Package ‘StratifiedMedicine’

Type Package

Title Stratified Medicine

Version 1.0.4

Author Thomas Jemielita [aut, cre]

Maintainer Thomas Jemielita <thomasjemielita@gmail.com>

Description A toolkit for stratified medicine, subgroup identification, and precision medicine. Current tools include (1) filtering models (reduce covariate space), (2) patient-level estimate models (counterfactual patient-level quantities, such as the conditional average treatment effect), (3) subgroup identification models (find subsets of patients with similar treatment effects), and (4) treatment effect estimation and inference (for the overall population and discovered subgroups). These tools can be customized and are directly used in PRISM (patient response identifiers for stratified medicine; Jemielita and Mehrotra 2019 <arXiv:1912.03337>). This package is in beta and will be continually updated.

License GPL-3

Encoding UTF-8

Depends R (>= 3.6),

Imports dplyr, partykit, ranger, survival, glmnet, ggplot2, ggparty, mvtnorm, coin

RoxygenNote 7.1.1

URL https://github.com/thomasjemielita/StratifiedMedicine

Suggests knitr, rmarkdown, MASS, BART, pROC, survRM2, TH.data, sandwich, rpart, testthat (>= 2.1.0)

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2021-09-02 21:30:02 UTC
filter_train

filter_train: Identify variables of interest

Description

Wrapper function to train a filter model to determine variables associated with the outcome and/or treatment. Options include elastic net (glmnet) and random forest based variable importance (ranger). Used directly in PRISM.

Usage

```r
filter_train(
  Y,
  A,
  X,
  family = "gaussian",
  filter = "glmnet",
  hyper = NULL,
  ...)
```

Arguments

- `Y` The outcome variable. Must be numeric or survival (ex: Surv(time,cens))
- `A` Treatment variable. (Default supports binary treatment, either numeric or factor). "ple_train" accommodates >2 along with binary treatments.
- `X` Covariate space.
filter_train

family Outcome type. Options include "gaussian" (default), "binomial", and "survival".

filter Filter model to determine variables that are likely associated with the outcome and/or treatment. Outputs a potential reduce list of varia where X.star has potentially less variables than X. Default is "glmnet" (elastic net). Other options include "ranger" (random forest based variable importance with p-values). See filter_train for more details. "None" uses no filter.

hyper Hyper-parameters for the filter model (must be list). Default is NULL. See details below.

... Any additional parameters, not currently passed through.

Details

filter_train currently fits elastic net or random forest to find a reduced set of variables which are likely associated with the outcome (Y) and/or treatment (A). Current options include:

1. glmnet: Wrapper function for the function "glmnet" from the glmnet package. Here, variables with estimated elastic net coefficients of 0 are filtered. Uses LM/GLM/cox elastic net for family="gaussian", "binomial", "survival" respectively. Default is to regress Y~ENET(X) with hyper-parameters:
 hyper = list(lambda="lambda.min", family="gaussian",interaction=FALSE))
 If interaction=TRUE, then Y~ENET(X,X*A), and variables with estimated coefficients of zero in both the main effects (X) and treatment-interactions (X*A) are filtered. This aims to find variables that are prognostic and/or predictive.

2. ranger: Wrapper function for the function "ranger" (ranger R package) to calculate random forest based variable importance (VI) p-values. Here, for the test of VI>0, variables are filtered if their one-sided p-value>=0.10. P-values are obtained through subsampling based T-statistics (T=VI_j/SE(VE_j)) for feature j through the delete-d jackknife), as described in Ishwaran and Lu 2017. Used for continuous, binary, or survival outcomes. Default hyper-parameters are:
 hyper=list(b=0.66, K=200, DF2=FALSE, FDR=FALSE, pval.thres=0.10)
 where b=(% of total data to sample; default=66%), K=# of subsamples, FDR (FDR based multiplicity correction for p-values), pval.thres=0.10 (adjust to change filtering threshold). DF2 fits Y~ranger(X, XA) and calculates the VI_2DF = VI_X+VI_XA, which is the variable importance of the main effect + the interaction effect (joint test). Var(VI_2DF) = Var(VI_X)+Var(VI_AX)+2cov(VI_X, VI_AX) where each component is calculated using the subsampling approach described above.

Value

Trained filter model and vector of variable names that pass the filter.

- mod - trained model
- filter.vars - Variables that remain after filtering (could be all)

References

See Also

PRISM

Examples

library(StratifiedMedicine)
Continuous
dat_ctns = generate_subgrp_data(family="gaussian")
Y = dat_ctns$Y
X = dat_ctns$X
A = dat_ctns$A

Fit ple_ranger directly (treatment-specific ranger models)
mod1 = filter_train(Y, A, X, filter="filter_glmnet")
mod1$filter.vars

mod2 = filter_train(Y, A, X, filter="filter_glmnet", hyper=list(interaction=TRUE))
mod2$filter.vars

mod3 = filter_train(Y, A, X, filter="filter_ranger")
mod3$filter.vars

generate_subgrp_data Generate Subgroup Data-sets

Description

Simulation/real data-sets; useful for testing new models and PRISM configurations.

Usage

generate_subgrp_data(n = 800, seed = 513413, family, null = FALSE, ...)

Arguments

n sample size (default=800)
seed seed number (default=513413)
family
null
...

Value

Simulation data set (Y=outcome, A=treatment, X=covariates)

param_combine

Overall Population Estimate: Aggregating Subgroup-Specific Parameter Estimates

Description

Function that combines subgroup-specific estimates to obtain an overall population estimate. Options including sample size weighting and max Z weighting

Usage

```r
param_combine(param.dat, combine = "SS", alpha = 0.05, ...)
```

Arguments

- **param.dat**: Parameter data-set with subgroup-specific point estimates, SEs, and sample sizes.
- **combine**: Method to combine subgroup-specific estimates. Default is "SS", or sample size weighting. Another option is "maxZ" (see Mehrotra and Marceau-West 2021).
- **alpha**: Two-sided alpha level for overall population. Default=0.05
- **...**: Any additional parameters, not currently passed through.

