Package ‘TRES’

October 20, 2021

Type Package
Title Tensor Regression with Envelope Structure
Version 1.1.5
Date 2021-10-19
Description Provides three estimators for tensor response regression (TRR) and tensor predictor regression (TPR) models with tensor envelope structure. The three types of estimation approaches are generic and can be applied to any envelope estimation problems. The full Grassmannian (FG) optimization is often associated with likelihood-based estimation but requires heavy computation and good initialization; the one-directional optimization approaches (1D and ECD algorithms) are faster, stable and does not require carefully chosen initial values; the SIMPLS-type is motivated by the partial least squares regression and is computationally the least expensive. For details of TRR, see Li L, Zhang X (2017) <doi:10.1080/01621459.2016.1193022>. For details of TPR, see Zhang X, Li L (2017) <doi:10.1080/00401706.2016.1272495>. For details of 1D algorithm, see Cook RD, Zhang X (2016) <doi:10.1080/10618600.2015.1029577>. For details of ECD algorithm, see Cook RD, Zhang X (2018) <doi:10.5705/ss.202016.0037>. For more details of the package, see Zeng J, Wang W, Zhang X (2021) <doi:10.18637/jss.v099.i12>.

License GPL-3
Encoding UTF-8
Language en-US
LazyData true
Depends R (>= 3.6.0), ManifoldOptim (>= 1.0.0)
Imports MASS, methods, pracma (>= 2.2.5), rTensor (>= 1.4), stats
URL https://github.com/leozeng15/TRES
BugReports https://github.com/leozeng15/TRES/issues
RcppModules ManifoldOptim_module
RoxygenNote 7.1.2
NeedsCompilation no
Repository CRAN

Suggests testthat (>= 2.1.0)

Author Wenjing Wang [aut],
 Jing Zeng [aut, cre],
 Xin Zhang [aut]

Maintainer Jing Zeng <jing.zeng@stat.fsu.edu>

Date/Publication 2021-10-20 05:20:16 UTC

R topics documented:

TRES-package .. 3
bat ... 4
ECD ... 5
EEG ... 6
FGfun ... 8
kroncov ... 9
manifold1D ... 10
manifoldFG ... 11
MenvU_sim ... 13
oneD_bic ... 14
OptM1D ... 16
OptMFG ... 17
OptStiefelGBB .. 19
plot.Tenv ... 21
PMSE .. 22
predict.Tenv .. 24
simplsMU ... 24
square .. 25
std_err .. 27
subspace .. 27
summary.Tenv ... 28
Tenv_Pval ... 29
TPR.fit .. 30
TPRdim ... 33
TPRsim ... 35
TRR.fit .. 36
TRRdim ... 39
TRRsim ... 41
ttt ... 42

Index 44
Description

Provides the ordinary least squares estimator and the three types of tensor envelope structured estimators for tensor response regression (TRR) and tensor predictor regression (TPR) models. The three types of tensor envelope structured approaches are generic and can be applied to any envelope estimation problems. The full Grassmannian (FG) optimization is often associated with likelihood-based estimation but requires heavy computation and good initialization; the one-directional optimization approaches (1D and ECD algorithms) are faster, stable and does not require carefully chosen initial values; the SIMPLS-type is motivated by the partial least squares regression and is computationally the least expensive.

Author(s)

Wenjing Wang, Jing Zeng and Xin Zhang

References

See Also

Useful links:
- https://github.com/leozeng15/TRES
- Report bugs at https://github.com/leozeng15/TRES/issues

Examples

```r
library(TRES)
## Load data "bat"
data("bat")
x <- bat$x
y <- bat$y

## 1. Fitting with OLS method.
fit_ols <- TRR.fit(x, y, method="standard")
```
Bat simulated data

Description

Synthetic data generated from tensor response regression (TRR) model. Each response observation is a two-dimensional image, and each binary predictor observation takes values 0 and 1, representing two groups.

Usage

data("bat")

Format

A list consisting of four components:

- **x** A 1×20 matrix, each entry takes values 0 and 1, representing two groups.
- **y** A $64 \times 64 \times 20$ tensor, each matrix $y@data[,,i]$ represents an image.
- **coefficients** A $64 \times 64 \times 1$ tensor with the bat pattern.
- **Gamma** A list consisting of two 64×14 envelope basis.
Details

The dataset is generated from the tensor response regression (TRR) model:

\[Y_i = BX_i + \epsilon_i, i = 1, \ldots, n, \]

where \(n = 20 \) and the regression coefficient \(B \in R^{64 \times 64} \) is a given image with rank 14, representing the mean difference of the response \(Y \) between two groups. To make the model conform to the envelope structure, we construct the envelope basis \(\Gamma_k \) and the covariance matrices \(\Sigma_k, k = 1, 2 \), of error term as following. With the singular value decomposition of \(B \), namely \(B = \Gamma_1 \Lambda \Gamma_2^T \), we choose the envelope basis as \(\Gamma_k \in R^{64 \times 14}, k = 1, 2 \). Then the envelope dimensions are \(u_1 = u_2 = 14 \). We generate another two matrices \(\Omega_k \in R^{14 \times 14} = A_k A_k^T \) and \(\Omega_{0k} \in R^{50 \times 50} = A_{0k} A_{0k}^T \), where \(A_k \in R^{14 \times 14} \) and \(A_{0k} \in R^{50 \times 50} \) are randomly generated from Uniform(0,1) elementwise. Then we set the covariance matrices \(\Sigma_k = \Gamma_k \Omega_k \Gamma_k^T + \Gamma_{0k} \Omega_{0k} \Gamma_{0k}^T \), followed by normalization with their Frobenius norms. We set the first 10 predictors \(X_i, i = 1, \ldots, 10 \), as 1 and the rest as 0. The error term is then generated from two-way tensor (matrix) normal distribution \(TN(0; \Sigma_1, \Sigma_2) \).

References

Examples

```r
## Fit bat dataset with the tensor response regression model
data("bat")
x <- bat$x
y <- bat$y
# Model fitting with ordinary least square.
fit_std <- TRR.fit(x, y, method="standard")
# Draw the coefficient and p-value plots
plot(fit_std)
```

ECD

ECD algorithm for estimating the envelope subspace

Description

Usage

\[\text{ECD}(M, U, u, \ldots) \]
Arguments

- **M**: The p-by-p positive definite matrix M in the envelope objective function.
- **U**: The p-by-p positive semi-definite matrix U in the envelope objective function.
- **u**: An integer between 0 and n representing the envelope dimension.
- **maxiter**: The maximal number of iterations.
- **tol**: The tolerance used to assess convergence. See the ECD algorithm in Cook, R. D., & Zhang, X. (2018).

The default values are: maxiter=500; tol=1e-08.

Details

Estimate M-envelope of $\text{span}(U)$. The dimension of the envelope is u.

See FGfun for the generic objective function.

The ECD algorithm is similar to 1D algorithm proposed by Cook, R. D., & Zhang, X. (2016). A fast and stable algorithm is used for solving each individual objective function.

Value

Return the orthogonal basis of the envelope subspace with each column represent the sequential direction. For example, the first column is the most informative direction.

References

Examples

```r
# simulate two matrices M and U with an envelope structure
data <- MenvU_sim(p = 20, u = 5, wishart = TRUE, n = 200)
M <- data$M
U <- data$U
G <- data$Gamma
Gamma_ECD <- ECD(M, U, u=5)
subspace(Gamma_ECD, G)
```

EEG

Electroencephalography (EEG) dataset for alcoholism study.

