Package ‘SpaTimeClus’

October 14, 2020

Type Package
Title Model-Based Clustering of Spatio-Temporal Data
Version 1.0.1
Date 2016-12-21
Author Cheam A., Marbac M., and McNicholas P.
Maintainer Matthieu Marbac <matthieu.marbac@gmail.com>
Description Mixture model is used to achieve the clustering goal. Each component is itself a mixture model of polynomial autoregressive regressions whose the logistic weights consider the spatial and temporal information.
Imports methods, Rcpp (>= 0.11.1), parallel
LinkingTo Rcpp, RcppArmadillo
License GPL (>= 2)
Depends R (>= 3.0.2)
RoxygenNote 5.0.1
Repository CRAN
Repository/R-Forge/Project spatimeclus
Repository/R-Forge/Revision 19
Repository/R-Forge/DateTimeStamp 2016-12-21 11:08:44
Date/Publication 2020-10-14 16:34:34 UTC
NeedsCompilation yes

R topics documented:

SpaTimeClus-package ... 2
airparif .. 3
BuildSTCdata ... 3
print ... 4
spatimeclus .. 4
STCcriteria-class ... 5
STCdata-class .. 6
Description

SpaTimeClus is a tool for clustering Spatio-Temporal data.

Details

<table>
<thead>
<tr>
<th>Package</th>
<th>SpaTimeClus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Package</td>
</tr>
<tr>
<td>Version</td>
<td>1.0.0</td>
</tr>
<tr>
<td>Date</td>
<td>2016-12-21</td>
</tr>
<tr>
<td>License</td>
<td>GPL-2</td>
</tr>
<tr>
<td>LazyLoad</td>
<td>yes</td>
</tr>
</tbody>
</table>

The main function of this package is `spatimeclus` that performs the clustering of spatio-temporal data.

Author(s)

Author: Cheam A., Marbac M., and McNicholas P.

References

Cheam A., Marbac M., and McNicholas P., Model-Based Clustering for Spatio-Temporal Data Applied for Air Quality.

Examples

```r
## Not run:
data(airparif)

# Clustering of the data by considering the spatial dependencies
res.spa <- spatimeclus(airparif$obs, G=3, K=4, Q=4, map = airparif$map,
nbinitSmall=50, nbinitKept=5, nbiterSmall=5)
summary(res.spa)
```
Clustering of the data without considering the spatial dependencies

```r
res.nospa <- spatimeclus(airparif$obs, G=3, K=4, Q=4, nbinitSmall=50, nbinitKept=5, nbiterSmall=5)
summary(res.nospa)
```

End(Not run)

Description

`airparif$obs` describes 101 days in 2015 by indicating the quantity of NO2 at 9 sites around Paris during 24 hours.

Details

- `airparif$map` indicates the locations of the 9 sites around Paris where the measures are taken.
- `airparif$datasup` describes the 101 days with meteorological variables.

Examples

```r
data(airparif)
```

BuildSTCdata

**Constructors of the class **`STCdata`

Description

Constructors of the class `STCdata`

Usage

```r
BuildSTCdata(x, map, m = 1:(dim(x)[3]))
```

Arguments

- `x` array. It contains the observations to cluster where the dimensions are respectively: number of the observation, site of the observation, time of the observation.
- `map` matrix. It gives the spatial coordinates of each site.
- `m` numeric. It indicates the moments of observations.

Value

Returns an instance of `STCdata`.
spatimeclus

This function performs the maximum likelihood estimation for a known model in clustering.

Description

This function prints the elements of an instance of **STCresults**.

Usage

```r
## S4 method for signature 'STCresults'
print(x)
```

Arguments

- **x**: an instance of **STCresults**.

spatimeclus

This function performs the maximum likelihood estimation for a known model in clustering.

Description

This function performs the maximum likelihood estimation for a known model in clustering.

Usage

```r
spatimeclus(obs, G, K, Q, map = NULL, m = 1:(dim(obs)[3]), crit = "BIC",
             tol = 0.001, param = NULL, nbcores = 1, nbinitSmall = 500,
             nbinitKept = 50, nbiterSmall = 20, nbiterKept = 500)
```

Arguments

- **obs**: array It contains the observations to cluster where the dimensions are respectively: number of the observation, site of the observation, time of the observation.
- **G**: numeric. It defines possible numbers of components.
- **K**: numeric. It defines possible numbers of regressions per components.
- **Q**: numeric. It defines possible degrees of regressions.
- **map**: matrix. It gives the spatial coordinates of each site.
- **m**: numeric. It indicates the moments of observations (optional, default is 1:T).
- **crit**: character. It indicates the criterion used for the model selection ("AIC", "BIC" or "ICL", optional, default is "BIC").
- **tol**: numeric. The algorithm is stopped when the loglikelihood increases less than tol during two successive iterations (optional, default is 0.001).
param: list of \texttt{STCparam}. It gives the initial values of the EM algorithm (optional, starting point are sampled at random).

nbcores: numeric. It defines the number of cores used by the algorithm, only for Linux and Mac (optional, default is 1).

nbinitSmall: numeric. It defines the number of random initializations (optional, default is 500).

nbinitKept: numeric. It defines the number of chains estimated until convergence (optional, default is 50).

nbiterSmall: numeric. It defines the number of iterations before keeping the nbinitKept best chains (optional, default is 20).

nbiterKept: numeric. It defines the maximum number of iterations before to stop the algorithm; (optional, default is 500).