Value

Data-frame with point estimate, SE, and CI
param_est

Parameter Estimation: Across Subgroups

Description

For each identified subgroup, obtain point-estimates and variability metrics (est, SE, CI). fit separate linear regression models. Point-estimates and variability metrics in the overall population are obtained by aggregating subgroup specific results (adaptive weighting or sample size weighting).

Usage

param_est(
 Y,
 A,
 X,
 param,
 mu_hat = NULL,
 Subgrps,
 alpha_ovrl = 0.05,
 alpha_s = 0.05,
 combine = "SS",
 ...
)

Arguments

Y
 The outcome variable. Must be numeric or survival (ex: Surv(time,cens))

A
 Treatment variable. (Default supports binary treatment, either numeric or factor). "ple_train" accommodates >2 along with binary treatments.

X
 Covariate space.

param
 Parameter estimation and inference function. Based on the discovered subgroups, estimate parameter estimates and correspond variability metrics. Options include "lm" (unadjusted linear regression), "dr" (doubly-robust estimator), "gcomp" (G-computation, average the patient-level estimates), "cox" (cox regression), and "rmst" (RMST based estimates as in survRMST package). Default for "gaussian", "binomial" is "dr", while default for "survival" is "cox". Currently only available for binary treatments or A=NULL.

mu_hat
 Patient-level estimates (see ple_train)

Subgrps
 Identified subgroups. Can be pre-specified, or determined adaptively (see submod_train).

alpha_ovrl
 Two-sided alpha level for overall population

alpha_s
 Two-sided alpha level at subgroup

combine
 Given identified subgroups and correspond point-estimates/SEs/sample sizes, combine="SS" will use sample size weighting for estimates at the overall level. Not applicable for param="dr","ple".

...
 Any additional parameters, not currently passed through.
Value

Data-set with parameter estimates and corresponding variability metrics, for overall and subgroups. Subgrps="ovrl" corresponds to the overall population by default.

- param.dat - Parameter estimates and variability metrics (est, SE, LCL/UCL = lower/upper confidence limits, pval = p-value).

References

See Also

param_combine

Examples

library(StratifiedMedicine)

Continuous

dat_ctns = generate_subgrp_data(family="gaussian")
Y = dat_ctns$Y
X = dat_ctns$X
A = dat_ctns$A

Identify Subgroups: MOB (lmtree)
res_lmtree = submod_train(Y, A, X, submod="lmtree")

Parameter-estimation
param.dat = param_est(Y, A, X, param="lm", Subgrps = res_lmtree$Subgrps.train)
param.dat
Usage

ple_train(
 Y,
 A,
 X,
 Xtest = NULL,
 family = "gaussian",
 propensity = FALSE,
 ple = "ranger",
 meta = ifelse(family == "survival", "T-learner", "X-learner"),
 hyper = NULL,
 tau = NULL,
 ...
)

Arguments

Y
 The outcome variable. Must be numeric or survival (ex: Surv(time,cens))
A
 Treatment variable. (Default supports binary treatment, either numeric or factor). "ple_train" accomodates >2 along with binary treatments.
X
 Covariate space.
Xtest
 Test set. Default is NULL (no test predictions). Variable types should match X.
family
 Outcome type. Options include "gaussian" (default), "binomial", and "survival".
propensity
 Propensity score estimation, P(A=a|X). Default=FALSE which use the marginal estimates, P(A=a) (applicable for RCT data). If TRUE, will use the "ple" base learner to estimate P(A=a|X).
ple
 Base-learner used to estimate patient-level equantities, such as the conditional average treatment effect (CATE), E(Y|A=1,X)-E(Y|A=0, X) = CATE(X). Default is random based based through "ranger". "None" uses no ple. See below for details on estimating the treatment contrasts.
meta
 Using the ple model as a base learner, meta-learners can be used for estimating patient-level treatment differences. Options include "T-learner" (treatment specific models), "S-learner" (single model), and "X-learner". For family="gaussian" & "binomial", the default is "X-learner", which uses a two-stage regression approach (See Kunzel et al 2019). For "survival", the default is "T-learner". "X-learner" is currently not supported for survival outcomes.
hyper
 Hyper-parameters for the ple model (must be list). Default is NULL.
tau
 Maximum follow-up time for RMST based estimates (family="survival"). Default=NULL, which takes min(max(time[a])), for a=1,...,A.
...
 Any additional parameters, not currently passed through.

Details

ple_train uses base-learners along with a meta-learner to obtain patient-level estimates under different treatment exposures (see Kunzel et al). For family="gaussian" or "binomial", output estimates
of $\mu(a,x) = E(Y|x,a)$ and treatment differences (average treatment effect or risk difference). For survival, either logHR based estimates or RMST based estimates can be obtained. Current base-learner ("ple") options include:

1. **linear**: Uses either linear regression (family="gaussian"), logistic regression (family="binomial"), or cox regression (family="survival"). No hyper-parameters.

2. **ranger**: Uses random forest ("ranger" R package). The default hyper-parameters are: hyper = list(mtry=NULL, min.node.pct=0.10)

where mtry is number of randomly selected variables (default=NULL; sqrt(dim(X))) and min.node.pct is the minimum node size as a function of the total data size (ex: min.node.pct=10% requires at least 10

3. **glmnet**: Uses elastic net ("glmnet" R package). The default hyper-parameters are: hyper = list(lambda="lambda.min")

where lambda controls the penalty parameter for predictions. lambda="lambda.1se" will likely result in a less complex model.