Description

EEG images data of subjects in alcoholic and control groups.
Usage

data("EEG")

Format

A list consisting of two components:

x A binary vector with length of 61.

y A $64 \times 64 \times 61$ tensor, consisting of 61 channels by time EEG images.

Details

The original EEG data contains 77 alcoholic individuals and 45 controls. To reduce the size, we randomly select 61 samples and obtain 39 alcoholic individuals and 22 controls. Each individual was measured with 64 electrodes placed on the scalp sampled at 256 Hz for 1 sec, resulting an EEG image of 64 channels by 256 time points. More information about data collection and some analysis can be found in Zhang et al. (1995) and Li, Kim, and Altman (2010). To facilitate the analysis, the data is downsized along the time domain by averaging every four consecutive time points, yielding a 64×64 matrix response.

References

URL: https://archive.ics.uci.edu/ml/datasets/EEG+Database.

Examples

data("EEG")
x <- EEG$x
y <- EEG$y

Estimate the envelope dimension, the output should be c(1,1).

u <- TRRdim(x, y)$u
u <- c(1,1)

Fit the dataset with TRR.fit and draw the coefficient plot and p-value plot
fit_1D <- TRR.fit(x, y, u, method = "1D")
plot(fit_1D, xlab = "Time", ylab = "Channels")

Uncomment display the plots from different methods.
fit_ols <- TRR.fit(x, y, method = "standard")
fit_pls <- TRR.fit(x, y, u, method = "PLS")
plot(fit_ols, xlab = "Time", ylab = "Channels")
plot(fit_pls, xlab = "Time", ylab = "Channels")
The Objective function and its gradient

FGfun

Description

Calculates the objective function and its gradient for estimating the M-envelope of $\text{span}(U)$, where M is positive definite and U is positive semi-definite.

Usage

FGfun(Gamma, M, U)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>The p-by-p positive definite matrix M in the envelope objective function.</td>
</tr>
<tr>
<td>U</td>
<td>The p-by-p positive semi-definite matrix U in the envelope objective function.</td>
</tr>
</tbody>
</table>

Details

The generic objective function $F(\Gamma)$ and its gradient $G(\Gamma)$ are listed below for estimating M-envelope of $\text{span}(U)$. For the detailed description, see Cook, R. D., & Zhang, X. (2016).

\[
F(\Gamma) = \log |\Gamma^T M \Gamma| + \log |\Gamma^T (M + U)^{-1} \Gamma|
\]

\[
G(\Gamma) = dF/d\Gamma = 2\Gamma (\Gamma^T M \Gamma)^{-1} + 2(M + U)^{-1} \Gamma (\Gamma^T (M + U)^{-1} \Gamma)^{-1}
\]

Value

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>The value of the objective function at Gamma.</td>
</tr>
<tr>
<td>G</td>
<td>The value of the gradient function at Gamma.</td>
</tr>
</tbody>
</table>

References

kroncov

The covariance estimation of tensor normal distribution

Description

This function provides the MLE of the covariance matrix of tensor normal distribution, where the covariance has a separable Kronecker structure, i.e. \(\Sigma = \Sigma_m \otimes \cdots \otimes \Sigma_1 \). The algorithm is a generalization of the MLE algorithm in Manceur, A. M., & Dutilleul, P. (2013).

Usage

```
kroncov(Tn, tol = 1e-06, maxiter = 10)
```

Arguments

- **Tn**: A \(p_1 \times \cdots p_m \times n \) matrix, array or tensor, where \(n \) is the sample size.
- **tol**: The convergence tolerance with default value \(1e^{-6} \). The iteration terminates when \(||\Sigma_i^{(t+1)} - \Sigma_i^{(t)}||_F < \text{tol} \) for some covariance matrix \(\Sigma_i \).
- **maxiter**: The maximal number of iterations. The default value is 10.

Details

The individual component covariance matrices \(\Sigma_i, i = 1, \ldots, m \) are not identifiable. To overcome the identifiability issue, each matrix \(\Sigma_i \) is normalized at the end of the iteration such that \(||\Sigma_i||_F = 1 \). And an overall normalizing constant \(\lambda \) is extracted so that the overall covariance matrix \(\Sigma \) is defined as

\[
\Sigma = \lambda \Sigma_m \otimes \cdots \otimes \Sigma_1.
\]

If \(Tn \) is a \(p \times n \) design matrix for a multivariate random variable, then \(\lambda \text{amba} = 1 \) and \(S \) is a length-one list containing the sample covariance matrix.

Value

- **lambda**: The normalizing constant.
- **S**: A matrix list, consisting of each normalized covariance matrix \(\Sigma_1, \ldots, \Sigma_m \).

References

manifold1D Estimate the envelope subspace (ManifoldOptim 1D)

Description

The 1D algorithm (Cook and Zhang 2016) implemented with Riemannian manifold optimization from R package ManifoldOptim.

Usage

manifold1D(M, U, u, ...)

Arguments

- **M**: The p-by-p positive definite matrix M in the envelope objective function.
- **U**: The p-by-p positive semi-definite matrix U in the envelope objective function.
- **u**: An integer between 0 and n representing the envelope dimension.
- **...**: Additional user-defined arguments:
 - **maxiter**: The maximal number of iterations.
 - **tol**: The tolerance used to assess convergence. See Huang et al. (2018) for details on how this is used.
 - **method**: The name of optimization method supported by R package ManifoldOptim.
 - "LRBFGS": Limited-memory RBFGS
 - "LRTRSR1": Limited-memory RTRSR1
 - "RBFGS": Riemannian BFGS
 - "RNewtonFamily": Riemannian Broyden family
 - "RCG": Riemannian conjugate gradients
 - "RTRNewton": Riemannian line-search Newton
 - "RSD": Riemannian steepest descent
 - "RTRSD": Riemannian trust-region Newton
 - "RTRS": Riemannian trust-region steepest descent
 - "RTRSR1": Riemannian trust-region symmetric rank-one update
 - "RWRBFGS": Riemannian BFGS
 - **check**: Logical value. Should internal manifold object check inputs and print summary message before optimization.

The default values are: maxiter = 500; tol = 1e-08; method = "RCG"; check = FALSE.

Details

Estimate M-envelope of span(U). The dimension of the envelope is u.
Value

Return the estimated orthogonal basis of the envelope subspace.

References

See Also

MenvU_sim, subspace

Examples

Simulate two matrices M and U with an envelope structure
data <- MenvU_sim(p = 20, u = 5, wishart = TRUE, n = 200)
M <- data$M
U <- data$U
G <- data$Gamma
Gamma_1D <- manifold1D(M, U, u = 5)
subspace(Gamma_1D, G)
- `maxiter`: The maximal number of iterations.
- `tol`: The tolerance used to assess convergence. See Huang et al. (2018) for details on how this is used.
- `method`: The name of optimization method supported by R package `ManifoldOptim`
 - "LRBFGS": Limited-memory RBFGS
 - "LRTRSR1": Limited-memory RTRSR1
 - "RBFGS": Riemannian BFGS
 - "RBroydenFamily": Riemannian Broyden family
 - "RCG": Riemannian conjugate gradients
 - "RNewton": Riemannian line-search Newton
 - "RSD": Riemannian steepest descent
 - "RTRNewton": Riemannian trust-region Newton
 - "RTRSD": Riemannian trust-region steepest descent
 - "RTRSR1": Riemannian trust-region symmetric rank-one update
 - "RWRBFGS": Riemannian BFGS
- `check`: Logical value. Should internal manifold object check inputs and print summary message before optimization.

