The Statistical Sleuth in R:
Chapter 3

Linda Loi Ruobing Zhang Kate Aloisio Nicholas J. Horton∗

January 24, 2019

Contents

1 Introduction 1

2 Cloud Seeding to Increase Rainfall 2
 2.1 Summary statistics and graphical displays (untransformed) 2
 2.2 Summary statistics and graphical display (transformed) 4
 2.3 Inferential procedures (two-sample t-test) . 5
 2.4 Interpretation of log model . 6

3 Effects of Agent Orange on Troops in Vietnam 7
 3.1 Summary statistics and graphical display . 7
 3.2 Inferential procedures (two-sample t-test) . 8
 3.3 Removing outliers . 9

1 Introduction

This document is intended to help describe how to undertake analyses introduced as examples in the
about the book can be found at http://www.proaxis.com/~panorama/home.htm This file as well
as the associated knitr reproducible analysis source file can be found at http://www.math.smith.
edu/~nhorton/sleuth3

This work leverages initiatives undertaken by Project MOSAIC (http://www.mosaic-web.
org), an NSF-funded effort to improve the teaching of statistics, calculus, science and computing
in the undergraduate curriculum. In particular, we utilize the mosaic package, which was written to
simplify the use of R for introductory statistics courses. A short summary of the R needed to teach
introductory statistics can be found in the mosaic package vignette (http://cran.r-project.
org/web/packages/mosaic/vignettes/MinimalR.pdf).

To use a package within R, it must be installed (one time), and loaded (each session). The
package can be installed using the following command:

∗Department of Mathematics and Statistics, Smith College, nhorton@smith.edu
Once this is installed, it can be loaded by running the command:

```r
> require(mosaic)
```

This needs to be done once per session.

In addition the data files for the Sleuth case studies can be accessed by installing the Sleuth3 package.

```r
> install.packages('Sleuth3')     # note the quotation marks
> require(Sleuth3)
```

We also set some options to improve legibility of graphs and output.

```r
> trellis.par.set(theme=col.mosaic())    # get a better color scheme for lattice
> options(digits=3, show.signif.stars=FALSE)
```

The specific goal of this document is to demonstrate how to calculate the quantities described in Sleuth Chapter 3: A Closer Look at Assumptions using R.

2 Cloud Seeding to Increase Rainfall

Does seeding clouds lead to more rainfall? This is the question being addressed by case study 3.1 in the Sleuth.

2.1 Summary statistics and graphical displays (untransformed)

We begin by reading the data and summarizing the variables.

```r
> summary(case0301)
```

```
Rainfall Treatment
Min. : 1 Seeded :26
1st Qu.: 29 Unseeded:26
Median :117
Mean : 303
3rd Qu.:307
Max. :2746
```

```r
> favstats(Rainfall ~ Treatment, data=case0301)
```

```
Treatment min Q1 median Q3 max mean sd n missing
1 Seeded 4.1 98.1 221.6 406 2746 442 651 26 0
2 Unseeded 1.0 24.8 44.2 159 1203 165 278 26 0
```
A total of 52 subjects were included in this data: 26 seeded days and 26 unseeded days (Display 3.1, page 59).

```r
> bwplot(Rainfall ~ Treatment, data=case0301)
```

![Boxplot of Rainfall by Treatment](image1)

```r
> densityplot(~Rainfall, groups=Treatment, auto.key=TRUE, data=case0301)
```

![Density plot of Rainfall by Treatment](image2)

According to the boxplot and the density plot, the rainfall from seeded days seems to be larger than unseeded days. Both density curves are highly skewed to the right.
2.2 Summary statistics and graphical display (transformed)

The skewness suggests that there is a need to apply a logarithmic transformation. The transformed data is shown on page 73 (Display 3.9).

```r
> case0301 = transform(case0301, lograin=log(Rainfall))
> favstats(lograin ~ Treatment, data=case0301)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>min</th>
<th>Q1</th>
<th>median</th>
<th>Q3</th>
<th>max</th>
<th>mean</th>
<th>sd</th>
<th>n</th>
<th>missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seeded</td>
<td>1.41</td>
<td>4.58</td>
<td>5.40</td>
<td>6.00</td>
<td>7.92</td>
<td>5.13</td>
<td>1.60</td>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td>Unseeded</td>
<td>0.00</td>
<td>3.21</td>
<td>3.79</td>
<td>5.07</td>
<td>7.09</td>
<td>3.99</td>
<td>1.64</td>
<td>26</td>
<td>0</td>
</tr>
</tbody>
</table>

> bwplot(lograin ~ Treatment, data=case0301)

> densityplot(~lograin, groups=Treatment, auto.key=TRUE, data=case0301)
```
The log transformation reduces the skewness of these two distributions.