4. **bart**: Uses bayesian additive regression trees (Chipman et al 2010; BART R package). Default hyper-parameters are:

 hyper = list(sparse=FALSE)

where sparse controls whether to perform variable selection based on a sparse Dirichlet prior rather than simply uniform.

Value

Trained ple models and patient-level estimates for train/test sets.

- mod - trained model(s)
- mu_train - Patient-level estimates (training set)
- mu_test - Patient-level estimates (test set)

References

See Also

PRISM
Examples

```r
library(StratifiedMedicine)
## Continuous ##
dat_ctns = generate_subgrp_data(family="gaussian")
Y = dat_ctns$Y
X = dat_ctns$X
A = dat_ctns$A

# X-Learner (With ranger based learners)
mod1 = ple_train(Y=Y, A=A, X=X, Xtest=X, ple="ranger", method="X-learner")
summary(mod1$mu_train)

# T-Learner (Treatment specific)
mod2 = ple_train(Y=Y, A=A, X=X, Xtest=X, ple="ranger", method="T-learner")
summary(mod2$mu_train)

mod3 = ple_train(Y=Y, A=A, X=X, Xtest=X, ple="bart", method="X-learner")
summary(mod3$mu_train)
```

plot.PRISM

Description

Plots PRISM results. Options include "tree", "forest", "resample", and "PLE:waterfall".

Usage

```r
# S3 method for class 'PRISM'
plot(
  x,
  type = "tree",
  target = NULL,
  grid.data = NULL,
  grid.thres = ">0",
  tree.thres = NULL,
  est.resamp = TRUE,
  tree.plots = "outcome",
  nudge_out = 0.1,
  width_out = 0.5,
  nudge_dens = ifelse(tree.plots == "both", 0.3, 0.1),
  width_dens = 0.5,
  ...
)
```
Arguments

x PRISM object

type Type of plot (default="tree", ggparty based plot with parameter estimates, along with options for including outcome or probability based plots). Other options include "forest" (forest plot for overall and subgroups), "PLE:waterfall" (waterfall plot of PLEs), "PLE:density" (density plot of PLEs), "resample" (resampling distribution of parameter estimates for overall and subgroups), and "heatmap" (heatmap of ple estimates/probabilities). For "tree" and "forest", CIs are based on the observed data unless resampling is used. For bootstrap resampling, if calibrate=TRUE, then calibrated CIs along are shown, otherwise CIs based on the percentile method are shown.

target For "resample" plot only, must be specify which estimand to visualize. Default=NULL.

grid.data Input grid of values for 2-3 covariates (if 3, last variable cannot be continuous). This is required for type="heatmap". Default=NULL.

grid.thres Threshold for PLE, ex: I(PLE>thres). Used to estimate P(PLE>thres) for type="heatmap". Default is ">0". Direction can be reversed and can include equality sign (ex: "<=").

tree.thres Probability threshold, ex: P(Mean(A=1 vs A=0)>c. Default=NULL, which defaults to using ">0", unless param="cox", which "P(HR(A=1 vs A=0)<1". If a density plot is included, setting tree.thres=">c" will use green colors for values above c, and red colors for values below c. If tree.thres="<c", the reverse color scheme is used.

est.resamp Should plot present resampling based estimates? Default=TRUE if bootstrap or CV based resampling is used. Only applicable for type="submod". If bootstrap calibration is used, calibrated CIs are presented. If no calibration, then percentile CIs are presented with the smoothed bootstrap point-estimates.

tree.plots Type of plots to include in each node of the "tree" plot. Default="outcome". For non-survival data, if the fitted PRISM object (x) does not include patient-level estimates (ple="None"), or if param="lm", this will plot the observed outcomes (Y) by the treatment assignment (A). If the fitted PRISM object includes patient-level estimates (ex: ple=ranger), this includes box-plots of the model-based (if param="ple") or double-robust based (if param="dr") counter-factual estimates of E(Y|X,A=a) for continuous outcomes or Prob(Y=1|X,A=a) for binary outcomes (truncated to 0,1). For survival data, Kaplan-Meier based survival estimates are plotted by treatment group. For "density", the estimated probability density of the treatment effects is shown (normal approximation, unless resampling is used). "both" include the "outcome" and "density" plots. If tree.plots = "none", then only the tree structure is shown.

nudge_out Nudge tree outcome plot (see ggparty for details)

width_out Width of tree outcome plot (see ggparty for details)

nudge_dens Nudge tree density plot

width_dens Width of density tree outcome plot

... Additional arguments (currently ignored).
plot_dependence

Value

Plot (ggplot2) object

See Also

PRISM

plot_dependence object

Partial dependence plots: Single Variable (marginal effect) or heat map (2 to 3 variables).

Description

Partial dependence plots: Single Variable (marginal effect) or heat map (2 to 3 variables).

Usage

plot_dependence(object, X = NULL, target = NULL, vars, grid.data = NULL, ...)

Arguments

object: Fitted ple_train or PRISM object
X: input covariate space. Default=NULL.
target: Which patient-level estimate to target for PDP based plots. Default=NULL, which uses the estimated treatment difference.
vars: Variables to visualize (ex: c("var1", "var2", "var3")). If no grid.data provided, defaults to using seq(min(var), max(var)) for each continuous variables. For categorical, uses all categories.
grid.data: Input grid of values for 2-3 covariates (if 3, last variable cannot be continuous). This is required for type="heatmap". Default=NULL.
...
Additional arguments (currently ignored).