The default values are: `maxiter = 500; tol = 1e-08; method = "RCG"; check = FALSE.`

Details

Estimate M-envelope of $\text{span}(U)$. The dimension of the envelope is u.

Value

Return the estimated orthogonal basis of the envelope subspace.

References

Examples

```r
# Simulate two matrices M and U with an envelope structure
data <- MenvU_sim(p=20, u=5, wishart = TRUE, n = 200)
M <- data$M
U <- data$U
G <- data$Gamma
Gamma_FG <- manifoldFG(M, U, u=5)
subspace(Gamma_FG, G)
```
Description

This function generates the matrices M and U with envelope structure.

Usage

```r
MenvU_sim(
  p,
  u,
  Omega = NULL,
  Omega0 = NULL,
  Phi = NULL,
  jitter = FALSE,
  wishart = FALSE,
  n = NULL
)
```

Arguments

- **p**: Dimension of p-by-p matrix M.
- **u**: The envelope dimension. An integer between 0 and p.
- **Omega**: The positive definite matrix Ω in $M = \Gamma\Omega\Gamma^T + \Gamma_0\Omega_0\Gamma_0^T$. The default is $\Omega = AA^T$ where the elements in A are generated from Uniform(0,1) distribution.
- **Omega0**: The positive definite matrix Ω_0 in $M = \Gamma\Omega\Gamma^T + \Gamma_0\Omega_0\Gamma_0^T$. The default is $\Omega_0 = AA^T$ where the elements in A are generated from Uniform(0,1) distribution.
- **Phi**: The positive definite matrix Φ in $U = \Gamma\Phi\Gamma^T$. The default is $\Phi = AA^T$ where the elements in A are generated from Uniform(0,1) distribution.
- **jitter**: Logical or numeric. If it is numeric, the diagonal matrix $\text{diag}(\text{jitter}, \text{nrow}(M), \text{ncol}(M))$ is added to matrix M to ensure the positive definiteness of M. If it is TRUE, then it is set as $1e-5$ and the jitter is added. If it is FALSE (default), no jitter is added.
- **wishart**: Logical. If it is TRUE, the sample estimator from Wishart distribution $W_p(M/n, n)$ and $W_p(U/n, n)$ are generated as the output matrices M and U.
- **n**: The sample size. If wishart is FALSE, then n is ignored.

Details

The matrices M and U are in forms of

$$M = \Gamma\Omega\Gamma^T + \Gamma_0\Omega_0\Gamma_0^T, \quad U = \Gamma\Phi\Gamma^T.$$

The envelope basis Γ is randomly generated from the Uniform $(0, 1)$ distribution elementwise and then transformed to a semi-orthogonal matrix. Γ_0 is the orthogonal completion of Γ.
In some cases, to guarantee that M is positive definite which is required by the definition of envelope, a jitter should be added to M.

If \texttt{wishart} is \texttt{TRUE}, after the matrices M and U are generated, the samples from Wishart distribution \(W_p(M/n, n)\) and \(W_p(U/n, n)\) are output as matrices M and U. If so, n is required.

Value

- U: The p-by-p matrix U.
- Gamma: The p-by-u envelope basis.

References

Examples

```r
data1 <- MenvU_sim(p = 20, u = 5)
M1 <- data1$M
U1 <- data1$U

# Sample version from Wishart distribution
data2 <- MenvU_sim(p = 20, u = 5, wishart = TRUE, n = 200)
M2 <- data2$M
U2 <- data2$U
```

Description

This function selects envelope subspace dimension using 1D-BIC proposed by Zhang, X., & Mai, Q. (2018). The constrained optimization in the 1D algorithm is based on the line search algorithm for optimization on manifold. The algorithm is developed by Wen and Yin (2013) and the Matlab version is in the Matlab package \texttt{OptM}.

Usage

```r
oneD_bic(M, U, n, C = 1, maxdim = 10, ...)
```

Arguments

- M: The p-by-p positive definite matrix M in the envelope objective function.
- U: The p-by-p positive semi-definite matrix U in the envelope objective function.
- n: The sample size.
- C: The constant defined in 1D-BIC criterion, the default value is 1.
maxdim The maximum dimension to consider, maxdim is smaller than \(p \), the default value is 10.

Additional user-defined arguments for the line search algorithm:

- **maxiter**: The maximal number of iterations.
- **xtol**: The convergence tolerance for the relative changes of the consecutive iterates \(w \), e.g., \(|w^{(k)} - w^{(k-1)}| F / \sqrt{p}\)
- **gtol**: The convergence tolerance for the gradient of Lagrangian, e.g., \(|G^{(k)}(G(t)^T w(t))| F\)
- **ftol**: The convergence tolerance for relative changes of the consecutive objective function values \(F \), e.g., \(|F^{(k)} - F^{(k-1)}| / (1 + |F^{(k-1)}|)\). Usually, \(\max(\text{xtol}, \text{gtol}) > \text{ftol}\)

The default values are: \(\text{maxiter}=500; \text{xtol}=1e-08; \text{gtol}=1e-08; \text{ftol}=1e-12.\)

Details

The objective function \(F(w) \) and its gradient \(G(w) \) in line search algorithm are:

\[
F(w) = \log |w^T M_k w| + \log |w^T (M_k + U_k)^{-1} w|
\]

\[
G(w) = dF/dw = 2(w^T M_k w)^{-1} M_k w + 2(w^T (M_k + U_k)^{-1} w)^{-1} (M_k + U_k)^{-1} w
\]

The 1D-BIC criterion is defined as

\[
I(k) = \sum_{j=1}^{k} \phi_j(\hat{w}_j) + C k \log(n) / n, \quad k = 0, 1, \ldots, p,
\]

where \(C > 0 \) is a constant, \(\hat{w} \) is the 1D solver, the function \(\phi_j \) is the individual objective function solved by 1D algorithm, \(n \) is the sample size. Then the selected dimension \(u \) is the one yielding the smallest 1D-BIC \(I(k) \). See Zhang, X., & Mai, Q. (2018) for more details.

As suggested by Zhang, X., & Mai, Q. (2018), the number \(C \) should be set to its default value \(C = 1 \) when there is no additional model assumption or prior information. However, if additional model assumption or prior information are known, \(C \) should be set such that \(C k \) best matches the degree-of-freedom or total number of free parameters of the model or estimation procedure. For example, in TRR model where the predictor design matrix is of dimension \(p \times n \), \(C \) should be set as \(p \). See Zhang, X., & Mai, Q. (2018) for more details.

Value

- **bicval** The BIC values for different envelope dimensions.
- **u** The dimension selected which corresponds to the smallest BIC values.
- **Gamma** The estimation of envelope subspace basis.

References

See Also

OptM1D, MenvU_sim

Examples

simulate two matrices M and U with an envelope structure
data <- MenvU_sim(p = 20, u = 5, wishart = TRUE, n = 200)
M <- data$M
U <- data$U
bic <- oneD_bic(M, U, n = 200)
visualization
plot(1:10, bic$bicval, type="o", xlab="Envelope Dimension", ylab="BIC values",
main="Envelope Dimension Selection")

OptM1D

Estimate the envelope subspace (OptM 1D)

Description

The 1D algorithm to estimate the envelope subspace based on the line search algorithm for optimization on manifold. The line search algorithm is developed by Wen and Yin (2013) and the Matlab version is implemented in the Matlab package OptM.

