The Statistical Sleuth in R:
Chapter 12

Linda Loi Kate Aloisio Ruobing Zhang Nicholas J. Horton*

January 24, 2019

Contents

1 Introduction 1

2 State Average SAT Scores 2
 2.1 Summary statistics 2
 2.2 Dealing with Many Explanatory Variables 3
 2.3 Sequential Variable Selection 7
 2.4 Model Selection Among All Subsets 10
 2.5 Contribution of Expenditure 11

3 Sex Discrimination in Employment 12
 3.1 Summary Statistics 12
 3.2 Model Selection 13
 3.3 Evaluating the Sex Effect 15

1 Introduction

This document is intended to help describe how to undertake analyses introduced as examples in the
about the book can be found at http://www.proaxis.com/~panorama/home.htm. This file as well
as the associated *knitr* reproducible analysis source file can be found at http://www.math.smith.edu/~nhorton/sleuth3.

This work leverages initiatives undertaken by Project MOSAIC (http://www.mosaic-web.org), an NSF-funded effort to improve the teaching of statistics, calculus, science and computing
in the undergraduate curriculum. In particular, we utilize the *mosaic* package, which was written to simplify the use of R for introductory statistics courses. A short summary of the R needed to teach
introductory statistics can be found in the *mosaic* package vignette (http://cran.r-project.org/web/packages/mosaic/vignettes/MinimalR.pdf).

To use a package within R, it must be installed (one time), and loaded (each session). The
package can be installed using the following command:

```
> install.packages("mosaic")
```

Department of Mathematics and Statistics, Smith College, nhorton@smith.edu
Once this is installed, it can be loaded by running the command:

```
> require(mosaic)
```

This needs to be done once per session.

In addition the data files for the Sleuth case studies can be accessed by installing the Sleuth3 package.

```
> install.packages('Sleuth3')  # note the quotation marks
> require(Sleuth3)
```

We also set some options to improve legibility of graphs and output.

```
> trellis.par.set(theme=col.mosaic())  # get a better color scheme for lattice
> options(digits=4)
```

The specific goal of this document is to demonstrate how to calculate the quantities described in Chapter 12: Strategies for Variable Selection using R.

2 State Average SAT Scores

What variables are associated with state SAT scores? This is the question addressed in case study 12.1 in the Sleuth.

2.1 Summary statistics

We begin by reading the data and summarizing the variables.

```
> summary(case1201)
```

<table>
<thead>
<tr>
<th>State</th>
<th>SAT Takers</th>
<th>Income</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>Min. 790</td>
<td>Min. 2.00 Min. 208</td>
</tr>
<tr>
<td>Alaska</td>
<td>1st Qu. 889</td>
<td>1st Qu.: 6.25 1st Qu.: 262</td>
</tr>
<tr>
<td>Arizona</td>
<td>Median 966</td>
<td>Median: 16.00 Median: 295</td>
</tr>
<tr>
<td>Arkansas</td>
<td>Mean 948</td>
<td>Mean: 26.22 Mean: 294</td>
</tr>
<tr>
<td>California</td>
<td>3rd Qu. 998</td>
<td>3rd Qu.: 47.75 3rd Qu.: 325</td>
</tr>
<tr>
<td>Colorado</td>
<td>Max. 1088</td>
<td>Max.: 69.00 Max.: 401</td>
</tr>
<tr>
<td>(Other)</td>
<td>44 Years</td>
<td>Public: 44.8 Expend: 13.8 Rank: 69.8</td>
</tr>
<tr>
<td></td>
<td>1st Qu.:15.9</td>
<td>1st Qu.:76.9 1st Qu.:19.6 1st Qu.:74.0</td>
</tr>
</tbody>
</table>
The data are shown on page 347 (display 12.1). A total of 50 state average SAT scores are included in this data.