Value

Plot (ggplot2) object

References

Examples

```r
library(StratifiedMedicine)
## Continuous ##
dat_ctns = generate_subgrp_data(family="gaussian")
Y = dat_ctns$Y
X = dat_ctns$X
A = dat_ctns$A

# Fit through ple_train wrapper #
mod = ple_train(Y=Y, A=A, X=X, Xtest=X, ple="ranger", meta="X-learner")
plot_dependence(mod, X=X, vars="X1")
```

plot_importance
Importance Plot: Visualize relative importance of variables

Description

Importance is currently based on the PRISM filter model. For elastic net (filter_glmnet), variables with non-zero coefficients are shown. For random forest variable importance (filter_ranger), variables are sorted by their p-values, and "top_n" will show only the "top_n" most importance variables (based on p-values).

Usage

```r
plot_importance(object, top_n = NULL, ...)
```

Arguments

- `object`: PRISM object
- `top_n`: Show top_n variables only, default=NULL (show all)
- `...`: Additional arguments (currently ignored).

Value

Plot (ggplot2) object

Examples

```r
library(StratifiedMedicine)
## Continuous ##
dat_ctns = generate_subgrp_data(family="gaussian")
Y = dat_ctns$Y
X = dat_ctns$X
A = dat_ctns$A
```
mod1 = filter_train(Y=Y, A=A, X=X)
plot_importance(mod1)

plot_ple

Plot Patients Level Estimate Plot (plot_ple): Visualize distribution of estimates

Description

Plots based on Patient-level estimate (see ple_train) model results. Options include "waterfall" and "density". Target controls which column of "mu_train" (from ple_train object) is shown on the plot.

Usage

plot_ple(object, target = NULL, type = "waterfall", ...)

Arguments

- **object**
 - ple_train object
- **target**
 - Which patient-level estimate to visualize. Default=NULL, which uses the estimated treatment difference.
- **type**
 - Type of plot. Default="waterfall"; type="density" shows density plot.
- **...**
 - Additional arguments (currently ignored).

Value

Plot (ggplot2) object

Examples

```r
library(StratifiedMedicine)
## Continuous ##
dat_ctns = generate_subgrp_data(family="gaussian")
Y = dat_ctns$Y
X = dat_ctns$X
A = dat_ctns$A

mod1 = ple_train(Y=Y, A=A, X=X, Xtest=X, ple="ranger", meta="X-learner")
plot_ple(mod1)
```
predict.ple_train Patient-level Estimates Model: Prediction

Description

Prediction function for the trained patient-level estimate (ple) model.

Usage

```r
## S3 method for class 'ple_train'
predict(object, newdata = NULL, ...)
```

Arguments

- `object` Trained ple model.
- `newdata` Data-set to make predictions at (Default=NULL, predictions correspond to training data).
- `...` Any additional parameters, not currently passed through.

Value

Data-frame with predictions (depends on trained ple model).

See Also

PRISM

Examples

```r
library(StratifiedMedicine)
## Continuous ##
dat_ctns = generate_subgrp_data(family="gaussian")
Y = dat_ctns$Y
X = dat_ctns$X
A = dat_ctns$A

mod1 = ple_train(Y=Y, A=A, X=X, Xtest=X, ple="ranger", meta="X-learner")
summary(mod1$mu_train)
res1 = predict(mod1, newdata=X)
summary(res1)
```
predict.PRISM

PRISM: Patient Response Identifier for Stratified Medicine (Predictions)

Description

Predictions for PRISM algorithm. Given the training set \((Y,A,X)\) or new test set \((X_{\text{test}})\), output ple predictions and identified subgroups with correspond parameter estimates.

Usage

```r
## S3 method for class 'PRISM'
predict(object, newdata = NULL, type = "all", ...)
```

Arguments

- `object`
 Trained PRISM model.

- `newdata`
 Data-set to make predictions at (Default=NULL, predictions correspond to training data).

- `type`
 Type of prediction. Default is "all" (ple, submod, and param predictions). Other options include "ple" (ple predictions), "submod" (submod predictions with associated parameter estimates).

- `...`
 Any additional parameters, not currently passed through.

Value

Data-frame with predictions (ple, submod, or both).

Examples

```r
## Load library ##
library(StratifiedMedicine)

##### Examples: Continuous Outcome #######

dat_ctns = generate_subgrp_data(family="gaussian")
Y = dat_ctns$Y
X = dat_ctns$X
A = dat_ctns$A

# Run Default: filter_glmnet, ple_ranger, lmtree, param_ple #
res0 = PRISM(Y=Y, A=A, X=X)
summary(predict(res0, X)) # all #
summary(predict(res0, X, type="ple"))
summary(predict(res0, X, type="submod"))
```
predict.submod_train

Subgroup Identification: Train Model (Predictions)

Description

Prediction function for the trained subgroup identification model (submod).

Usage

```r
## S3 method for class 'submod_train'
predict(object, newdata = NULL, ...)
```

Arguments

- `object` Trained submod model.
- `newdata` Data-set to make predictions at (Default=NULL, predictions correspond to training data).
- `...` Any additional parameters, not currently passed through.

Value

Identified subgroups with subgroup-specific predictions (depends on subgroup model)

- **Subgrps** - Identified subgroups
- **pred** - Predictions, depends on subgroup model

Examples

```r
library(StratifiedMedicine)
## Continuous ##
dat_ctns = generate_subgrp_data(family="gaussian")
Y = dat_ctns$Y
X = dat_ctns$X
A = dat_ctns$A

# Fit through submod_train wrapper #
mod1 = submod_train(Y=Y, A=A, X=X, Xtest=X, submod="submod_lmtree")
out1 = predict(mod1)
table(mod1$Subgrps.train)
table(out1$Subgrps)
```
PRISM

Description

PRISM algorithm. Given a data-set of (Y, A, X) (Outcome, treatment, covariates), the PRISM identifies potential subgroups along with point-estimate and variability metrics; with and without resampling (bootstrap or cross-validation based). This four step procedure (filter, ple, submod, param) is flexible and accepts user-inputs at each step.

