

```
RenameCells(object, ...)  
```

```r
## S3 method for class ``Assay``
RenameCells(object, new.names = NULL, ...)  

## S3 method for class ``DimReduc``
RenameCells(object, new.names = NULL, ...)  

## S3 method for class ``Neighbor``
RenameCells(object, old.names = NULL, new.names = NULL, ...)  
```
S3 method for class 'Seurat'

RenameCells(
 object,
 add.cell.id = NULL,
 new.names = NULL,
 for.merge = FALSE,
 ...
)

Arguments

- **object**: An object
- **add.cell.id**: Prefix to add cell names
- **new.names**: Vector of new cell names
- **old.names**: Vector of old cell names
- **for.merge**: Only rename slots needed for merging Seurat objects. Currently only renames the raw.data and meta.data slots.

Details

If `add.cell.id` is set a prefix is added to existing cell names. If `new.names` is set these will be used to replace existing names.

Value

An object with new cell names

Examples

Rename cells in an Assay

```r
head(x = colnames(x = pbmc_small["RNA"]))
renamed.assay <- RenameCells(
  pbmc_small["RNA"],
  new.names = paste0("A_", colnames(x = pbmc_small["RNA"])))
head(x = colnames(x = renamed.assay))
```

Rename cells in a DimReduc

```r
head(x = Cells(x = pbmc_small["pca"]))
renamed.dimreduc <- RenameCells(
  object = pbmc_small["pca"],
  new.names = paste0("A_", Cells(x = pbmc_small["pca"])))
head(x = Cells(x = renamed.dimreduc))
```

Rename cells in a Seurat object

```r
head(x = colnames(x = pbmc_small))
pbm_small <- RenameCells(object = pbmc_small, add.cell.id = "A")
head(x = colnames(x = pbmc_small))
```
RowMergeSparseMatrices

Merge Sparse Matrices by Row

Description

Merge two or more sparse matrices by rowname.

Usage

RowMergeSparseMatrices(mat1, mat2)

Arguments

- mat1: First matrix
- mat2: Second matrix or list of matrices

Details

Shared matrix rows (with the same row name) will be merged, and unshared rows (with different names) will be filled with zeros in the matrix not containing the row.

Value

Returns a sparse matrix

s4list

S4/List Conversion

Description

Convert S4 objects to lists and vice versa. Useful for declassing an S4 object while keeping track of its class using attributes (see section **S4 Class Definition Attributes** below for more details). Both ListToS4 and S4ToList are recursive functions, affecting all lists/S4 objects contained as sub-lists/sub-objects.
Seurat-class

Usage

S4ToList(object)

IsS4List(x)

ListToS4(x)

Default S3 method:
S4ToList(object)

S3 method for class 'list'
S4ToList(object)

Arguments

object An S4 object
x A list with an S4 class definition attribute

Value

S4ToList: A list with an S4 class definition attribute
IsS4List: TRUE if x is a list with an S4 class definition attribute
ListToS4: An S4 object as defined by the S4 class definition attribute

S4 Class Definition Attributes

S4 classes are scoped to the package and class name. In order to properly track which class a list is generated from in order to build a new one, these function use an attribute to denote the class name and package of origin. This attribute is stored as “classDef” and takes the form of “package:class”.

Seurat-class The Seurat Class

Description

The Seurat object is a representation of single-cell expression data for R; each Seurat object revolves around a set of cells and consists of one or more Assay objects, or individual representations of expression data (eg. RNA-seq, ATAC-seq, etc). These assays can be reduced from their high-dimensional state to a lower-dimension state and stored as DimReduc objects. Seurat objects also store additional metadata, both at the cell and feature level (contained within individual assays). The object was designed to be as self-contained as possible, and easily extensible to new methods.
seurat-class

The Seurat Class

Description

The Seurat object is the center of each single cell analysis. It stores all information associated with the dataset, including data, annotations, analyses, etc. All that is needed to construct a Seurat object is an expression matrix (rows are genes, columns are cells), which should be log-scale.