2.2 Dealing with Many Explanatory Variables

The following graph is presented as Display 12.4, page 356.

```r
> pairs(~ Takers+Rank+Years+Income+Public+Expend+SAT, data=case1201)
```

We can get a fancier graph using the following code:

```r
> panel.hist = function(x, ...) 
+ { 
+   usr = par("usr"); on.exit(par(usr)) 
+   par(usr = c(usr[1:2], 0, 1.5)) 
+   h = hist(x, plot=FALSE) 
+   breaks = h$breaks; nB = length(breaks) 
+   y = h$counts; y = y/max(y) 
+   rect(breaks[-nB], 0, breaks[-1], y, col="cyan", ...) 
+ } 
>
> panel.lm = function(x, y, col=par("col"), bg=NA, 
+   pch=par("pch"), cex=1, col.lm="red", ...)
```

Statistical Sleuth in R: Chapter 12
\begin{verbatim}
 + {
 + points(x, y, pch=pch, col=col, bg=bg, cex=cex)
 + ok = is.finite(x) & is.finite(y)
 + if (any(ok))
 + abline(lm(y[ok] ~ x[ok]))
 + }

> pairs(~ Takers+Rank+Years+Income+Public+Expend+SAT,
 + lower.panel=panel.smooth, diag.panel=panel.hist,
 + upper.panel=panel.lm, data=case1201)
\end{verbatim}

An alternative graph can be generated using the \texttt{car} package.

\begin{verbatim}
> require(car)
> scatterplotMatrix(~ Takers+Rank+Years+Income+Public+Expend+SAT, diagonal="histogram", smooth=
 + TRUE, lag=TRUE)

Warning in applyDefaults(diagonal, defaults = list(method = "adaptiveDensity"), : unnamed
diag arguments, will be ignored
\end{verbatim}
Based on the scatterplot, we choose the logarithm of percentage of SAT takers and median class rank to fit our first model (page 355-357):

```r
> lm1 = lm(SAT ~ Rank+log(Takers), data=case1201)
> summary(lm1)
```

Call:
```
lm(formula = SAT ~ Rank + log(Takers), data = case1201)
```

Residuals:
```
  Min 1Q Median 3Q Max
-94.46 -17.31  5.32 22.82 48.47
```

Coefficients:
```
          Estimate Std. Error t value Pr(>|t|)
(Intercept)    882.08     224.13    3.94 0.00027
Rank            2.40       2.33    1.03 0.30898
log(Takers)   -45.19      14.06   -3.21 0.00236
```

Residual standard error: 31.1 on 47 degrees of freedom
Multiple R-squared: 0.815, Adjusted R-squared: 0.807
F-statistic: 103 on 2 and 47 DF, p-value: <2e-16

From the regression output, we observe that these two variables can explain 81.5% of the variation.

Next we fit a linear regression model using all variables and create the partial residual plot presented on page 357 as Display 12.5:
\begin{verbatim}
> lm2 = lm(SAT ~ log2(Takers)+Income+Years+Public+Expend+Rank, data=case1201)
> summary(lm2)

Call:
 lm(formula = SAT ~ log2(Takers) + Income + Years + Public + Expend +
 Rank, data = case1201)

Residuals:
 Min 1Q Median 3Q Max
-61.11 -8.60 2.86 14.77 53.40

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 407.540 282.763 1.440 0.1567
log2(Takers) -26.643 11.057 -2.410 0.0203
Income -0.036 0.130 -0.280 0.7841
Years 17.218 6.320 2.720 0.0093
Public -0.113 0.562 -0.200 0.8417
Expend 2.567 0.806 3.180 0.0027
Rank 4.114 2.502 1.640 0.1073

Residual standard error: 24.9 on 43 degrees of freedom
Multiple R-squared: 0.892, Adjusted R-squared: 0.877
F-statistic: 59.2 on 6 and 43 DF, p-value: <2e-16

> plot(lm2, which=4)

According to the Cook’s distance plot, obs 29 (Alaska) seems to be an influential outlier. We may consider removing this observation from the dataset.
\end{verbatim}
The difference between these two slopes indicates that Alaska is an influential observation. We decide to remove it from the original dataset.

