Package ‘StepwiseTest’

September 14, 2016

Type Package

Title Multiple Testing Method to Control Generalized Family-Wise Error Rate and False Discovery Proportion

Version 1.0

Date 2016-09-13

Author Yu-Chin Hsu and Kendro Vincent

Maintainer Kendro Vincent <vincent.kendro@gmail.com>

Description Collection of stepwise procedures to conduct multiple hypotheses testing. The details of the stepwise algorithm can be found in Romano and Wolf (2007) <DOI:10.1214/009053606000001622> and Hsu, Kuan, and Yen (2014) <DOI:10.1093/jjfinec/nbu014>.

License GPL (>= 2)

Imports Rcpp (>= 0.12.2)

Suggests foreach, tseries

LinkingTo Rcpp, RcppArmadillo

NeedsCompilation yes

Repository CRAN

Date/Publication 2016-09-14 18:50:51

R topics documented:

StepwiseTest-package ... 2

Index 4
StepwiseTest-package

Multiple Testing Method to Control Generalized Family-Wise Error Rate and False Discovery Proportion

Description

Collection of stepwise procedures to conduct multiple hypotheses testing. The details of the stepwise algorithm can be found in Romano and Wolf (2005) <DOI:10.1214/009053606000001622> and Hsu, Kuan, and Yen (2014) <DOI:10.1093/jjfinec/nbu014>.

Usage

FWERkControl(test_stat, boot_stat, k, alpha)
FDPControl(test_stat, boot_stat, gamma, alpha)

Arguments

test_stat m x 1 column vector of test statistics
boot_stat m x B matrix of bootstrap statistics
k Number of false rejections
gamma False discovery proportion
alpha The desired FWER(k) or FDP level

Value

Reject: A 0/1 numeric vector where the element \(j \) equals 1 indicates the model \(j \) is significant.
CV: The critical value.

Author(s)

Yu-Chin Hsu and Kendro Vincent
Maintainer: Kendro Vincent <vincent.kendro@gmail.com>

References

Examples

```r
# Specify the model parameters
m_null = 3
m_alt = 7
m = m_null + m_alt
mu = c(rep(0, m_null), rep(0.5, m_alt))
rho = 0.25
omega = (1-rho)*diag(1, m) + rho*matrix(1, m, m)

# generate the data
n = 100
y = mu %*% matrix(1, 1, n) + v %*% matrix(rnorm(m*n), m, n)

# calculate the test statistics and bootstrap statistics
library(foreach)
library(tseries)
B = 100
y_mean = apply(y, 1, mean)
y_sig = apply(y, 1, sd)
t_stat = as.matrix(sqrt(n)*y_mean/y_sig)
s = tsbootstrap(1:n, B, b=2, type="stationary")
b_stat = foreach(i=1:B, .combine=cbind) %do% {
  y_boot = y[, s[, i]]
  y_mean_boot = apply(y_boot, 1, mean)
  sqrt(n)*(y_mean_boot - y_mean)/y_sig
}

# Multiple test that controls FWER(1) at 5% significance level
FWERControl(t_stat, b_stat, 1, 0.05)

# Multiple test that controls FWER(3) at 5% significance level
FWERControl(t_stat, b_stat, 1, 0.05)

# Multiple test that controls FDP(0.1) at 5% significance level
FDPControl(t_stat, b_stat, 0.1, 0.05)
```
Index

FDPCtrl (StepwiseTest-package), 2
FWERkControl (StepwiseTest-package), 2

StepwiseTest (StepwiseTest-package), 2
StepwiseTest-package, 2