Usage

```r
defaultSeurat()
```

Arguments

- `object` A Seurat object

Details

Each Seurat object has a number of slots which store information. Key slots to access are listed below.

Slots

- `assays` A list of assays for this project
- `meta.data` Contains meta-information about each cell, starting with number of features detected (nFeature) and the original identity class (orig.ident); more information is added using `AddMetaData`
- `active.assay` Name of the active, or default, assay; settable using `DefaultAssay`
- `active.ident` The active cluster identity for this Seurat object; settable using `Idents`
- `graphs` A list of `Graph` objects
- `neighbors` ...
- `reductions` A list of dimensional reduction objects for this object
- `images` A list of spatial image objects
- `project.name` Name of the project
- `misc` A list of miscellaneous information
- `version` Version of Seurat this object was built under
- `commands` A list of logged commands run on this Seurat object
- `tools` A list of miscellaneous data generated by other tools, should be filled by developers only using `Tool<-`
Slots

- **raw.data** The raw project data
- **data** The normalized expression matrix (log-scale)
- **scale.data** scaled (default is z-scoring each gene) expression matrix; used for dimensional reduction and heatmap visualization
- **var.genes** Vector of genes exhibiting high variance across single cells
- **is.expr** Expression threshold to determine if a gene is expressed (0 by default)
- **ident** The 'identity class' for each cell
- **meta.data** Contains meta-information about each cell, starting with number of genes detected (nFeature) and the original identity class (orig.ident); more information is added using **AddMetaData**
- **project.name** Name of the project (for record keeping)
- **dr** List of stored dimensional reductions; named by technique
- **assay** List of additional assays for multimodal analysis; named by technique
- **hvg.info** The output of the mean/variability analysis for all genes
- **imputed** Matrix of imputed gene scores
- **cell.names** Names of all single cells (column names of the expression matrix)
- **cluster.tree** List where the first element is a phylo object containing the phylogenetic tree relating different identity classes
- **snn** Sparse matrix object representation of the SNN graph
- **calc.params** Named list to store all calculation-related parameter choices
- **kmeans** Stores output of gene-based clustering from **DoKMeans**
- **spatial** Stores internal data and calculations for spatial mapping of single cells
- **misc** Miscellaneous spot to store any data alongside the object (for example, gene lists)
- **version** Version of package used in object creation

Description

Methods for `Seurat` objects for generics defined in other packages

Usage

```r
# S3 method for class 'Seurat'
.DollarNames(x, pattern = "")

# S3 method for class 'Seurat'
x$i, ...

# S3 replacement method for class 'Seurat'
```
x$i, ... <- value

S3 method for class 'Seurat'
x[i, j, ...]

S3 method for class 'Seurat'
x[[i, ..., drop = FALSE]]

S3 method for class 'Seurat'
dim(x)

S3 method for class 'Seurat'
dimnames(x)

S3 method for class 'Seurat'
head(x, n = 10L, ...)

S3 method for class 'Seurat'
merge(
 x = NULL,
 y = NULL,
 add.cell.ids = NULL,
 merge.data = TRUE,
 merge.dr = NULL,
 project = "SeuratProject",
 ...
)

S3 method for class 'Seurat'
names(x)

S3 method for class 'Seurat'
subset(
 x,
 subset,
 cells = NULL,
 features = NULL,
 idents = NULL,
 return.null = FALSE,
 ...
)

S3 method for class 'Seurat'
tail(x, n = 10L, ...)