Usage

PRISM(
 Y,
 A = NULL,
 X,
 Xtest = NULL,
 family = "gaussian",
 filter = "glmnet",
 ple = "ranger",
 submod = NULL,
 param = NULL,
 meta = ifelse(family == "survival", "T-learner", "X-learner"),
 pool = "no",
 delta = ">0",
 propensity = FALSE,
 combine = "SS",
 alpha_ovrl = 0.05,
 alpha_s = 0.05,
 filter.hyper = NULL,
 ple.hyper = NULL,
 submod.hyper = NULL,
 resample = NULL,
 stratify = "trt",
 R = NULL,
 resample_submod = NULL,
 R_submod = NULL,
 calibrate = FALSE,
 alpha.mat = NULL,
 filter.resamp = NULL,
 ple.resamp = NULL,
 verbose = TRUE,
 verbose.resamp = FALSE,
 seed = 777
)
Arguments

Y The outcome variable. Must be numeric or survival (ex: Surv(time,cens))

A Treatment variable. (Default supports binary treatment, either numeric or factor). "ple_train" accomodates >2 along with binary treatments.

X Covariate space.

Xtest Test set. Default is NULL (no test predictions). Variable types should match X.

family Outcome type. Options include "gaussion" (default), "binomial", and "survival".

filter Filter model to determine variables that are likely associated with the outcome and/or treatment. Outputs a potential reduce list of varia where X.star has potentially less variables than X. Default is "glmnet" (elastic net). Other options include "ranger" (random forest based variable importance with p-values). See filter_train for more details. "None" uses no filter.

ple Base-learner used to estimate patient-level equantities, such as the conditional average treatment effect (CATE), E(Y|A=1,X)-E(Y|A=0, X) = CATE(X). Default is random based based through "ranger". "None" uses no ple. See below for details on estimating the treatment contrasts.

submod Subgroup identification model function. Options include tree-methods that target the treatment by variable interaction directly ("lmtree", "glmmtree", "mob_weib"), regress the CATE ("rpart_cate", "ctree_cate"), and target prognostic variables ("rpart", "ctree"). Default for family="gaussian" is "lmtree" (MOB with OLS loss). For "binomial" the default is "glmmtree" (MOB with binomial loss). Default for "survival" is "lmtree" (log-rank transformation on survival outcomes and then fit MOB-OLS). "None" uses no submod. Currently only available for binary treatments or A=NULL.

param Parameter estimation and inference function. Based on the discovered subgroups, estimate parameter estimates and correspond variability metrics. Options include "lm" (unadjusted linear regression), "dr" (doubly-robust estimator), "gcomp" (G-computation, average the patient-level estimates), "cox" (cox regression), and "rmst" (RMST based estimates as in survRMST package). Default for "gaussion", "binomial" is "dr", while default for "survival" is "cox". Currently only available for binary treatments or A=NULL.

meta Using the ple model as a base learner, meta-learners can be used for estimating patient-level treatment differences. Options include "T-learner" (treatment specific models), "S-learner" (single model), and "X-learner". For family="gaussian" & "binomial", the default is "X-learner", which uses a two-stage regression approach (See Kunzel et al 2019). For "survival", the default is "T-learner". "X-learner" is currently not supported for survival outcomes.

pool Whether to pool the initial identified subgroups (ex: tree nodes). Default = "no". Other options include "ttestf" or "ttestf_boot" (check if naive or bootstrap treatment estimate is beyond clinical meaningful threshold delta, ex: ttestf_boot > 0), and optimal treatment regime (OTR) pooling, "otr:logistic", "otr:rf", "otr:logistic" fits weighted logistic regression with I(mu_1-mu_0>delta) as the outcome, the candidate subgroups as covariates, and weights=abs((mu_1-mu_0) - delta). "otr:rf" follows the same approach but with weighted random forest, and also includes X in the regression. Regardless of the pooling approach, the key output is
"trt_assign", a data-frame with the initial subgroups and the pooled subgroups (ex: dopt=1, patient should receive A=1, vs dopt=0, patient should receive A=0).

delta
Threshold for defining benefit vs non-benefitting patients. Only applicable for submod="otr", and if pooling is used (see "pool"). Default=">0".

propensity
Propensity score estimation, P(A=a|X). Default=FALSE which use the marginal estimates, P(A=a) (applicable for RCT data). If TRUE, will use the "ple" base learner to estimate P(A=a|X).

combine
Method of combining group-specific point-estimates. Options include "SS" (sample size weighting), and "maxZ" (see: Mehrotra and Marceau-West). This is used for pooling (ex: within dopt=1 groups, aggregate group-specific treatment estimates), and for calculating the overall population treatment effect estimate.

alpha_ovrl
Two-sided alpha level for overall population. Default=0.05

alpha_s
Two-sided alpha level at subgroup level. Default=0.05

filter.hyper
Hyper-parameters for the filter function (must be list). Default is NULL.

ple.hyper
Hyper-parameters for the PLE function (must be list). Default is NULL.

submod.hyper
Hyper-parameters for the submod function (must be list). Default is NULL.

resample
Resampling method for resample-based treatment effect estimates and variability metrics. Options include "Bootstrap" and "CV" (cross-validation). Default=NULL (No resampling).

stratify
Stratified resampling? Default="trt" (stratify by A). Other options include "sub" (stratify by the identified subgroups), "trt_sub" (stratify by A and the identified subgroups), and "no" (no stratification).

R
Number of resamples (default=NULL; R=100 for Permutation/Bootstrap and R=5 for CV). This resamples the entire PRISM procedure.

resample_submod
For submod only, resampling method for treatment effect estimates. Options include "Bootstrap" or NULL (no resampling).