2.3 Inferential procedures (two-sample t-test)

```r
> t.test(Rainfall ~ Treatment, var.equal=FALSE, data=case0301)

Welch Two Sample t-test

data:  Rainfall by Treatment
t  = 2, df = 30, p-value = 0.05
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -4.76 559.56
sample estimates:
mean in group Seeded mean in group Unseeded
 442      165
```

```r
> t.test(Rainfall ~ Treatment, var.equal=TRUE, data=case0301)

Two Sample t-test

data:  Rainfall by Treatment
t  = 2, df = 50, p-value = 0.05
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -1.43 556.22
sample estimates:
```
The following corresponds to the calculations on page 73.

```r
> summary(lm(lograin ~ Treatment, data=case0301))

Call:
  lm(formula = lograin ~ Treatment, data = case0301)

Residuals:
   Min     1Q Median     3Q    Max
-3.990 -0.745  0.162  1.019  3.102

Coefficients:
            Estimate Std. Error  t value Pr(>|t|)
(Intercept)   5.134      0.318  16.150  < 2e-16
TreatmentUnseeded -1.144      0.450  -2.540  0.014

Residual standard error: 1.62 on 50 degrees of freedom
Multiple R-squared:  0.115,Adjusted R-squared:  0.0969
F-statistic: 6.47 on 1 and 50 DF,  p-value: 0.0141
```

```r
> ttestlog = t.test(lograin ~ Treatment, data=case0301); ttestlog

Welch Two Sample t-test

data:  lograin by Treatment
t = 3, df = 50, p-value = 0.01
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:  
  0.241  2.047
sample estimates:  
 mean in group Seeded mean in group Unseeded
  5.13     3.99
```

2.4 Interpretation of log model

The following code is used to calculate the “Statistical Conclusion” on page 59. First, we want to calculate the multiplier.

```r
> obslogdiff = -diff(mean(lograin ~ Treatment, data=case0301)); obslogdiff
```

<table>
<thead>
<tr>
<th>mean in group Seeded</th>
<th>mean in group Unseeded</th>
</tr>
</thead>
<tbody>
<tr>
<td>442</td>
<td>165</td>
</tr>
</tbody>
</table>
3 Effects of Agent Orange on Troops in Vietnam

Is dioxin concentration related to veteran status? This is the question being addressed by case study 3.2 in the *Sleuth*.

3.1 Summary statistics and graphical display

We begin by reading the data and summarizing the variables.

```r
> summary(case0302)

Dioxin Veteran
Min. : 0.0 Other : 97
1st Qu.: 3.0 Vietnam: 646
Median: 4.0
Mean : 4.3
3rd Qu.: 5.0
Max. :45.0

> favstats(Dioxin ~ Veteran, data=case0302)

Veteran min Q1 median Q3 max mean sd n missing
1 Other 0 3 4 5 15 4.19 2.30 97 0
2 Vietnam 0 3 4 5 45 4.26 2.64 646 0
```
A total of 743 veterans were included in this data: 646 served in Vietnam during 1967 and 1968 and 97 served in US or Germany during 1965 and 1971.

Both distributions are highly skewed to the right.

3.2 Inferential procedures (two-sample t-test)

The following code is used to calculate the “Statistical Conclusion” on page 62.
> t.test(Dioxin ~ Veteran, var.equal=TRUE, alternative="less", data=case0302)

Two Sample t-test

data: Dioxin by Veteran
 t = -0.3, df = 700, p-value = 0.4
 alternative hypothesis: true difference in means is less than 0
 95 percent confidence interval:
 -Inf 0.392
 sample estimates:
 mean in group Other mean in group Vietnam
 4.19 4.26

> t.test(Dioxin ~ Veteran, var.equal=TRUE, data=case0302)$conf.int

[1] -0.631 0.482
attr(,"conf.level")
[1] 0.95

So the one-sided \(p \)-value from a two-sample \(t \)-test is 0.396. The 95\% confidence interval is (-0.63, 0.48). Notice that because of the way we ordered our variables, the confidence interval shown in our analysis is different from that of the book (our confidence intervals are inverse). This is of no consequence, as the difference between the groups is still the same.

3.3 Removing outliers

We will remove two extreme observations from the data. First we remove observation 646 and perform a \(t \)-test (Display 3.7, page 70).

> case0302.2 = case0302[-c(646),]
> t.test(Dioxin ~ Veteran, alternative="less", data=case0302.2)

Welch Two Sample t-test

data: Dioxin by Veteran
 t = -0.05, df = 100, p-value = 0.5
 alternative hypothesis: true difference in means is less than 0
 95 percent confidence interval:
 -Inf 0.4
 sample estimates:
 mean in group Other mean in group Vietnam
 4.19 4.20

Next we remove observations 645 and 646 and perform a \(t \)-test.
EFFECTS OF AGENT ORANGE ON TROOPS IN VIETNAM

> dim(case0302)
[1] 743 2

> case0302.3 = case0302[-c(645, 646),]
> dim(case0302.3)
[1] 741 2

> t.test(Dioxin ~ Veteran, alternative="less", data=case0302.3)

Welch Two Sample t-test

data: Dioxin by Veteran
 t = 0.09, df = 100, p-value = 0.5
alternative hypothesis: true difference in means is less than 0
95 percent confidence interval:
 -Inf 0.429
sample estimates:
 mean in group Other mean in group Vietnam
 4.19 4.16

Notice that after removing these outliers, the p-value and the confidence interval have changed but the substantive conclusion is unchanged.