Usage

OptM1D(M, U, u, ...)

Arguments

M

The p-by-p positive definite matrix M in the envelope objective function.

U

The p-by-p positive semi-definite matrix U in the envelope objective function.

u

An integer between 0 and n representing the envelope dimension.

...

Additional user-defined arguments for the line search algorithm:

- maxiter: The maximal number of iterations.
- xtol: The convergence tolerance for the relative changes of the consecutive iterates w, e.g., $\|w^{(k)} - w^{(k-1)}\|_F / \sqrt{p}$
- gtol: The convergence tolerance for the gradient of Lagrangian, e.g., $\|G^{(k)} - w^{(k)}(G^{(t)})^T w^{(t)}\|_F$
- ftol: The convergence tolerance for relative changes of the consecutive objective function values F, e.g., $|F^{(k)} - F^{(k-1)}| / (1 + |F^{(k-1)}|)$. Usually, $\max\{\text{xtol}, \text{gtol}\} > \text{ftol}$

The default values are: maxiter=500; xtol=1e-08; gtol=1e-08; ftol=1e-12.
Details

The objective function \(F(w) \) and its gradient \(G(w) \) in line search algorithm are:

\[
F(w) = \log \vert w^T M_k w \vert + \log \vert w^T (M_k + U_k)^{-1} w \vert
\]

\[
G(w) = dF/dw = 2(w^T M_k w)^{-1} M_k w + 2(w^T (M_k + U_k)^{-1} w)^{-1} (M_k + U_k)^{-1} w
\]

Value

Return the estimated orthogonal basis of the envelope subspace.

References

Examples

```r
## Simulate two matrices M and U with an envelope structure
data <- MenvU_sim(p = 20, u = 5, wishart = TRUE, n = 200)
M <- data$M
U <- data$U
G <- data$Gamma
Gamma_1D <- OptM1D(M, U, u = 5)
subspace(Gamma_1D, G)
```

OptMFG

Estimate the envelope subspace (OptM FG)

Description

The FG algorithm to estimate the envelope subspace based on the curvilinear search algorithm for optimization on Stiefel manifold. The curvilinear algorithm is developed by Wen and Yin (2013) and the Matlab version is implemented in the Matlab package OptM.

Usage

```
OptMFG(M, U, u, Gamma_init = NULL, ...)
```
Arguments

- **M**: The p-by-p positive definite matrix M in the envelope objective function.
- **U**: The p-by-p positive semi-definite matrix U in the envelope objective function.
- **u**: An integer between 0 and n representing the envelope dimension. Ignored if `Gamma_init` is provided.
- **Gamma_init**: Initial envelope subspace basis. The default value is the estimator from `OptM1D(M, U, u)`.

Additional user-defined arguments for the curvilinear search algorithm:

- `maxiter`: The maximal number of iterations.
- `xtol`: The convergence tolerance for Γ, e.g., $||\Gamma^{(k)} - \Gamma^{(k-1)}||_F / \sqrt{p}$
- `gtol`: The convergence tolerance for the projected gradient, e.g., $||G^{(k)}(\Gamma) - G^{(k)}(\Gamma^{(t)})||_F$
- `ftol`: The convergence tolerance for objective function F, e.g., $|F^{(k)} - F^{(k-1)}/(1 + |F^{(k-1)}|)$. Usually, $\max\{xtol, gtol\} > ftol$

The default values are: `maxiter=500; xtol=1e-08; gtol=1e-08; ftol=1e-12`.

Details

If `Gamma_init` is provided, then the envelope dimension $u = \text{nrow}(\text{Gamma_init})$.

The function `OptMFG` calls the function `OptStiefelGBB` internally which implements the curvilinear search algorithm.

The objective function $F(\Gamma)$ and its gradient $G(\Gamma)$ in curvilinear search algorithm are:

\[
F(\Gamma) = \log |\Gamma^T M \Gamma| + \log |\Gamma^T (M + U)^{-1} \Gamma|
\]

\[
G(\Gamma) = dF/d\Gamma = 2M \Gamma (\Gamma^T M \Gamma)^{-1} + 2(M + U)^{-1} \Gamma (\Gamma^T (M + U)^{-1} \Gamma)^{-1}
\]

Value

Return the estimated orthogonal basis of the envelope subspace.

References

See Also

`OptStiefelGBB`

Examples

```r
# simulate two matrices M and U with an envelope structure
data <- MenvU_sim(p=20, u=5, wishart = TRUE, n = 200)
M <- data$M
U <- data$U
G <- data$Gamma
Gamma_FG <- OptMFG(M, U, u=5)
subspace(Gamma_FG, G)
```
Optimization on Stiefel manifold

Description
Curvilinear search algorithm for optimization on Stiefel manifold developed by Wen and Yin (2013).

Usage
OptStiefelGBB(X, fun, opts = NULL, ...)

Arguments
X
Initial value to start the optimization. A \(n \) by \(k \) orthonormal matrix such that \(X^T X = I_k \).

fun
The function that returns the objective function value and its gradient. The syntax for fun is fun(X, data1, data2) where data1, data2 are additional data passed to

opts
A list specifying additional user-defined arguments for the curvilinear search algorithm. Some important ones are listed in the following:

- maxiter: The maximal number of iterations.
- xtol: The convergence tolerance for \(X \), e.g., \(\| X^{(t)} - X^{(t-1)} \|_F / \sqrt{k} \).
- gtol: The convergence tolerance for the gradient of the Lagrangian function, e.g., \(\| G^{(t)} - X^{(t)} (G^{(t)})^T X^{(t)} \|_F \).
- ftol: The convergence tolerance for objective function \(F \), e.g., \(|F^{(t)} - F^{(t-1)}| / (1 + |F^{(t-1)}|) \). Usually, max(xtol, gtol) > ftol.

The default values are: maxiter=500; xtol=1e-08; gtol=1e-08; ftol=1e-12.

... Additional input passed to fun.

Details
The calling syntax is OptStiefelGBB(X, fun, opts, data1, data2), where fun(X, data1, data2) returns the objective function value and its gradient.

For example, for \(n \) by \(k \) matrix \(X \), the optimization problem is

\[
\min_X - tr(X^T WX), \text{ such that } X^T X = I_k.
\]

The objective function and its gradient are

\[
F(X) = -tr(X^T WX), \quad G(X) = -2WX.
\]

Then we need to provide the function fun(X, W) which returns \(F(X) \) and \(G(X) \). See Examples for details.

For more details of the termination rules and the tolerances, we refer the interested readers to Section 5.1 of Wen and Yin (2013).
Value

\(X \)
The converged solution of the optimization problem.

\(\text{out} \)
Output information, including estimation error, function value, iteration times etc.

- \(\text{nfe} \): The total number of line search attempts.
- \(\text{msg} \): Message: "convergence" | "exceed max iteration".
- \(\text{feasi} \): The feasibility of solution: \(\|X^T X - I_k\|_F \).
- \(\text{nrmG} \): The convergence criterion based on the projected gradient \(\|G - XG^T X\|_F \).
- \(\text{fval} \): The objective function value \(F(X) \) at termination.
- \(\text{iter} \): The number of iterations.