R_submod
For submod only, number of resamples for treatment effect estimates. Only applicable if resample_submod="Bootstrap" and/or pool="trteff_boot".

calibrate
Bootstrap calibration for nominal alpha (Loh et al 2016). Default=FALSE. For TRUE, outputs the calibrated alpha level and calibrated CIs for the overall population and subgroups. Not applicable for permutation or CV resampling.

alpha.mat
Grid of alpha values for calibration. Default=NULL, which uses seq(alpha/1000,alpha,by=0.005) for alpha_ovrl/alpha_s.

filter.resamp
Filter function during re-sampling. Default=NULL (uses "filter"). If "None", the "filter" model is not trained in each resample, and instead use filtered variables from the observed data "filter" step. (less computationally expensive).

ple.resamp
Ple function during re-sampling. Default=NULL (uses "ple"). If "None", the "ple" model is not training in each resample, and instead the original model estimates are resampled (less computationally expensive).

verbose
Detail progress of PRISM? Default=TRUE

verbose.resamp
Output iterations during resampling? Default=FALSE

seed
Seed for PRISM run (Default=777)
Details

PRISM is a general framework with five key steps:

0. Estimand: Determine the question of interest (ex: mean treatment difference)

1. Filter (filter): Reduce covariate space by removing noise covariates. Options include elastic net ("glmnet") and random forest variable importance ("ranger").

2. Patient-Level Estimates (ple): Estimate counterfactual patient-level quantities, for example, the conditional average treatment effect (CATE), \(E(Y|A=1,X)-E(Y|A=0,X)\). This calls the "ple_train" function, and follows the framework of Kunzel et al 2019. Base-learners include random forest ("ranger"), BART ("bart"), elastic net ("glmnet"), and linear models (LM, GLM, or Cox regression). Meta-learners include the "S-Learner" (single model), "T-learner" (treatment specific models), and "X-learner" (2-stage approach).

3. Subgroup Model (submod): Currently uses tree-based methods to identify predictive and/or prognostic subgroups. Options include MOB OLS ("lmtree"), MOB GLM ("glmmtree"), MOB Weibull ("mob_weib"), conditional inference trees ("ctree", \(Y\sim ctree(X)\); "ctree_cate", CATE\sim ctree(X)), and recursive partitioning and regression trees ("rpart", \(Y\sim rpart(X)\); "rpart_cate", CATE\sim rpart(X)), and optimal treatment regimes ("otr").

4. Treatment Effect Estimation (param): For the overall population and the discovered subgroups (if any), obtain treatment effect point-estimates and variability metrics. Options include: cox regression ("cox"), double robust estimator ("dr"), linear regression ("lm"), average of patient-level estimates ("gcomp"), and restricted mean survival time ("rmst").

Steps 1-4 also support user-specific models. If treatment is provided (A!=NULL), the default settings are as follows:

Y is continuous (family="gaussian"): Elastic Net Filter ==> X-learner with random forest ==> MOB (OLS) ==> Double Robust estimator

Y is binary (family="binomial"): Elastic Net Filter ==> X-learner with random forest ==> MOB (GLM) ==> Double Robust estimator

Y is right-censored (family="survival"): Elastic Net Filter ==> T-learner with random forest ==> MOB (Weibull) ==> Cox regression

If treatment is not provided (A=NULL), the default settings are as follows:

Y is continuous (family="gaussian"): Elastic Net Filter ==> Random Forest ==> ctree ==> linear regression

Y is binary (family="binomial"): Elastic Net Filter ==> Random Forest ==> ctree ==> linear regression

Y is right-censored (family="survival"): Elastic Net Filter ==> Survival Random Forest ==> ctree ==> RMST

Value

Trained PRISM object. Includes filter, ple, submod, and param outputs.

- filter.mod - Filter model
- filter.vars - Variables remaining after filtering
- ple.fit - Fitted ple model (model fit, other fit outputs)
• mu_train - Patient-level estimates (train)
• mu_test - Patient-level estimates (test)
• submod.fit - Fitted submod model (model fit, other fit outputs)
• out.train - Training data-set with identified subgroups
• out.test - Test data-set with identified subgroups
• Rules - Subgroup rules / definitions
• param.dat - Parameter estimates and variability metrics (depends on param)
• resamp.dist - Resampling distributions (NULL if no resampling is done)

References

Examples

```r
## Load library ##
library(StratifiedMedicine)

## Examples: Continuous Outcome ##

dat_ctns = generate_subgrp_data(family="gaussian")
Y = dat_ctns$Y
X = dat_ctns$X
A = dat_ctns$A

# Run Default: glmnet, ranger (X-learner), lmtree, dr#
res0 = PRISM(Y=Y, A=A, X=X)
summary(res0)
plot(res0)

res1 = PRISM(Y=Y, A=A, X=X, filter="None")
summary(res1)
plot(res1)

# Search for Prognostic Only (omit A from function) #
```
res3 = PRISM(Y=Y, X=X)
summary(res3)
plot(res3)

With bootstrap (No filtering)
library(ggplot2)
res_boot = PRISM(Y=Y, A=A, X=X, resample = "Bootstrap", R=50, verbose.resamp = TRUE)
Plot of distributions and P(est>0)
plot(res_boot, type="resample", estimand = "E(Y|A=1)-E(Y|A=0)") +
 geom_vline(xintercept = 0)
aggregate(I(est>0)~Subgrps, data=res_boot$resamp.dist, FUN="mean")

Examples: Binary Outcome
dat_bin = generate_subgrp_data(family="binomial")
Y = dat_bin$Y
X = dat_bin$X
A = dat_bin$A

Run Default: glmnet, ranger, glmtree, dr
res0 = PRISM(Y=Y, A=A, X=X)
plot(res0)