Value

Returns an instance of \texttt{STCresults}.

Examples

```r
## Not run:
data(airparif)

# Clustering of the data by considering the spatial dependencies
res.spa <- spatimeclus(airparif$obs, G=3, K=4, Q=4, map = airparif$map,
nbinitSmall=50, nbinitKept=5, nbiterSmall=5)
summary(res.spa)

# Clustering of the data without considering the spatial dependencies
res.nospa <- spatimeclus(airparif$obs, G=3, K=4, Q=4, nbinitSmall=50, nbinitKept=5, nbiterSmall=5)
summary(res.nospa)

## End(Not run)
```

\textbf{Description}

- \texttt{loglike}: numeric. It indicates the value of the log-likelihood.
- \texttt{AIC}: numeric. It indicates the value of the AIC criterion.
- \texttt{BIC}: numeric. It indicates the value of the BIC criterion.
- \texttt{ICL}: numeric. It indicates the value of the ICL criterion.

\textbf{Examples}

```r
getslots("STCcriteria")
```
Description

- \(\mathbf{x} \) matrix. It contains the observations. Each column corresponds to an individual. The row indicates the values of each site for each time.
- \(TT \) numeric. It indicates the number of elements of the time grid.
- \(JJ \) numeric. It indicates the number of sites.
- \(n \) numeric. It indicates the number of observations.
- \(\text{map} \) numeric. It indicates the spatial coordinates of each site.

Examples

```r
getSlots("STCdata")
```

STCmodel

This function builds an instance of STCmodel.

Description

This function builds an instance of **STCmodel**.

Usage

```r
STCmodel(G, K, Q, nospatial)
```

Arguments

- \(G \) integer. It defines the number of mixture components.
- \(K \) integer. It defines the number of polynomials for each component.
- \(Q \) integer. It defines the degree of the polynomials.
- \(\text{nospatial} \) binary. It defines if the spatial dependencies are considered (1:no, 0:yes).

Value

Returns an instance of **STCmodel**.
STCmodel-class

Constructor of [STCmodel] class

Description

- \(G \) integer. It defines the number of mixture components.
- \(K \) integer. It defines the number of polynomials for each component.
- \(Q \) integer. It defines the degree of the polynomials.
- \(\text{spatial} \) integer. It defines if the spatial dependencies are considered (1=yes, 0=no).
- \(\text{nbparam} \) integer. It indicates the number of parameters involved by the model.

Examples

```r
getSlots("STCmodel")
```

STCparam-class

Constructor of [STCparam] class

Description

- \(\text{proportions} \) numeric. It defines the component proportions.
- \(\text{lambda} \) list. It defines the logistic coefficients per component.
- \(\text{beta} \) list. It defines the polynomial coefficients per component.
- \(\text{sigma} \) matrix. It defines the variance associated to each polynomial per component.

Examples

```r
getSlots("STCparam")
```
STCpartitions-class
Constructor of [STCpartitions] class

Description

- **hardind** numeric. It indicates the hard partition of the individuals (obtained by the MAP rule applied with the MLE).
- **fuzzyind** matrix. It indicates the fuzzy partition (conditional probability of the component membership) of the individuals.
- **hardseg** list. It indicates the segmentation (most probable polynomial according to the spatial and temporal grid) per components.

Examples

```r
getslots("STCpartitions")
```

STCresults-class
Constructor of [STCresults] class

Description

- **model** STCmodel. It contains the elements relied to the model.
- **data** STCdata. It contains the elements relied to the data.
- **param** STCparam. It contains the elements relied to the parameters.
- **criteria** STCcriteria. It contains the elements relied to the information criteria.
- **partitions** STCpartitions. It contains the elements relied to the partitions.
- **tune** STCtune. It contains the tuning parameters of the algorithm.
- **allmodels** matrix. list of the estimated models and their information criterion.

Examples

```r
getslots("STCresults")
```
Description

tol numeric. The algorithm is stopped when two successive iterations increase the log-likelihood less than tol.

nbinitSmall numeric. Number of random initializations for the short run EM algorithm.

nbinitKept numeric. Number of initializations kept for the long run EM algorithm.

nbiterSmall numeric. Maximum number of iteration before stopping the short run EM algorithm.

nbiterKept numeric. Maximum number of iteration before stopping the long run EM algorithm.

Examples

```
getSlots("STCtune")
```

Description

This function gives the summary of an instance of `STCresults`.

Usage

```
## S4 method for signature 'STCresults'
summary(object)
```

Arguments

- `object` instance of `STCresults`.
Index

* datasets
 airparif, 3

* package
 SpaTimeClus-package, 2

airparif, 3

BuildSTCdata, 3

print, 4
print, STCresults-method (print), 4

SpaTimeClus (SpaTimeClus-package), 2
spatimeclus, 2, 4
SpaTimeClus-package, 2
STCcriteria, 5, 8
STCcriteria-class, 5
STCdata, 3, 6, 8
STCdata-class, 6
STCmodel, 6, 6, 7, 8
STCmodel-class, 7
STCparam, 5, 7, 8
STCparam-class, 7
STCpartitions, 8
STCpartitions-class, 8
STCresults, 4, 5, 8, 9
STCresults-class, 8
STCtune, 8, 9
STCtune-class, 9
summary, 9
summary, STCresults-method (summary), 9