References

Examples

n <- 1000
k <- 6

Randomly generated matrix M
W <- matrix(rnorm(n^2), n, n)
W <- t(W) %*% W

Randomly generated orthonormal initial matrix
X0 <- matrix(rnorm(n*k), n, k)
X0 <- qr.Q(qr(X0))

The objective function and its gradient
fun <- function(X, W){
 F <- - sum(diag(t(X) %*% W %*% X))
 G <- - 2*(W %*% X)
 return(list(F = F, G = G))
}

Options list
opts<-list(record = 0, maxiter = 1000, xtol = 1e-5, gtol = 1e-5, ftol = 1e-8)

Main part
output <- OptStiefelGBB(X0, fun, opts, W)
X <- output$X
out <- output$output
Description

Plot method for object returned from TRR.fit and TPR.fit functions.

Usage

```r
## S3 method for class 'Tenv'
plot(
  x,
  level = 0.05,
  main = paste0("Coefficient plot ", "(" , x$method , "")"),
  main_p = paste0("P value plot ", "(" , x$method , "")"),
  xlab = "",
  ylab = "",
  axes = TRUE,
  ask = TRUE,
  ...
)
```

Arguments

- `x`: An object of class "Tenv", as the ones returned from TPR.fit or TRR.fit.
- `level`: The significant level of p-value. Default is 0.05.
- `main`: The title of coefficient plot.
- `main_p`: The title of p-value plot.
- `xlab`: The title of x-axis.
- `ylab`: The title of y-axis.
- `axes`: A logical value specifying whether the axes should be drawn.
- `ask`: A logical value. If it is TRUE (default), user is prompted before the second plot is shown (if exists).
- `...`: Other parameters to be passed to the plotting functions.

Details

- `coef(x)` must be a two-way tensor or a matrix.
- Since p-value depend on \(\hat{\text{cov}}^{-1}\{\text{vec}(\mathbf{X})\} \) which is unavailable for the ultra-high dimensional \(\text{vec}(\mathbf{X}) \) in tensor predictor regression (TPR), the p-value plot is not provided for the object returned from TPR.fit. Therefore, for the object return from TPR.fit, only the coefficients plot is displayed. And for the object return from TRR.fit, both the coefficients plot and p-value plot are displayed.
- `main` and `main_p` control the titles of coefficient plot and p-value plot separately. Some other arguments used in function `graphics::image`, e.g., `xlim`, `ylim`, `zlim`, `col`, `xaxs`, `yaxs`, etc., can be passed to ...
ask can be set as FALSE if the pause before the second plot is not preferred. If \(x \) is an object from TPR.fit, no pause is enabled.

Value

No return value.

See Also

TRR.fit, TPR.fit

Examples

```r
data("bat")
x <- bat$x
y <- bat$y
fit <- TRR.fit(x, y, method="standard")
plot(fit)

# Change the significant level to 0.1
plot(fit, level = 0.1)
```

PMSE

Prediction and mean squared error.

Description

Evaluate the tensor response regression (TRR) or tensor predictor regression (TPR) model through the mean squared error.

Usage

```
PMSE(x, y, B)
```

Arguments

- **x**: A predictor tensor, array, matrix or vector.
- **y**: A response tensor, array, matrix or vector.
- **B**: An coefficient tensor, array, matrix or vector.

Details

There are three situations:

- **TRR model**: If \(y \) is an \(m \)-way tensor (array), \(x \) should be matrix or vector and \(B \) should be tensor or array.
- **TPR model**: If \(x \) is an \(m \)-way tensor (array), \(y \) should be matrix or vector and \(B \) should be tensor or array.
- Other: If \(x \) and \(y \) are both matrix or vector, \(B \) should be matrix. In this case, the prediction is calculated as \(\text{pred} = B \times \hat{x} \).

In any cases, users are asked to ensure the dimensions of \(x, y \) and \(B \) match. See `TRRsim` and `TPRsim` for more details of the TRR and TPR models.

Let \(\hat{Y}_i \) denote each prediction, then the mean squared error is defined as
\[
\frac{1}{n} \sum_{i=1}^{n} \| Y_i - \hat{Y}_i \|^2_F,
\]
where \(\| \cdot \|_F \) denotes the Frobenius norm.

Value

- `mse` The mean squared error.
- `pred` The predictions.

See Also

- `TRRsim`, `TPRsim`.

Examples

```r
## Dataset in TRR model
r <- c(10, 10, 10)
u <- c(2, 2, 2)
p <- 5
n <- 100
dat <- TRRsim(r = r, p = p, u = u, n = n)
x <- dat$x
y <- dat$y

# Fit data with TRR.fit
fit_std <- TRR.fit(x, y, method="standard")
result <- PMSE(x, y, fit_std$coefficients)

## Dataset in TPR model
p <- c(10, 10, 10)
u <- c(1, 1, 1)
r <- 5
n <- 200
dat <- TPRsim(p = p, r = r, u = u, n = n)
x <- dat$x
y <- dat$y

# Fit data with TPR.fit
fit_std <- TPR.fit(x, y, u, method="standard")
result <- PMSE(x, y, fit_std$coefficients)
```
predict.Tenv
Predict method for Tenv object.

Description

Predict response for the object returned from `TRR.fit` and `TPR.fit` functions.

Usage

```r
## S3 method for class 'Tenv'
predict(object, newdata, ...)
```

Arguments

- `object`
 An object of class "Tenv", as the ones returned from `TPR.fit` or `TRR.fit`.

- `newdata`
 The data to be used for prediction. It can be a vector, a matrix or a tensor if `object` is returned from `TRR.fit`, and can be a matrix or a tensor if object is returned from `TPR.fit`.

- `...`
 Additional arguments. No available arguments exist in this version.

Value

Return the predicted response.

Note

If `newdata` is missing, the fitted response from `object` is returned.

Examples

```r
data("bat")
x <- bat$x
y <- bat$y
fit <- TRR.fit(x, y, method="standard")
predict(fit, x)
```

simplsMU
SIMPLS-type algorithm for estimating the envelope subspace

Description

This algorithm is a generalization of the SIMPLS algorithm in De Jong, S. (1993). See Cook (2018) Section 6.5 for more details of this generalized moment-based envelope algorithm; see Cook, Helland, and Su (2013) for a connection between SIMPLS and the predictor envelope in linear model.
Usage

```r
simplsMU(M, U, u)
```

Arguments

- **M**
 - The p-by-p positive definite matrix M in the envelope objective function.

- **U**
 - The p-by-p positive semi-definite matrix U in the envelope objective function.

- **u**
 - An integer between 0 and n representing the envelope dimension.

Value

Returns the estimated orthogonal basis of the envelope subspace.

References

Examples

```r
# simulate two matrices M and U with an envelope structure#
data <- MenvU_sim(p = 20, u = 5, wishart = TRUE, n = 200)
M <- data$M
U <- data$U
G <- data$Gamma
Gamma_pls <- simplsMU(M, U, u=5)
subspace(Gamma_pls, G)
```

square

Square simulated data

Description

Synthetic data generated from tensor predictor regression (TPR) model. Each response observation is univariate, and each predictor observation is a matrix.

Usage

```r
data("square")
```
Format

A list consisting of four components:

- **x** A $32 \times 32 \times 200$ tensor, each matrix \(x@\text{data}[,,i]\) represents a predictor observation.
- **y** A 1×200 matrix, each entry represents a response observation.
- **coefficients** A $32 \times 32 \times 1$ tensor with a square pattern.
- **Gamma** A list consisting of two 32×2 envelope basis.