2.3 Sequential Variable Selection

The book uses F-statistics as the criterion to perform the procedures of forward selection and backward elimination presented on page 359. As mentioned on page 359, the entire forward selection procedure required the fitting of only 16 of the 64 possible models presented on Display 12.6 (page 360). These 16 models utilized Expenditure and log(Takers) to predict SAT scores. Further, as mentioned on page 359, the entire backward selection procedure required the fitting of only 3
models of the 64 possible models. These 3 models used Year, Expenditure, Rank and log(Takers) to predict SAT scores.

To the best of our knowledge, RStudio is not equipped to perform stepwise regressions using F-statistics. Instead, we demonstrate this procedure using AIC criterion and get the final model using the following code. Note that we choose log(Taker) as our preliminary predictor for forward selection, because it has the largest F-value when we fitted lm3.

```r
> # Forward Selection
> lm4 = lm(SAT ~ log2(Takers), data=case1201r)
> stepAIC(lm4, scope=list(upper=lm3, lower=~1),
+   direction="forward", trace=FALSE)$anova

Stepwise Model Path
Analysis of Deviance Table

Initial Model:
SAT ~ log2(Takers)

Final Model:
SAT ~ log2(Takers) + Expend + Years + Rank

<table>
<thead>
<tr>
<th>Step</th>
<th>Df</th>
<th>Deviance</th>
<th>Resid. Df</th>
<th>Resid. Dev</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>46369</td>
<td>47</td>
<td>339.8</td>
<td></td>
</tr>
<tr>
<td>2 + Expend</td>
<td>1</td>
<td>20523</td>
<td>46</td>
<td>25846</td>
<td>313.1</td>
</tr>
<tr>
<td>3 + Years</td>
<td>1</td>
<td>1248</td>
<td>45</td>
<td>24598</td>
<td>312.7</td>
</tr>
<tr>
<td>4 + Rank</td>
<td>1</td>
<td>2676</td>
<td>44</td>
<td>21922</td>
<td>309.1</td>
</tr>
</tbody>
</table>

> # Backward Elimination
> stepAIC(lm3, direction="backward", trace=FALSE)$anova

Stepwise Model Path
Analysis of Deviance Table

Initial Model:
SAT ~ log2(Takers) + Income + Years + Public + Expend + Rank

Final Model:
SAT ~ log2(Takers) + Years + Expend + Rank

<table>
<thead>
<tr>
<th>Step</th>
<th>Df</th>
<th>Deviance</th>
<th>Resid. Df</th>
<th>Resid. Dev</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>21397</td>
<td>42</td>
<td>311.9</td>
<td></td>
</tr>
<tr>
<td>2 - Public</td>
<td>1</td>
<td>20.0</td>
<td>43</td>
<td>21417</td>
<td>309.9</td>
</tr>
<tr>
<td>3 - Income</td>
<td>1</td>
<td>505.4</td>
<td>44</td>
<td>21922</td>
<td>309.1</td>
</tr>
</tbody>
</table>
Stepwise Model Path

Analysis of Deviance Table

Initial Model:
SAT ~ log2(Takers) + Income + Years + Public + Expend + Rank

Final Model:
SAT ~ log2(Takers) + Years + Expend + Rank

<table>
<thead>
<tr>
<th>Step</th>
<th>Df</th>
<th>Deviance</th>
<th>Resid. Df</th>
<th>Resid. Dev</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>42</td>
<td>21397</td>
<td>311.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>43</td>
<td>21417</td>
<td>309.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>44</td>
<td>21922</td>
<td>309.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thus, the final model includes log(Takers), Expenditure, Years and Rank.

