Package ‘SlidingWindows’
April 11, 2021

Type Package
Title Methods for Time Series Analysis
Description A collection of functions to perform Detrended Fluctuation Analysis (DFA expo-
nent), GUEDES et al. (2019) <doi:10.1016/j.physa.2019.04.132>, Detrended cross-
correlation coefficient (RHOD-
correlation coefficient and Detrended multiple cross-correlation coeffi-
cient (DMC), GUEDES & SILVA-
dows approach.

Version 0.2.0
Date 2021-04-10
Maintainer Everaldo Freitas Guedes <efgestatistico@gmail.com>
License GPL-3
URL https://github.com/efguedes/SlidingWindows
BugReports https://github.com/efguedes/SlidingWindows
NeedsCompilation no
Encoding UTF-8
Imports stats, DCCA, PerformanceAnalytics, nonlinearTseries, TSEntropies
Suggests xts, zoo, quantmod
RoxygenNote 7.1.1
Author Everaldo Freitas Guedes [aut, cre]
(IORCID 0000-0002-2986-7367), Ivan Costa da Cunha Lima [aut]
(IORCID 0000-0002-4525-2346), Gilney Figueira Zebende [aut] (IORCID 0000-0003-2420-9805),
Aloisio Machado Silva-Filho [aut]
(IORCID 0000-0001-8250-1527)
Repository CRAN
Date/Publication 2021-04-11 04:20:02 UTC
R topics documented:

- `descritive.SlidingWindows` 2
- `dfa.SlidingWindows` 3
- `dmc.SlidingWindows` 4
- `dmca.SlidingWindows` 5
- `entropy.SlidingWindows` 6
- `rhodCCA.SlidingWindows` 7
- `SlidingWindows` 8

Index

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>descritive.SlidingWindows</td>
<td>9</td>
</tr>
</tbody>
</table>

Description

This function generates descriptive statistics of a univariate time series with sliding windows approach.

Usage

```r
descritive.SlidingWindows(y, w = 99, skewness = "moment", kurtosis = "moment")
```

Arguments

- `y`
 A vector containing univariate time series.

- `w`
 An integer value indicating the window size \(w < \text{length}(y) \). If \(w = \text{length}(y) \), will be computed the function will not slide.

- `skewness`
 A non-numeric value. See PerformanceAnalytics package.

- `kurtosis`
 A non-numeric value. See PerformanceAnalytics package.

Details

This function include following measures: min, max, mean, median, standard deviation, skewness and kurtosis.

Value

A list containing "w", "min","max","mean", "median", "standard deviation","skewness" and "kurtosis".

References

Examples

```r
y <- rnorm(100)
descriptive.SlidingWindows(y, w=99, skewness="moment", kurtosis="moment")
```

Description

This function generates scaling exponents (long-range correlations) of a univariate time series with sliding windows approach.

Usage

```r
dfa.SlidingWindows(y, w = 98, k = 10, npoints = 15)
```

Arguments

- `y`: A vector containing univariate time series.
- `w`: An integer value indicating the window size `w < length(y)`. If `w = length(y)`, will be computed the function will not slide.
- `k`: An integer value indicating the boundary of the division `(N/k)`. The smallest value of `k` is 4.
- `npoints`: The number of different time scales that will be used to estimate the Fluctuation function in each zone. See nonlinearTseries package.

Details

This function include following measures: alpha_dfa, se_alpha_dfa, r2_alpha_dfa.

Value

A list containing "w", "alpha_dfa", "se_alpha_dfa", "r2_alpha_dfa".

References

dmc.SlidingWindows

Examples

```
y <- rnorm(100)
dfa.SlidingWindows(y, w=99, k=10, npoints=15)
```

dmc.SlidingWindows

Detrended multiple cross-correlation coefficient with sliding windows.

Description

This function generates DMC Coefficient of three time series with sliding windows approach.

Usage

```
dmc.SlidingWindows(x1, x2, y, w = 98, k = 10, method = "rhodcca", nu = 0)
```

Arguments

- **x1**: A vector containing univariate time series.
- **x2**: A vector containing univariate time series.
- **y**: A vector containing univariate time series.
- **w**: An integer value indicating the window size \(w < \text{length}(y) \). If \(w = \text{length}(y) \), the function will not slide.
- **k**: An integer value indicating the boundary of the division \(N/k \). The smallest value of \(k \) is 4.
- **method**: A character string indicating which correlation coefficient is to be used. If method = "rhodcca" (default) the dmc coefficient is generated from the DCCA coefficient. If method = "dmca", the dmc coefficient is generated from the DMCA coefficient.
- **nu**: An integer value. See the DCCA package.