S4 replacement method for signature 'Seurat'
x[[i, j, ...]] <- value
S4 method for signature 'Seurat'
colMeans(x, na.rm = FALSE, dims = 1, ..., slot = "data")

S4 method for signature 'Seurat'
colSums(x, na.rm = FALSE, dims = 1, ..., slot = "data")

S4 method for signature 'Seurat'
rowMeans(x, na.rm = FALSE, dims = 1, ..., slot = "data")

S4 method for signature 'Seurat'
rowSums(x, na.rm = FALSE, dims = 1, ..., slot = "data")

S4 method for signature 'Seurat'
show(object)

Arguments

- **x, object**: A Seurat object
- **pattern**: A regular expression. Only matching names are returned.
- **i, features**: Depends on the method
 - `[, subset` Feature names or indices
 - `$, $<-` Name of a single metadata column
 - `[[, [[<-` Name of one or more metadata columns or an associated object; associated objects include Assay, DimReduc, Graph, SeuratCommand, or SpatialImage objects
- **...**: Arguments passed to other methods
- **value**: Additional metadata or associated objects to add; note: can pass NULL to remove metadata or an associated object
- **j, cells**: Cell names or indices
- **drop**: See drop
- **n**: The number of rows of metadata to return
- **y**: A single Seurat object or a list of Seurat objects
- **add.cell.ids**: A character vector of length(x = c(x,y)); appends the corresponding values to the start of each objects’ cell names
- **merge.data**: Merge the data slots instead of just merging the counts (which requires renormalization); this is recommended if the same normalization approach was applied to all objects
- **merge.dr**: Merge specified DimReduces that are present in all objects; will only merge the embeddings slots for the first N dimensions that are shared across all objects
- **project**: Project name for the Seurat object
- **subset**: Logical expression indicating features/variables to keep
- **idents**: A vector of identity classes to keep
- **return.null**: If no cells are request, return a NULL; by default, throws an error
logical. Should missing values (including NaN) be omitted from the calculations?

dims: completely ignored by the Matrix methods.

Name of assay expression matrix to calculate column/row means/sums on

Value

$: metadata column i for object x; note: unlike [], $ drops the shape of the metadata to return a vector instead of a data frame

$<-$: object x with metadata value saved as i

[: object x with features i and cells j

[[: If i is missing, the metadata data frame; if i is a vector of metadata names, a data frame with the requested metadata, otherwise, the requested associated object

dim: The number of features (nrow) and cells (ncol) for the default assay; note: while the number of features changes depending on the active assay, the number of cells remains the same across all assays

dimnames: The feature (row) and cell (column) names; note: while the features change depending on the active assay, the cell names remain the same across all assays

head: The first n rows of cell-level metadata

merge: Merged object

names: The names of all Assay, DimRed, Graph, and SpatialImage objects in the Seurat object

subset: A subsetted Seurat object

tail: The last n rows of cell-level metadata

[[<-. x with the metadata or associated objects added as i; if value is NULL, removes metadata or associated object i from object x

show: Prints summary to stdout and invisibly returns NULL

Functions

• .DollarNames.Seurat: Autocompletion for $ access on a Seurat object
• $.Seurat: Metadata access for Seurat objects
• $<-.Seurat: Metadata setter for Seurat objects
• [.[.Seurat: Simple subsetter for Seurat objects
• [.Seurat: Metadata and associated object accessor
• dim.Seurat: Number of cells and features for the active assay
• dimnames.Seurat: The cell and feature names for the active assay
• head.Seurat: Get the first rows of cell-level metadata
• merge.Seurat: Merge two or more Seurat objects together
• names.Seurat: Common associated objects
• subset.Seurat: Subset a Seurat object
• tail.Seurat: Get the last rows of cell-level metadata
• [[<-.Seurat-method: Add cell-level metadata or associated objects
• colMeans, Seurat-method: Calculate \texttt{colMeans} on a Seurat object
• colSums, Seurat-method: Calculate \texttt{colSums} on a Seurat object
• rowMeans, Seurat-method: Calculate \texttt{rowMeans} on a rowMeans object
• rowSums, Seurat-method: Calculate \texttt{rowSums} on a Seurat object
• show, Seurat-method: Overview of a Seurat object