lm5 = lm(SAT ~ log2(Takers) + Expend + Years + Rank, data=case1201r)

Call:
lm(formula = SAT ~ log2(Takers) + Expend + Years + Rank, data = case1201r)

Residuals:

  Min  1Q Median  3Q Max
-52.30 -9.92  0.60 11.88 59.20

Coefficients:

                  Estimate Std. Error t value Pr(>|t|)
(Intercept)       399.115     232.372    1.72   0.0929
log2(Takers)     -26.409      8.259    -3.20  0.0026
Expend            3.996       0.764     5.23  4.5e-06
Years             13.147      5.478     2.40   0.0207
Rank              4.400       1.899     2.32   0.0252

Residual standard error: 22.3 on 44 degrees of freedom
Multiple R-squared: 0.911, Adjusted R-squared: 0.903
F-statistic: 112 on 4 and 44 DF, p-value: <2e-16

The final model can explain 91.1% percent or the variation of SAT. All of the explanatory variables are statistically significant at the $\alpha = 0.05$ level.
2.4 Model Selection Among All Subsets

The Cp-statistic can be an useful criterion to select model among all subsets. We’ll give an example about how to calculate this statistic for one model, which includes \( \log(\text{Takers}) \), Expenditure, Years and Rank.

\[
\text{sigma5} = \text{summary(lm5)}\$\text{sigma}^2 \quad \# \text{sigma-squared of chosen model}
\]

\[
\text{sigma3} = \text{summary(lm3)}\$\text{sigma}^2 \quad \# \text{sigma-squared of full model}
\]

\[
n = 49 \quad \# \text{sample size}
\]

\[
p = 4+1 \quad \# \text{number of coefficients in model}
\]

\[
\text{Cp} = (n-p) \times \text{sigma5} / \text{sigma3} + (2p-n)
\]

\[
\text{Cp}
\]

\[
[1] \ 4.031
\]

The Cp statistic for this model is 4.0312.
Alternatively, the Cp statistic can be calculated using the following command:

\[
\text{require(leaps)}
\]

\[
\text{explanatory} = \text{with(case1201r, cbind(log(\text{Takers}), \text{Income}, \text{Years}, \text{Public}, \text{Expend}, \text{Rank}))}
\]

\[
\text{with(case1201r, leaps(explanatory, SAT, method="Cp"))}\$\text{which}[27,]
\]

\[
1 \ 2 \ 3 \ 4 \ 5 \ 6 \\
\text{TRUE} \ \text{FALSE} \ \text{TRUE} \ \text{FALSE} \ \text{TRUE} \ \text{TRUE}
\]

This means that the 27th fitting model includes \( \log(\text{Takers}) \), Years and Expend.

\[
\text{with(case1201r, leaps(explanatory, SAT, method="Cp"))}\$\text{Cp}[27]
\]

\[
[1] \ 4.031
\]

The Cp statistic for this model is 4.0312. This will be the the ”tyer” point on the Display 12.9, page 365.

We use the following code to generate the graph presented as Display 12.14 on page 372.

\[
\text{plot(lm5, which=1)}
\]
From the scatterplot, we see that obs 28 (New Hampshire) has the largest residual, while obs 50 (South Carolina) has the smallest.

### 2.5 Contribution of Expend

Display 12.13 (page 363) shows the contribution of Expend to the model.

```r
> lm7 = lm(SAT ~ Expend, data=case1201r)
> summary(lm7)
```

```
Call:
 lm(formula = SAT ~ Expend, data = case1201r)

Residuals:
 Min 1Q Median 3Q Max
-162.5 -57.7 17.0 46.6 141.4

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 961.724 49.888 19.28 <2e-16
Expend -0.592 2.178 -0.27 0.79

Residual standard error: 72.2 on 47 degrees of freedom
Multiple R-squared: 0.00157, Adjusted R-squared: -0.0197
F-statistic: 0.074 on 1 and 47 DF, p-value: 0.787
```