Details

The dataset is generated from the tensor predictor regression (TPR) model:

\[Y_i = B(m+1) \text{vec}(X_i) + \epsilon_i, \quad i = 1, \ldots, n, \]

where \(n = 200\) and the regression coefficient \(B \in R^{32\times32}\) is a given image with rank 2, which has a square pattern. All the elements of the coefficient matrix \(B\) are either 0.1 or 1. To make the model conform to the envelope structure, we construct the envelope basis \(\Gamma_k\) and the covariance matrices \(\Sigma_k, k = 1, 2\), of predictor \(X\) as following. With the singular value decomposition of \(B\), namely \(B = \Gamma_1 \Lambda \Gamma_2^T\), we choose the envelope basis as \(\Gamma_k \in R^{32\times2}, k = 1, 2\). Then the envelope dimensions are \(u_1 = u_2 = 2\). We set matrices \(\Omega_k = I_2\) and \(\Omega_{0k} = 0.01 I_{30}, k = 1, 2\). Then we generate the covariance matrices \(\Sigma_k = \Gamma_k \Omega_k \Gamma_k^T + \Gamma_{0k} \Omega_{0k} \Gamma_{0k}^T\), followed by normalization with their Frobenius norms. The predictor \(X_i\) is then generated from two-way tensor (matrix) normal distribution \(TN(0; \Sigma_1, \Sigma_2)\). And the error term \(\epsilon_i\) is generated from standard normal distribution.

References

Examples

```r
## Fit square dataset with the tensor predictor regression model
data("square")
x <- square$x
y <- square$y
# Model fitting with ordinary least square.
fit_std <- TPR.fit(x, y, method="standard")
# Draw the coefficient plot.
plot(fit_std)
```
std_err

Elementwise standard error.

Description

Calculates the elementwise standard error for the object returned from `TRR.fit`. The standard error for the object returned from `TPR.fit` is unavailable.

Usage

\[
\text{std_err(object)}
\]

Arguments

- **object**: an object of class "Tenv", as the ones returned from `TRR.fit`.

Value

The standard error tensor is returned.

Note

The function only supports the object returned from `TRR.fit` since there is no standard error for the object returned from `TPR.fit`.

Examples

```r
data("bat")
x <- bat$x
y <- bat$y
fit <- TRR.fit(x, y, method="standard")
std_err(fit)
```

subspace

The distance between two subspaces.

Description

This function calculates the distance between the two subspaces with equal dimensions \(\text{span}(A)\) and \(\text{span}(B)\), where \(A \in \mathbb{R}^{p \times u}\) and \(B \in \mathbb{R}^{p \times u}\) are the basis matrices of two subspaces. The distance is defined as

\[
\|P_A - P_B\|_F / \sqrt{2d},
\]

where \(P\) is the projection matrix onto the given subspace with the standard inner product, and \(d\) is the common dimension.
Usage
subspace(A, B)

Arguments

A A p-by-u full column rank matrix.
B A p-by-u full column rank matrix.

Value

Returns a distance metric that is between 0 and 1

summary.Tenv Summarize method for Tenv object.

Description

Summary method for object returned from TRR.fit and TPR.fit functions.

Usage

S3 method for class 'Tenv'
summary(object, ...)

S3 method for class 'summary.Tenv'
print(x, ...)

Arguments

object An object of class "Tenv", as the ones returned from TPR.fit or TRR.fit.
... Additional arguments. No available arguments exist in this version.
x An object of class "summary.Tenv", usually, a result of a call to summary.Tenv.

Details

Extract call, method, coefficients, residuals, Gamma from object. And append mse, p-value and the standard error of estimated coefficient.

The mean squared error mse is defined as \(1/n \sum_{i=1}^{n} \| Y_i - \hat{Y}_i \|_F^2 \), where \(\hat{Y}_i \) is the prediction and \(\| \cdot \|_F \) is the Frobenius norm of tensor.

Since the p-value and standard error depend on the estimation of \(\text{cov}^{-1}(\text{vec}(X)) \) which is unavailable for the ultra-high dimensional vec\((X) \) in tensor predictor regression (TPR), the two statistics are only provided for the object returned from TRR.fit.

print.summary.Tenv provides a more readable form of the statistics contained in summary.Tenv. If object is returned from TRR.fit, then p-val and se are also returned.
Value

Return object with additional components

call The matched call.
method The implemented method.
n The sample size.
xdim The dimension of predictor.
ydim The dimension of response.
coefficients The tensor coefficients estimated from TPR.fit or TRR.fit.
residuals The residuals, which equals to the response minus the fitted values.
Gamma A list of envelope subspace basis.
mse The mean squared error. The mean squared Frobenius norm of the difference between each response \(Y_i \) and fitted value \(\hat{Y}_i \).
p_val The p-value for coefficients. Only for the object returned from TRR.fit.
se The standard error for coefficients. Only for the object returned from TRR.fit.

See Also

Fitting functions TRR.fit, TPR.fit.

Examples

data("bat")
x <- bat$x
y <- bat$y
fit <- TRR.fit(x, y, method="standard")
print summary
summary(fit)

Extract the p-value and standard error from summary
summary(fit)$p_val
summary(fit)$se

Tenv_Pval

The p-value and standard error of coefficient in tensor response regression (TRR) model.

Description

Obtain p-value of each element in the tensor regression coefficient estimator. Two-sided t-tests are implemented on the coefficient estimator, where asymptotic covariance of the OLS estimator is used.
Usage

Tenv_Pval(x, y, Bhat)

Arguments

x
The response tensor instance $r_1 \times r_2 \times \cdots \times r_m$.

y
A vector predictor of dimension p.

Bhat
The estimator of tensor regression coefficient.

The p-value and the standard error of estimated coefficient are not provided for tensor predictor regression since they depend on $\hat{\text{cov}}^{-1}\{\text{vec}(X)\}$ which is unavailable due to the ultra-high dimension of vec(X).

Value

p_ols
The p-value tensor of OLS estimator.

p_val
The p-value tensor of Bhat.

se
The standard error tensor of Bhat.

Examples

```r
## Use dataset bat
data("bat")
x <- bat$x
y <- bat$y
fit_std <- TRR.fit(x, y, method="standard")
Tenv_Pval(x, y, fit_std$coefficients)
```

TPR.fit

Tensor predictor regression

Description

This function is used for estimation of tensor predictor regression. The available method including standard OLS type estimation, PLS type of estimation as well as envelope estimation with FG, 1D and ECD approaches.

Usage

```r
TPR.fit(x, y, u, method=c("standard", "FG", "1D", "ECD", "PLS"), Gamma_init = NULL)
```
TPR.fit

Arguments

- **x**
 The predictor tensor instance of dimension $p_1 \times p_2 \times \cdots \times p_m \times n$, where n is the sample size. Array with the same dimensions and matrix with dimension $p \times n$ are acceptable. If y is missing, x should be a list or an environment consisting of predictor and response datasets.

- **y**
 The response matrix of dimension $r \times n$, where n is the sample size. Vector of length n is acceptable.

- **u**
 The dimension of envelope subspace. $u = (u_1, \ldots, u_m)$. Used for methods "FG", "1D", "ECD" and "PLS". User can use TPRdim to select dimension.