Survival Data
library(survival)
library(ggplot2)
require(TH.data); require(coin)
data("GBSG2", package = "TH.data")
surv.dat = GBSG2
Design Matrices
Y = with(surv.dat, Surv(time, cens))
X = surv.dat[,!(colnames(surv.dat) %in% c("time", "cens"))]
set.seed(513)
A = rbinom(n = dim(X)[1], size=1, prob=0.5)

PRISM: glmnet ==> Random Forest to estimate Treatment-Specific RMST
==> MOB (Weibull) ==> Cox for HRs#
res_weib = PRISM(Y=Y, A=A, X=X)
plot(res_weib, type="PLE:waterfall")
plot(res_weib)

PRISM: glmnet ==> Random Forest to estimate Treatment-Specific RMST
==> OTR (CTREE, uses RMST estimates as input) ==> Cox for HRs
res_otr = PRISM(Y=Y, A=A, X=X)
plot(res_otr)
PRISM: ENET ==> CTREE ==> Cox; with bootstrap#
res_cctree1 = PRISM(Y=Y, A=A, X=X, ple="None", submod = "ctree",
 resample="Bootstrap", R=50, verbose.resamp = TRUE)
plot(res_cctree1)
plot(res_cctree1, type="resample", estimand="HR(A=1 vs A=0)")+geom_vline(xintercept = 1)
aggregate(I(est<0)~Subgrps, data=res_cctree1$resamp.dist, FUN="mean")

submod_train

Subgroup Identification: Train Model

Description

Wrapper function to train a subgroup model (submod). Outputs subgroup assignments and fitted model.

Usage

```r
submod_train(
  Y,
  A,
  X,
  Xtest = NULL,
  mu_train = NULL,
  family = "gaussian",
  submod,
  hyper = NULL,
  ple = "ranger",
  ple.hyper = NULL,
  meta = ifelse(family == "survival", "T-learner", "X-learner"),
  propensity = FALSE,
  pool = "no",
  delta = ">0",
  param = NULL,
  resample_submod = NULL,
  R_submod = 20,
  combine = "SS",
  alpha_ovrl = 0.05,
  alpha_s = 0.05,
  verbose.resamp = FALSE,
  ...
)
```

Arguments

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>The outcome variable. Must be numeric or survival (ex: Surv(time,cens))</td>
</tr>
</tbody>
</table>
A

Treatment variable. (Default supports binary treatment, either numeric or factor). "ple_train" accommodates >2 along with binary treatments.

X

Covariate space.

Xtest

Test set. Default is NULL (no test predictions). Variable types should match X.

mu_train

Patient-level estimates in training set (see ple_train). Default=NULL

family

Outcome type. Options include "gaussian" (default), "binomial", and "survival".

submod

Subgroup identification model function. Options include tree-methods that target the treatment by variable interaction directly ("lmtree", "glmmtree", "mob_weib"), regress the CATE ("rpart_cate", "ctree_cate"), and target prognostic variables ("rpart", "ctree"). Default for family="gaussian" is "lmtree" (MOB with OLS loss). For "binomial" the default is "glmmtree" (MOB with binomial loss). Default for "survival" is "lmtree" (log-rank transformation on survival outcomes and then fit MOB-OLS). "None" uses no submod. Currently only available for binary treatments or A=NULL.

hyper

Hyper-parameters for submod (must be list). Default is NULL.

ple

Base-learner used to estimate patient-level quantities, such as the conditional average treatment effect (CATE), \(E(Y|A=1,X) - E(Y|A=0, X) = \text{CATE}(X)\). Default is random based based through "ranger". "None" uses no ple. See below for details on estimating the treatment contrasts.

ple.hyper

Hyper-parameters for the PLE function (must be list). Default is NULL.

meta

Using the ple model as a base learner, meta-learners can be used for estimating patient-level treatment differences. Options include "T-learner" (treatment specific models), "S-learner" (single model), and "X-learner". For family="gaussian" & "binomial", the default is "X-learner", which uses a two-stage regression approach (See Kunzel et al 2019). For "survival", the default is "T-learner". "X-learner" is currently not supported for survival outcomes.

propensity

Propensity score estimation, \(P(A=a|X)\). Default=FALSE which use the marginal estimates, \(P(A=a)\) (applicable for RCT data). If TRUE, will use the "ple" base learner to estimate \(P(A=a|X)\).

pool

Whether to pool the initial identified subgroups (ex: tree nodes). Default = "no". Other options include "trteff" or "trteff_boot" (check if naive or bootstrap treatment estimate is beyond clinical meaningful threshold delta, ex: trteff_boot > 0), and optimal treatment regime (OTR) pooling, "otr:logistic", "otr:rf". "otr:logistic" fits weighted logistic regression with \(I(\mu_1-\mu_0>\delta)\) as the outcome, the candidate subgroups as covariates, and weights=abs((\(\mu_1-\mu_0\)) - \(\delta\)). "otr:rf" follows the same approach but with weighted random forest, and also includes X in the regression. Regardless of the pooling approach, the key output is "trt_assign", a data-frame with the initial subgroups and the pooled subgroups (ex: dopt=1, patient should receive A=1, vs dopt=0, patient should receive A=0).

delta

Threshold for defining benefit vs non-benefiting patients. Only applicable for submod="otr", and if pooling is used (see "pool"). Default=">0".

param

Parameter estimation and inference function. Based on the discovered subgroups, estimate parameter estimates and correspond variability metrics. Options include "lm" (unadjusted linear regression), "dr" (doubly-robust estimator), "gcomp" (G-computation, average the patient-level estimates), "cox" (cox
regression), and "rmst" (RMST based estimates as in survRMST package). Default for "gaussian", "binomial" is "dr", while default for "survival" is "cox". Currently only available for binary treatments or A=NULL.

resample_submod
For submod only, resampling method for treatment effect estimates. Options include "Bootstrap" or NULL (no resampling).