```r
> lm8 = lm(SAT ~ Income + Expend, data=case1201r)
> summary(lm8)
```

```
Call:
 lm(formula = SAT ~ Income + Expend, data = case1201r)

Residuals:
 Min 1Q Median 3Q Max
-91.15 -38.41 -2.58 27.29 159.52

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 604.682 73.209 8.26 1.2e-10
Income 1.127 0.196 5.73 7.2e-07
Expend 0.672 1.695 0.40 0.69

Residual standard error: 55.7 on 46 degrees of freedom
Multiple R-squared: 0.418, Adjusted R-squared: 0.392
F-statistic: 16.5 on 2 and 46 DF, p-value: 3.95e-06
```
3 Sex Discrimination in Employment

Do females receive lower starting salaries than similarly qualified and similarly experience males and did females receive smaller pay increases than males? These are the questions explored in case 12.2 in the Sleuth.

3.1 Summary Statistics

We begin by summarizing the data.

```r
> summary(case1202)

Bsal Sal77 Sex Senior Age
 Min. :3900 Min. : 7860 Female:61 Min. :65.0 Min. :280
 1st Qu.:4980 1st Qu.: 9000 Male :32 1st Qu.:74.0 1st Qu.:349
 Median :5400 Median :10020 Median :84.0 Median :468
 Mean :5420 Mean :10393 Mean :82.3 Mean :474
 3rd Qu.:6000 3rd Qu.:11220 3rd Qu.:90.0 3rd Qu.:590
 Max. :8100 Max. :16320 Max. :98.0 Max. :774

Educ Exper
 Min. : 8.0 Min. : 0.0
 1st Qu.:12.0 1st Qu.: 35.5
 Median :12.0 Median : 70.0
 Mean :12.5 Mean :100.9
 3rd Qu.:15.0 3rd Qu.:144.0
 Max. :16.0 Max. :381.0
```

The data is shown on page 350-351 as display 12.3. A total of 93 employee salaries are included: 61 females and 32 males.

Next we present a full graphical display for the variables within the dataset and the log of the beginning salary variable.

```r
> pairs(~ Bsal+Sex+Senior+Age+Educ+Exper+log(Bsal),
+ lower.panel=panel.smooth, diag.panel=panel.hist,
+ upper.panel=panel.smooth, data=case1202)
```
Through these scatterplots it appears that beginning salary should be on the log scale and the starting model without the effects of gender will be a saturated second-order model with 14 variables including Seniority, Age, Education, Experience, as main effects, quadratic terms, and their full interactions.

3.2 Model Selection

To determine the best subset of these variables we first compared Cp statistics. Display 12.11 shows the Cp statistics for models that meet ‘good practice’ and have small Cp values. We will demonstrate how to calculate the Cp statistics for the two models with the lowest Cp statistics discussed in “Identifying Good Subset Models” on pages 367-368.

The first model includes Seniority, Age, Education, Experience, and the interactions between Seniority and Education, Age and Education, and Age and Experience. The second model includes Seniority, Age, Education, Experience, and the interactions between Age and Education and Age and Experience.

```r
> require(leaps)
> explanatory1 = with(case1202, cbind(Senior, Age, Educ, Exper, Senior*Educ, Age*Educ, Age*Exper)
> # First model (saexnck)
> with(case1202, leaps(explanatory1, log(Bsal), method="Cp")[55])$which

 1 2 3 4 5 6 7
TRUE TRUE TRUE TRUE TRUE TRUE TRUE

> with(case1202, leaps(explanatory1, log(Bsal), method="Cp")[55])$Cp

[1] 8

> # second model (saezck)
> with(case1202, leaps(explanatory1, log(Bsal), method="Cp")[49])$which
```

Statistical Sleuth in R: Chapter 12
This first model has a Cp statistic of 8. Compared to the second model with a Cp statistic of 8.12.

We can also compare models using the BIC, we will next compare the second model with a third model defined as $saexyc = \text{Seniority} + \text{Age} + \text{Education} + \text{Experience} + \text{Experience}^2 + \text{Age} \times \text{Education}$. 