Merge Details

When merging Seurat objects, the merge procedure will merge the Assay level counts and potentially the data slots (depending on the merge.data parameter). It will also merge the cell-level metadata that was stored with each object and preserve the cell identities that were active in the objects pre-merge. The merge will optionally merge reductions depending on the values passed to merge.dr if they have the same name across objects. Here the embeddings slots will be merged and if there are differing numbers of dimensions across objects, only the first N shared dimensions will be merged. The feature loadings slots will be filled by the values present in the first object. The merge will not preserve graphs, logged commands, or feature-level metadata that were present in the original objects. If add.cell.ids isn’t specified and any cell names are duplicated, cell names will be appended with _X, where X is the numeric index of the object in c(x, y).

See Also

\texttt{subset WhichCells}

Examples

Get metadata using `$`
head(pbmc_small$groups)

Add metadata using the `$' operator
set.seed(42)
pbmc_small$value <- sample(1:3, size = ncol(pbmc_small), replace = TRUE)
head(pbmc_small[["value"]])

`[' examples
pbmc_small[VariableFeatures(object = pbmc_small),]
pbmc_small[1:10]

Get the cell-level metadata data frame
head(pbmc_small[[]])

Pull specific metadata information
head(pbmc_small[[c("letter.idents", "groups")]])
head(pbmc_small[["groups", drop = TRUE]])

Get a sub-object (eg. an 'Assay' or 'DimReduc')
pbmc_small[["RNA"]]
pbmc_small[["pca"]]

Get the number of features in an object
nrow(pbmc_small)
SeuratCommand-class

The SeuratCommand Class

Description

The SeuratCommand is used for logging commands that are run on a Seurat object; it stores parameters and timestamps

Slots

name Command name
SeuratCommand-methods

- **time.stamp**: Timestamp of when command was run
- **assay.used**: Optional name of assay used to generate SeuratCommand object
- **call.string**: String of the command call
- **params**: List of parameters used in the command call

Description

Methods for SeuratCommand objects for generics defined in other packages

Usage

```r
## S3 method for class 'SeuratCommand'
.DollarNames(x, pattern = "")

## S3 method for class 'SeuratCommand'
x$i, ...

## S3 method for class 'SeuratCommand'
x[i, ...]

## S3 method for class 'SeuratCommand'
as.list(x, complete = FALSE, ...)

## S4 method for signature 'SeuratCommand'
show(object)
```

Arguments

- **x, object**: A SeuratCommand object
- **pattern**: A regular expression. Only matching names are returned.
- **i**: For a $, a parameter name; for [, a SeuratCommand slot name
- **...**: Arguments passed to other methods
- **complete**: Include slots besides just parameters (eg. call string, name, timestamp)

Value

- **$**: The value for parameter i
- **[]**: Slot i from x
- **as.list**: A list with the parameters and, if complete = TRUE, the call string, name, and timestamp
- **show**: Prints summary to stdout and invisibly returns NULL
SpatialImage-methods

Functions

- `.DollarNames.SeuratCommand`: Autocompletion for $ access on a SeuratCommand object
- `$.SeuratCommand`: Access a parameter from a SeuratCommand object
- `[.SeuratCommand`: Access data from a SeuratCommand object
- `as.list .SeuratCommand`: Coerce a SeuratCommand to a list
- `show .SeuratCommand-method`: Overview of a SeuratCommand object

SpatialImage-class The SpatialImage class

Description

The SpatialImage class is a virtual class representing spatial information for Seurat. All spatial image information must inherit from this class for use with Seurat objects.