Details

This function include following measures: \(w \), timescale, dmc and cross-correlation between: \(yx1 \), \(yx2 \), \(x1x2 \)

Value

A list containing "w", "dmc", "yx1", "yx2", "x1x2".

References

dmca.SlidingWindows

Examples

```r
x1 <- rnorm(100)
x2 <- rnorm(100)
y <- rnorm(100)
dmc.SlidingWindows(x1,x2,y,w=99,k=10,nu=0, method="rhodcca")
dmc.SlidingWindows(x1,x2,y,w=99,k=10,nu=0, method="dmca")
```

dmca.SlidingWindows
DMCA coefficient with sliding windows.

Description

This function generates Detrending moving-average cross-correlation coefficient of two time series with sliding windows approach.

Usage

```r
dmca.SlidingWindows(x, y, w = 98, k = 10)
```

Arguments

- `x`: A vector containing univariate time series.
- `y`: A vector containing univariate time series.
- `w`: An integer value indicating the window size \(w < \text{length}(y) \). If \(w = \text{length}(y) \), the function will not slide.
- `k`: An integer value indicating the boundary of the division \((N/k) \). The smallest value of \(k \) is 4.

Details

This function includes the following measures: \(w \), timescale, dmca

Value

A list containing "w", "timescale", "dmca".

References

Examples

```r
x <- rnorm(100)
y <- rnorm(100)
dmca.SlidingWindows(x,y,w=99,k=10)
```
Approximate entropy with sliding windows.

Description

This function computes approximate entropy of a univariate time series with sliding windows approach.

Usage

```r
entropy.SlidingWindows(y, w = 99, k = 4, dim = 2, r = 0.5, lag = 1)
```

Arguments

- `y`: A vector containing univariate time series.
- `w`: An integer value indicating the window size \(w < \text{length}(y) \). If \(w = \text{length}(y) \), will be computed the function will not slide.
- `k`: An integer value indicating the boundary of the division \(N/k \). The smallest value of \(k \) is 4.
- `dim`: The dimension of given time series. See TSEntropies package.
- `r`: The radius of searched areas. See TSEntropies package.
- `lag`: The downsampling. See TSEntropies package.

Details

This function return the list with time series sliding windows.

Value

A list containing "w", "ApEn", "FastApEn".

References

Examples

```r
y <- rnorm(100)
entropy.SlidingWindows(y, w=99, k=4, dim=2, r=.2, lag=1)
```
rhodcca.SlidingWindows

Detrended Cross-Correlation Coefficient with sliding windows.

Description

This function generates Detrended Cross-Correlation Coefficient of two time series with sliding windows approach.

Usage

```
rhodcca.SlidingWindows(x, y, w = 98, k = 10, nu = 0)
```

Arguments

- `x`: A vector containing univariate time series.
- `y`: A vector containing univariate time series.
- `w`: An integer value indicating the window size \(w < \text{length}(y) \). If \(w = \text{length}(y) \), will be computed the function will not slide.
- `k`: An integer value indicating the boundary of the division \(N/k \). The smallest value of \(k \) is 4.
- `nu`: An integer value. See DCCA package.

Details

This function include following measures:

- \(w \), timescale, rhodcca

Value

A list containing "w", "timescale", "rhodcca".

References

Examples

```
x <- rnorm(100)
y <- rnorm(100)
rhodcca.SlidingWindows(x, y, w=99, k=10, nu=0)
```
SlidingWindows

Description
This function generates sliding windows approach of a time series.

Usage
SlidingWindows(y, w = 99)

Arguments
y A vector containing univariate time series.
w An integer value indicating the window size $w < \text{length}(y)$. If $w = \text{length}(y)$, will be computed the function will not slide.

Details
This function return the matrix with time series sliding windows.

Value
A list containing "w", "SlidingWindows".

References

Examples
y <- rnorm(100)
SlidingWindows(y,w=99)
Index

descriptive.SlidingWindows, 2
dfa.SlidingWindows, 3
dmc.SlidingWindows, 4
dmca.SlidingWindows, 5

entropy.SlidingWindows, 6

rhodcca.SlidingWindows, 7

SlidingWindows, 8