- **method**
 The method used for estimation of tensor response regression. There are four possible choices.
 - "standard": The standard OLS type estimation.
 - "FG": Envelope estimation with full Grassmannian (FG) algorithm.
 - "1D": Envelope estimation with one dimensional optimization approaches by 1D algorithm.
 - "ECD": Envelope estimation with one dimensional optimization approaches by ECD algorithm.
 - "PLS": The SIMPLS-type estimation without manifold optimization.

- **Gamma_init**
 A list specifying the initial envelope subspace basis for "FG" method. By default, the estimators given by "1D" algorithm is used.

Details

Please refer to Details part of TPRsim for the description of the tensor predictor regression model.

Value

TPR.fit returns an object of class "Tenv".

The function summary (i.e., summary.Tenv) is used to print the summary of the results, including additional information, e.g., the p-value and the standard error for coefficients, and the prediction mean squared error.

The functions coefficients, fitted.values and residuals can be used to extract different features returned from TPR.fit.

The function plot (i.e., plot.Tenv) plots the two-dimensional coefficients and p-value for object of class "Tenv".

The function predict (i.e., predict.Tenv) predicts response for the object returned from TPR.fit function.

- **x**
 The original predictor dataset.

- **y**
 The original response dataset.

- **call**
 The matched call.

- **method**
 The implemented method.

- **coefficients**
 The estimation of regression coefficient tensor.

- **Gamma**
 The estimation of envelope subspace basis.
Sigma A lists of estimated covariance matrices at each mode for the tensor predictors.
fitted.values The fitted response matrix.
residuals The residuals matrix.

References

See Also
summary.Tenv for summaries, calculating mean squared error from the prediction.
plot.Tenv(via graphics::image) for drawing the two-dimensional coefficient plot.
predict.Tenv for prediction.
The generic functions coef,residuals,fitted.
TPRdim for selecting the dimension of envelope by cross-validation.
TPRsim for generating the simulated data used in tensor prediction regression.
The simulated data square used in tensor predictor regression.

Examples
The dimension of predictor
p <- c(10, 10, 10)
The envelope dimensions u.
u <- c(1, 1, 1)
The dimension of response
r <- 5
The sample size
n <- 200

Simulate the data with TPRsim.
dat <- TPRsim(p = p, r = r, u = u, n = n)
x <- dat$x
y <- dat$y
B <- dat$coefficients

fit_std <- TPR.fit(x, y, method="standard")
fit_FG <- TPR.fit(x, y, u, method="FG")
fit_pls <- TPR.fit(x, y, u, method="PLS")

rTensor::fnorm(B-stats::coef(fit_std))
rTensor::fnorm(B-stats::coef(fit_FG))
rTensor::fnorm(B-stats::coef(fit_pls))

--------- Pass a list or an environment to x also works ---------
Pass a list to x
l <- dat[c("x", "y")]
fit_std_l <- TPR.fit(l, method="standard")

Pass an environment to x
e <- new.env()
e$x <- dat$x
e$y <- dat$y
fit_std_e <- TPR.fit(e, method="standard")

----------- Use dataset "square" included in the package -------------
data("square")
x <- square$x
y <- square$y
fit_std <- TPR.fit(x, y, method="standard")

TPRdim

Envelope dimension by cross-validation for tensor predictor regression (TPR).

Description
Select the envelope dimension by cross-validation for tensor predictor regression.

Usage
TPRdim(x, y, maxdim = 10, nfolds = 5)

Arguments

- **x**: The predictor tensor instance of dimension \(p_1 \times p_2 \times \cdots \times p_m \times n \), where \(n \) is the sample size. Array with the same dimensions and matrix with dimension \(p \times n \) are acceptable.

- **y**: The response matrix of dimension \(r \times n \), where \(n \) is the sample size. Vector of length \(n \) is acceptable.

- **maxdim**: The largest dimension to be considered for selection.

- **nfolds**: Number of folds for cross-validation.

Details
According to Zhang and Li (2017), the dimensions of envelopes at each mode are assumed to be equal, so the \(u \) returned is a single value representing the equal envelope dimension.

For each dimension \(u \) in \(1: \text{maxdim} \), we obtain the prediction

\[
\hat{Y}_i = \hat{B}_{(m+1)vec(X_i)}
\]

for each predictor \(X_i \) in the \(k \)-th testing dataset, \(k = 1, \ldots, \text{nfolds} \), where \(\hat{B} \) is the estimated coefficient based on the \(k \)-th training dataset. And the mean squared error for the \(k \)-th testing dataset is defined as

\[
1/nk \sum_{i=1}^{nk} ||Y_i - \hat{Y}_i||^2.
\]
where \(n_k \) is the sample size of the \(k \)-th testing dataset and \(\| \cdot \|_F \) denotes the Frobenius norm. Then, the average of \(n_{folds} \) mean squared error is recorded as cross-validation mean squared error for the dimension \(u \).

Value

- `mincv` The minimal cross-validation mean squared error.
- `u` The envelope subspace dimension selected.

References

See Also

`TPRsim`.

Examples

```r
# The dimension of predictor
p <- c(10, 10, 10)
# The envelope dimensions u.
u <- c(1, 1, 1)
# The dimension of response
r <- 5
# The sample size
n <- 200
dat <- TPRsim(p = p, r = r, u = u, n = n)
x <- dat$x
y <- dat$y
TPRdim(x, y, maxdim = 5)

## Use dataset square. (time-consuming)
data("square")
x <- square$x
y <- square$y
# check the dimension of x
dim(x)
# use 32 as the maximal envelope dimension
TPRdim(x, y, maxdim=32)
```
TPRsim

Generate simulation data for tensor predictor regression (TPR)

Description

This function is used to generate simulation data used in tensor prediction regression.

Usage

```r
TPRsim(p, r, u, n)
```

Arguments

- `p`: The dimension of predictor, a vector in the form of \((p_1, \cdots, p_m)\).
- `r`: The dimension of response, a scale.
- `u`: The structural dimension of envelopes at each mode, a vector with the same length as `p`.
- `n`: The sample size.

Details

The tensor predictor regression model is of the form,

\[
Y = B_{(m+1)} \text{vec}(X) + \epsilon
\]

where response \(Y \in \mathbb{R}^r\), predictor \(X \in \mathbb{R}^{p_1 \times \cdots \times p_m}\), \(B \in \mathbb{R}^{p_1 \times \cdots \times p_m \times r}\) and the error term is multivariate normal distributed. The predictor is tensor normal distributed,

\[
X \sim TN(0; \Sigma_1, \ldots, \Sigma_m)
\]

According to the tensor envelope structure, we have

\[
B = [\Theta; \Gamma_1, \ldots, \Gamma_m, I_p],
\]

\[
\Sigma_k = \Gamma_k \Omega_k \Gamma_k^T + \Gamma_0 \Omega_0 \Gamma_0^T,
\]

for some \(\Theta \in \mathbb{R}^{u_1 \times \cdots \times u_m \times p}, \Omega_k \in \mathbb{R}^{u_k \times u_k}\) and \(\Omega_0 \in \mathbb{R}^{(p_k - u_k) \times (p_k - u_k)}, k = 1, \ldots, m\).