Slots

assay Name of assay to associate image data with; will give this image priority for visualization when the assay is set as the active/default assay in a Seurat object
key Key for the image

See Also

SpatialImage-methods for a list of required and provided methods

SpatialImage-methods SpatialImage methods

Description

Methods defined on the SpatialImage class. Some of these methods must be overridden in order to ensure proper functionality of the derived classes (see Required methods below). Other methods are designed to work across all SpatialImage-derived subclasses, and should only be overridden if necessary.
Usage

```r
## S3 method for class 'SpatialImage'
Cells(x)

## S3 method for class 'SpatialImage'
DefaultAssay(object, ...)

## S3 replacement method for class 'SpatialImage'
DefaultAssay(object, ...) <- value

## S3 method for class 'SpatialImage'
GetImage(object, mode = c("grob", "raster", "plotly", "raw"), ...)

## S3 method for class 'SpatialImage'
GetTissueCoordinates(object, ...)

## S3 method for class 'SpatialImage'
IsGlobal(object, ...)

## S3 method for class 'SpatialImage'
Key(object, ...)

## S3 replacement method for class 'SpatialImage'
Key(object, ...) <- value

## S3 method for class 'SpatialImage'
Radius(object)

## S3 method for class 'SpatialImage'
RenameCells(object, new.names = NULL, ...)

## S3 method for class 'SpatialImage'
x[i, ...]

## S3 method for class 'SpatialImage'
dim(x)

## S3 method for class 'SpatialImage'
subset(x, cells, ...)

## S4 method for signature 'SpatialImage'
show(object)
```

Arguments

- `x`, `object`: A SpatialImage-derived object
- `...`: Arguments passed to other methods
- `value`: Depends on the method:
SpatialImage-methods

`DefaultAssay <-` Assay that the image should be associated with
`Key <-` New key for the image

`mode` How to return the image; should accept one of “grob”, “raster”, “plotly”, or “raw”

`new.names` vector of new cell names

`i, cells` A vector of cells to keep

Value

[**Override**] `Cells`: should return cell names

`DefaultAssay`: The associated assay of a SpatialImage-derived object

`DefaultAssay <-`: object with the associated assay updated

[**Override**] `GetImage`: The image data from a SpatialImage-derived object

[**Override**] `GetTissueCoordinates`: ...

`IsGlobal`: returns `TRUE` as images are, by default, global

`Key`: The key for a SpatialImage-derived object

`Key <-`: object with the key set to value

`Radius`: The spot radius size; by default, returns `NULL`

[**Override**] `RenameCells`: object with the new cell names

`[, subset: x/object for only the cells requested`

[**Override**] `dim`: The dimensions of the image data in (Y, X) format

`show`: Prints summary to `stdout` and invisibly returns `NULL`

Functions

- `Cells.SpatialImage`: Get the cell names from an image ([**Override**])
- `DefaultAssay.SpatialImage`: Get the associated assay of a SpatialImage-derived object
- `DefaultAssay <-.SpatialImage`: Set the associated assay of a SpatialImage-derived object
- `GetImage.SpatialImage`: Get the image data from a SpatialImage-derived object
- `GetTissueCoordinates.SpatialImage`: Get tissue coordinates for a SpatialImage-derived object ([**Override**])
- `IsGlobal.SpatialImage`: Globality test for SpatialImage-derived object
- `Key.SpatialImage`: Get the key for a SpatialImage-derived object
- `Key <-.SpatialImage`: Set the key for a SpatialImage-derived object
- `Radius.SpatialImage`: Get the spot radius size
- `RenameCells.SpatialImage`: Rename cells in a SpatialImage-derived object ([**Override**])
- `[, SpatialImage`: Subset a SpatialImage-derived object ([**Override**])
- `dim.SpatialImage`: Get the plotting dimensions of an image ([**Override**])
- `subset.SpatialImage`: Subset a SpatialImage-derived object ([**Override**])
- `show, SpatialImage-method`: Overview of a SpatialImage-derived object
Provided methods

These methods are defined on the SpatialImage object and should not be overridden without careful thought

- **DefaultAssay** and **DefaultAssay<-**
- **Key** and **Key<-**
- **GetImage**; this method *can* be overridden to provide image data, normally returns empty image data. If overridden, should default to returning a **grob** object
- **IsGlobal**
- **Radius**; this method *can* be overridden to provide a spot radius for image objects
- **[**; this method *can* be overridden to change default subset behavior, normally returns subset(x = x, cells = i). If overridden, should only accept i