R_submod
For submod only, number of resamples for treatment effect estimates. Only applicable if resample_submod="Bootstrap" and/or pool="trteff_boot".

combine
Method of combining group-specific point-estimates. Options include "SS" (sample size weighting), and "maxZ" (see: Mehrotra and Marceau-West). This is used for pooling (ex: within dopt=1 groups, aggregate group-specific treatment estimates), and for calculating the overall population treatment effect estimate.

alpha_ovrl
Two-sided alpha level for overall population. Default=0.05

alpha_s
Two-sided alpha level at subgroup level. Default=0.05

verbose.resamp
Output iterations during resampling? Default=FALSE

... Any additional parameters, not currently passed through.

Details
submod_train currently fits a number of tree-based subgroup models, most of which aim to find subgroups with varying treatment effects (i.e. predictive variables). Let E(Y|A=1,X)-E(Y|A=0,X) = CATE(X) correspond to the estimated conditional average treatment effect. Current options include:

1. lmtree: Wrapper function for the function "lmtree" from the partykit package. Here, model-based partitioning (MOB) with an OLS loss function, Y~MOB_OLS(A,X), is used to identify prognostic and/or predictive variables. If the outcome Y is survival, then this outcome will first be transformed via log-rank scores (coin::logrank_trafo(Y)).
 Default hyper-parameters are: hyper = list(alpha=0.05, maxdepth=4, parm=NULL, minsize=floor(dim(X)[1]*0.10)).

2. glmtree: Wrapper function for the function "glmtree" from the partykit package. Here, model-based partitioning (MOB) with GLM binomial + identity link loss function, (Y~MOB_GLM(A,X)), is used to identify prognostic and/or predictive variables.
 Default hyper-parameters are: hyper = list(link="identity", alpha=0.05, maxdepth=4, parm=NULL, minsize=floor(dim(X)[1]*0.10)).

3. ctree / ctree_cate: Wrapper function for the function "ctree" from the partykit package. Here, conditional inference trees are used to identify either prognostic ("ctree"), Y~CTREE(X), or predictive variables, CATE(X) ~ CTREE(X).
 Default hyper-parameters are: hyper = list(alpha=0.10, minbucket = floor(dim(X)[1]*0.10), maxdepth = 4).

4. rpart / rpart_cate: Recursive partitioning through the "rpart" R package. Here, recursive partitioning and regression trees are used to identify either prognostic ("rpart"), Y~rpart(X), or predictive variables ("rpart_cate"), CATE(X)~rpart(X).
 Default hyper-parameters are: hyper = list(alpha=0.10, minbucket = floor(dim(X)[1]*0.10), maxdepth = 4).
5. mob_weib: Wrapper function for the function "mob" with weibull loss function using the partykit package. Here, model-based partitioning (MOB) with weibull loss (survival), \(Y \sim \text{MOB}_\text{WEIB}(A,X) \), is used to identify prognostic and/or predictive variables.
 Default hyper-parameters are: \(\text{hyper} = \text{list} (\alpha=0.10, \text{maxdepth}=4, \text{parm}=\text{NULL}, \text{minsize} = \text{floor}(\text{dim}(X)[1]*0.10)) \).

6. otr: Optimal treatment regime approach using "ctree". Based on CATE estimates and clinically meaningful threshold delta (ex: >0), fit \(I(\text{CATE} > \delta) \sim \text{CTREE}(X) \) with weights=abs(CATE-\(\delta \)).
 Default hyper-parameters are: \(\text{hyper} = \text{list} (\alpha=0.10, \text{minbucket} = \text{floor}(\text{dim}(X)[1]*0.10), \text{maxdepth} = 4, \text{delta} = ">0") \).

Value

Trained subgroup model and subgroup predictions/estimates for train/test sets.

- mod - trained subgroup model
- Subgrps.train - Identified subgroups (training set)
- Subgrps.test - Identified subgroups (test set)
- pred.train - Predictions (training set)
- pred.test - Predictions (test set)
- Rules - Definitions for subgroups, if provided in fitted submod output.

References

See Also

PRISM

Examples

```r
library(StratifiedMedicine)
## Continuous ##
dat_ctns = generate_subgrp_data(family="gaussian")
Y = dat_ctns$Y
X = dat_ctns$X
```
\begin{verbatim}
A = dat_ctns$A

Fit through submod_train wrapper
mod1 = submod_train(Y=Y, A=A, X=X, Xtest=Xtest, submod="submod_lmtree")
table(mod1$Subgrps.train)
plot(mod1fitmod)
mod1$trt_eff
\end{verbatim}

Description

Predictions for PRISM algorithm. Given the training set (Y,A,X) or new test set (Xtest), output predictions and identified subgroups with correspond parameter estimates.

Usage

```r
## S3 method for class 'PRISM'
summary(object, ...)
```

Arguments

- `object`: Trained PRISM model.
- `...`: Any additional parameters, not currently passed through.

Value

List of key PRISM outputs: (1) Configuration, (2) Variables that pass filter (if filter is used), (3) Number of Identified Subgroups, and (4) Parameter Estimates, SEs, and CIs for each subgroup/estimand.
Index

filter_train, 2

generate_subgrp_data, 4

param_combine, 5, 7
param_est, 6
ple_train, 7
plot.PRISM, 10
plot_dependence, 12
plot_importance, 13
plot_ple, 14
predict.ple_train, 15
predict.PRISM, 16
predict.submod_train, 17
PRISM, 4, 9, 12, 15, 18, 27

submod_train, 24
summary.PRISM, 28