```r
> BIC(lm(log(Bsal) ~ Senior+Age+Educ+Exper+Age*Educ+Age*Exper, data=case1202))
[1] -140.2
> BIC(lm(log(Bsal) ~ Senior+Age+Educ+Exper+(Exper)^2+Age*Educ, data=case1202))
[1] -131.3
```

Thus our final model is the second model, summarized below.

```r
> lm1 = lm(log(Bsal) ~ Senior + Age + Educ + Exper + Age*Educ + Age*Exper, data=case1202)
> summary(lm1)

Call:
 lm(formula = log(Bsal) ~ Senior + Age + Educ + Exper + Age * Educ + Age * Exper, data = case1202)

Residuals:
 Min 1Q Median 3Q Max
-0.28170 -0.04760 0.01320 0.06050 0.23409

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.890e+00 2.451e-01 32.216 <2e-16
Senior -3.152e-03 1.041e-03 -3.038 0.00313
Age 1.242e-03 4.018e-04 3.087 0.00269
Educ 7.203e-02 1.670e-02 4.309 4.2e-05
Exper 2.862e-03 6.670e-04 4.284 4.8e-05
Age:Educ -1.023e-04 3.151e-05 -3.238 0.00166
Age:Exper -3.723e-06 1.022e-06 -3.635 0.00044

Residual standard error: 0.0974 on 86 degrees of freedom
```
Multiple R-squared: 0.469, Adjusted R-squared: 0.431
F-statistic: 12.6 on 6 and 86 DF, p-value: 3.58e-10

### 3.3 Evaluating the Sex Effect

After selecting the model $saexck = \text{Seniority} + \text{Age} + \text{Education} + \text{Experience} + \text{Age} \times \text{Education} + \text{Age} \times \text{Experience}$ we can add the sex indicator variable as summarized on page 360.

```r
> lm2 = lm(log(Bsal) ~ Senior + Age + Educ + Exper + Age*Educ + Age*Exper + Sex, data=case1202)
> summary(lm2)
```

Call:
`lm(formula = log(Bsal) ~ Senior + Age + Educ + Exper + Age * Educ + Age * Exper + Sex, data = case1202)`

Residuals:

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>1Q</th>
<th>Median</th>
<th>3Q</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.17822</td>
<td>-0.05197</td>
<td>-0.00203</td>
<td>0.05301</td>
<td>0.20466</td>
</tr>
</tbody>
</table>

Coefficients:

|                | Estimate | Std. Error | t value | Pr(>|t|) |
|----------------|----------|------------|---------|----------|
| (Intercept)    | 8.16e+00 | 2.21e-01   | 36.99   | < 2e-16  |
| Senior         | -3.48e-03 | 9.09e-04   | -3.83   | 0.00024  |
| Age            | 9.15e-04 | 3.57e-04   | 2.56    | 0.01218  |
| Educ           | 4.23e-02 | 1.57e-02   | 2.70    | 0.00836  |
| Exper          | 2.18e-03 | 5.98e-04   | 3.65    | 0.00045  |
| SexMale        | 1.20e-01 | 2.29e-02   | 5.22    | 1.3e-06  |
| Age:Educ       | -5.46e-05 | 2.91e-05   | -1.88   | 0.06402  |
| Age:Exper      | -3.23e-06 | 8.96e-07   | -3.61   | 0.00052  |

Residual standard error: 0.0853 on 85 degrees of freedom
Multiple R-squared: 0.598, Adjusted R-squared: 0.564
F-statistic: 18 on 7 and 85 DF, p-value: 1.79e-14

In contrast to the book, our reference group is Male, therefore the median male salary is estimated to be 1.13 times as large as the median female salary, adjusted for the other variables.