Required methods

All subclasses of the SpatialImage class must define the following methods; simply relying on the SpatialImage method will result in errors. For required parameters and their values, see the Usage and Arguments sections

- **Cells** Return the cell/spot barcodes associated with each position
- **dim** Return the dimensions of the image for plotting in \((Y,X)\) format
- **GetTissueCoordinates** Return tissue coordinates; by default, must return a two-column data.frame with x-coordinates in the first column and y-coordinates in the second
- **Radius** Return the spot radius; returns NULL by default for use with non-spot image technologies
- **RenameCells** Rename the cell/spot barcodes for this image
- **subset** Subset the image data by cells/spots

These methods are used throughout Seurat, so defining them and setting the proper defaults will allow subclasses of SpatialImage to work seamlessly

See Also

- **DefaultAssay**
- **GetImage**
- **GetTissueCoordinates**
- **IsGlobal**
- **Key**
- **RenameCells**
Stdev

Get the standard deviations for an object

Description

Get the standard deviations for an object

Usage

Stdev(object, ...)

```r
## S3 method for class 'DimReduc'
Stdev(object, ...)

## S3 method for class 'Seurat'
Stdev(object, reduction = "pca", ...)
```

Arguments

- `object`: An object
- `...`: Arguments passed to other methods
- `reduction`: Name of reduction to use

Value

The standard deviations

Examples

```r
# Get the standard deviations for each PC from the DimReduc object
Stdev(object = pbmc_small[['pca']])

# Get the standard deviations for each PC from the Seurat object
Stdev(object = pbmc_small, reduction = "pca")
```

Tool

Get and set additional tool data

Description

Use Tool to get tool data. If no additional arguments are provided, will return a vector with the names of tools in the object.
Usage

Tool(object, ...)

Tool(object, ...) <- value

S3 method for class 'Seurat'
Tool(object, slot = NULL, ...)

S3 replacement method for class 'Seurat'
Tool(object, ...) <- value

Arguments

object An object

... Arguments passed to other methods

value Information to be added to tool list

slot Name of tool to pull

Value

If no additional arguments, returns the names of the tools in the object; otherwise returns the data placed by the tool requested

Note

For developers: set tool data using Tool<- . Tool<- will automatically set the name of the tool to the function that called Tool<- , so each function gets one entry in the tools list and cannot overwrite another function’s entry. The automatic naming will also remove any method identifiers (eg. RunPCA.Seurat will become RunPCA); please plan accordingly.

Examples

Tool(object = pbmc_small)

Not run:
sample.tool.output <- matrix(data = rnorm(n = 16), nrow = 4)
must be run from within a function
Tool(object = pbmc_small) <- sample.tool.output

End(Not run)
UpdateSeuratObject
Update old Seurat object to accommodate new features

Description
Updates Seurat objects to new structure for storing data/calculations. For Seurat v3 objects, will validate object structure ensuring all keys and feature names are formed properly.

Usage

```r
UpdateSeuratObject(object)
```

Arguments

- `object` Seurat object

Value

Returns a Seurat object compatible with latest changes

Examples

```r
## Not run:
updated_seurat_object = UpdateSeuratObject(object = old_seurat_object)
## End(Not run)
```

Version
Get Version Information

Description
Get Version Information

Usage

```r
Version(object, ...)
```

S3 method for class 'Seurat'

```r
Version(object, ...)
```

Arguments

- `object` An object
- `...` Arguments passed to other methods
WhichCells

Examples

Version(pbmc_small)

WhichCells
Identify cells matching certain criteria

Description

Returns a list of cells that match a particular set of criteria such as identity class, high/low values for particular PCs, etc.

Usage

WhichCells(object, ...)

```r
## S3 method for class 'Assay'
WhichCells(object, cells = NULL, expression, invert = FALSE, ...)

## S3 method for class 'Seurat'
WhichCells(
  object,
  cells = NULL,
  idents = NULL,
  expression,
  slot = "data",
  invert = FALSE,
  downsample = Inf,
  seed = 1,
  ...
)
```

Arguments

- **object**: An object
- **...**: Arguments passed on to `CellsByIdentities`
- **return.null**: If no cells are request, return a NULL; by default, throws an error
- **cells**: Subset of cell names
- **expression**: A predicate expression for feature/variable expression, can evaluate anything that can be pulled by `FetchData`; please note, you may need to wrap feature names in backticks (``) if dashes between numbers are present in the feature name
- **invert**: Invert the selection of cells
- **idents**: A vector of identity classes to keep
- **slot**: Slot to pull feature data for
WhichCells

- **downsample**: Maximum number of cells per identity class, default is Inf; downsampling will happen after all other operations, including inverting the cell selection.
- **seed**: Random seed for downsampling. If NULL, does not set a seed.

Value

A vector of cell names.

See Also

FetchData

Examples

- `WhichCells(pbmc_small, idents = 2)`
- `WhichCells(pbmc_small, expression = MS4A1 > 3)`
- `levels(pbmc_small)`
- `WhichCells(pbmc_small, idents = c(1, 2), invert = TRUE)`
Index

* assay
 Assay-class, 8
 Assay-methods, 8
 CreateAssayObject, 17
* command
 LogSeuratCommand, 43
 SeuratCommand-methods, 61
* data-access
 AssayData, 11
 Assays, 12
 Cells, 14
 CellsByIdentities, 15
 CellsByImage, 15
 Command, 16
 DefaultAssay, 21
 Distances, 26
 Embeddings, 26
 FetchData, 27
 GetImage, 28
 GetTissueCoordinates, 29
 HVFInfo, 30
 Images, 35
 Index, 36
 Indices, 36
 IsGlobal, 37
 Key, 41
 Loadings, 42
 Misc, 44
 Stdev, 66
 Tool, 66
 Version, 68
 WhichCells, 69
* datasets
 pbmc_small, 47
* dimreduc
 CreateDimReducObject, 18
 DimReduc-methods, 24
* graph
 as.Graph, 5
* jackstraw
 JackStrawData-methods, 39
 JS, 40
* neighbor
 as.Neighbor, 6
 Neighbor-methods, 45
* seurat
 AddMetaData, 4
 as.Seurat, 7
 CreateSeuratObject, 19
 Idents, 32
 Project, 48
 RenameAssays, 50
 RenameCells, 50
 Seurat-methods, 55
 UpdateSeuratObject, 68
* spatialimage
 Radius, 48
 SpatialImage-methods, 62
* unsorted
 seurat-class, 54
* utils
 as.sparse, 7
 AttachDep, 13
 CheckGC, 16
 IsMatrixEmpty, 38
 RowMergeSparseMatrices, 52
 s4list, 52
 .DollarNames.JackStrawData
 (JackStrawData-methods), 39
 .DollarNames.Seurat (Seurat-methods), 55
 .DollarNames.SeuratCommand
 (SeuratCommand-methods), 61
 .onAttach, 13
 [, 65
 [.Assay (Assay-methods), 8
 [.DimReduc (DimReduc-methods), 24
 [.Seurat (Seurat-methods), 55
 [.SeuratCommand
INDEX

head.Assay (Assay-methods), 8
head.Seurat (Seurat-methods), 55
HVFInfo, 30

Idents, 32, 54
Idents<-(Idents), 32
Images, 35
Index, 36
Index<-(Index), 36
Indices, 36
IsGlobal, 37, 65
IsGlobal.SpatialImage
(SpatialImage-methods), 62
IsMatrixEmpty, 38
IsS4List (s4list), 52

JackStrawData, 39, 40
JackStrawData (JackStrawData-class), 38
JackStrawData-class, 38
JackStrawData-methods, 39
JS, 40
JS<-(JS), 40

Key, 41, 65
Key.SpatialImage
(SpatialImage-methods), 62
Key<-(Key), 41
Key<-.SpatialImage
(SpatialImage-methods), 62

layout, 29
length.DimReduc (DimReduc-methods), 24
levels.Seurat (Idents), 32
levels<-.Seurat (Idents), 32
ListToS4 (s4list), 52
Loadings, 42
Loadings<-(Loadings), 42
LogSeuratCommand, 43

Matrix, 5
matrix, 5, 20
mean, 34
merge (Seurat-methods), 55
merge.Assay (Assay-methods), 8
merge.DimReduc (DimReduc-methods), 24
MergeSeurat (Seurat-methods), 55
Misc, 44
Misc<-(Misc), 44

names.DimReduc (DimReduc-methods), 24
names.Seurat (Seurat-methods), 24
Neighbor, 6, 12, 45
Neighbor (Neighbor-class), 45
Neighbor-class, 45
Neighbor-methods, 45
Neighbors (Assays), 12

PackageCheck, 46
pbmc_small, 47
plotly::layout, 29
print (DimReduc-methods), 24
Project, 20, 48, 57
Project<-(Project), 48
Radius, 48, 65
Radius.SpatialImage
(SpatialImage-methods), 62
RandomName, 49
Reductions (Assays), 12
RenameAssays, 50
RenameCells, 50, 65
RenameCells.SpatialImage
(SpatialImage-methods), 62

RenameIdent (Idents), 32
RenameIdents (Idents), 32
ReorderIdent (Idents), 32
rowMeans, 11, 59
rowMeans,Assay-method (Assay-methods), 8
rowMeans,Seurat-method
(Seurat-methods), 55
RowMergeSparseMatrices, 52
rowSums, 11, 59
rowSums,Assay-method (Assay-methods), 8
rowSums,Seurat-method
(Seurat-methods), 55

s4list, 52
S4ToList (s4list), 52
sample, 49
SetAssayData (AssayData), 11
SetDimReduction (CreateDimReducObject), 18
SetIdent (Idents), 32
Seurat, 7, 13, 20, 23, 28, 54, 55, 57, 58
Seurat (Seurat-class), 53
seurat (seurat-class), 54
Seurat-class, 53
seurat-class, 54
Seurat-methods, 55
SeuratAccess (AddMetaData), 4
SeuratCommand, 43, 57, 61
SeuratCommand (SeuratCommand-class), 60
SeuratCommand-class, 60
SeuratCommand-methods, 61
SeuratObject (SeuratObject-package), 3
SeuratObject-package, 3
show, Assay-method (Assay-methods), 8
show, DimReduc-method
(DimReduc-methods), 24
show, JackStrawData-method
(JackStrawData-methods), 39
show, Neighbor-method
(Neighbor-methods), 45
show, Seurat-method (Seurat-methods), 55
show, seurat-method (seurat-class), 54
show, SeuratCommand-method
(SeuratCommand-methods), 61
show, SpatialImage-method
(SpatialImage-methods), 62
SpatialImage, 57, 58, 62
SpatialImage (SpatialImage-class), 62
SpatialImage-class, 62
SpatialImage-methods, 62
SpatiallyVariableFeatures (HVFInfo), 30
StashIdent (Idents), 32
Stdev, 66
stdout, 10, 25, 39, 46, 58, 61, 64
subset, 59, 65
subset (Seurat-methods), 55
subset Assay (Assay-methods), 8
subset.DimReduc (DimReduc-methods), 24
subset.SpatialImage
(SpatialImage-methods), 62
SVFInfo (HVFInfo), 30
tail.Assay (Assay-methods), 8
tail.Seurat (Seurat-methods), 55
Tool, 54, 66
Tool<-(Tool), 66
Tools (Tool), 66
UpdateSeuratObject, 68
VariableFeatures (HVFInfo), 30
VariableFeatures<-(HVFInfo), 30
Version, 68
WhichCells, 59, 69