Value

- `x`: The predictor of dimension \(p_1 \times \cdots \times p_m \times n\).
- `y`: The response of dimension \(r \times n\).
- `Gamma`: A list of envelope subspace basis of dimension \(p_k \times u_k, k = 1, \ldots, m\).
- `coefficients`: The tensor coefficients of dimension \(p_1 \times \cdots \times p_m \times r\).
- `Sigma`: A lists of estimated covariance matrices at each mode for the tensor predictors, i.e., \(\Sigma_1, \ldots, \Sigma_m\).
- `p, r, u`: The input \(p, r, u\).
Note
The length of \(p \) must match that of \(u \), and each element of \(u \) must be less than the corresponding element in \(p \).

References

See Also
TPR.fit, TRRsim.

Examples
\[
p <- c(10, 10, 10)
\]
\[
u <- c(1, 1, 1)
\]
\[
r <- 5
\]
\[
n <- 200
\]
\[
dat <- TPRsim(p = p, r = r, u = u, n = n)
\]
\[
x <- dat$x
\]
\[
y <- dat$y
\]
\[
fit_std <- TPR.fit(x, y, method="standard")
\]

TRR.fit

Tensor response regression

Description
This function is used for estimation of tensor response regression. The available method including standard OLS type estimation, PLS type of estimation as well as envelope estimation with FG, 1D and ECD approaches.

Usage
\[
TRR.fit(x, y, u, method=c('standard', 'FG', '1D', 'ECD', 'PLS'), Gamma_init = NULL)
\]

Arguments
\[
x \quad \text{The predictor matrix of dimension } p \times n. \text{ Vector of length } n \text{ is acceptable. If } y \text{ is missing, } x \text{ should be a list or an environment consisting of predictor and response datasets.}
\]
\[
y \quad \text{The response tensor instance with dimension } r_1 \times r_2 \times \cdots \times r_m \times n, \text{ where } n \text{ is the sample size. Array with the same dimensions and matrix with dimension } r \times n \text{ are acceptable.}
\]
\[
u \quad \text{The dimension of envelope subspace. } u = (u_1, \cdots, u_m). \text{ Used for methods ”FG”, ”1D”, ”ECD” and ”PLS”. User can use TRRdim to select dimension.}
\]
The method used for estimation of tensor response regression. There are four possible choices.

- "standard": The standard OLS type estimation.
- "FG": Envelope estimation with full Grassmannian (FG) algorithm.
- "1D": Envelope estimation with one dimensional optimization approaches by 1D algorithm.
- "ECD": Envelope estimation with one dimensional optimization approaches by ECD algorithm.
- "PLS": The SIMPLS-type estimation without manifold optimization.

A list specifying the initial envelope subspace basis for "FG" method. By default, the estimators given by "1D" algorithm is used.

Please refer to Details part of TRRsim for the description of the tensor response regression model. When samples are insufficient, it is possible that the estimation of error covariance matrix Sigma is not available. However, if using ordinary least square method (method = "standard"), as long as sample covariance matrix of predictor x is nonsingular, coefficients, fitted.values, residuals are still returned.

TRR.fit returns an object of class "Tenv". The function summary (i.e., summary.Tenv) is used to print the summary of the results, including additional information, e.g., the p-value and the standard error for coefficients, and the prediction mean squared error.

The functions coefficients, fitted.values and residuals can be used to extract different features returned from TRR.fit.

The function plot (i.e., plot.Tenv) plots the two-dimensional coefficients and p-value for object of class "Tenv".

The function predict (i.e., predict.Tenv) predicts response for the object returned from TRR.fit function.

x The original predictor dataset.
y The original response dataset.
call The matched call.
method The implemented method.
coefficients The estimation of regression coefficient tensor.
Gamma The estimation of envelope subspace basis.
Sigma A lists of estimated covariance matrices at each mode for the error term.
fitted.values The fitted response tensor.
residuals The residuals tensor.
References

See Also

summary.Tenv for summaries, calculating mean squared error from the prediction.
plot.Tenv (via graphics::image) for drawing the two-dimensional coefficient plot and p-value plot.
predict.Tenv for prediction.
The generic functions coef, residuals, fitted.
TRRdim for selecting the dimension of envelope by information criteria.
TRRsim for generating the simulated data used in tensor response regression.
The simulated data bat used in tensor response regression.

Examples

The dimension of response
r <- c(10, 10, 10)
The envelope dimensions u.
u <- c(2, 2, 2)
The dimension of predictor
p <- 5
The sample size
n <- 100

Simulate the data with TRRsim.
dat <- TRRsim(r = r, p = p, u = u, n = n)
x <- dat$x
y <- dat$y
B <- dat$coefficients

fit_std <- TRR.fit(x, y, method="standard")
fit_fg <- TRR.fit(x, y, u, method="FG")
fit_1D <- TRR.fit(x, y, u, method="1D")
fit_pls <- TRR.fit(x, y, u, method="PLS")
fit_ECD <- TRR.fit(x, y, u, method="ECD")

tensor::fnorm(B-tensor::coef(fit_std))
tensor::fnorm(B-tensor::coef(fit_fg))
tensor::fnorm(B-tensor::coef(fit_1D))
tensor::fnorm(B-tensor::coef(fit_pls))
tensor::fnorm(B-tensor::coef(fit_ECD))

Extract the mean squared error, p-value and standard error from summary
summary(fit_std)$mse
summary(fit_std)$p_val
summary(fit_std)$se
TRRdim

Envelope dimension selection for tensor response regression (TRR)

Description

This function uses the 1D-BIC criterion proposed by Zhang, X., & Mai, Q. (2018) to select envelope dimensions in tensor response regression. Refer to `oneD_bic` for more details.

Usage

```r
TRRdim(x, y, C = NULL, maxdim = 10, ...)
```

Arguments

- `x` The predictor matrix of dimension $p \times n$. Vector of length n is acceptable.
- `y` The response tensor instance with dimension $r_1 \times r_2 \times \cdots \times r_m \times n$, where n is the sample size. Array with the same dimensions and matrix with dimension $r \times n$ are acceptable.
- `C` The parameter passed to `oneD_bic`. Default is `nrow(x) = p`.
- `maxdim` The maximum envelope dimension to be considered. Default is 10.
- `...` Additional arguments passed to `oneD_bic`.

Details

See `oneD_bic` for more details on the definition of 1D-BIC criterion and on the arguments C and the additional arguments.

Let B denote the estimated envelope with the selected dimension u, then the prediction is $\hat{Y}_i = B\bar{X}_i$ for each observation. And the mean squared error is defined as $1/n \sum_{i=1}^{n} ||Y_i - \hat{Y}_i||_F^2$, where $|| \cdot ||_F$ denotes the Frobenius norm.
Value

bicval The minimal BIC values for each mode.
u The optimal envelope subspace dimension \((u_1, u_2, \ldots, u_m)\).
mse The prediction mean squared error using the selected envelope basis.

References

See Also

oneD_bic, TRRsim.

Examples

```r
# The dimension of response
r <- c(10, 10, 10)
# The envelope dimensions u.
u <- c(2, 2, 2)
# The dimension of predictor
p <- 5
# The sample size
n <- 100

# Simulate the data with TRRsim.
dat <- TRRsim(r = r, p = p, u = u, n = n)
x <- dat$x
y <- dat$y

TRRdim(x, y) # The estimated envelope dimensions are the same as u.

## Use dataset bat. (time-consuming)

data("bat")
x <- bat$x
y <- bat$y
# check the dimension of y
dim(y)
# use 32 as the maximal envelope dimension
TRRdim(x, y, maxdim=32)
```
TRRsim

Generate simulation data for tensor response regression (TRR)

Description
This function is used to generate simulation data used in tensor response regression.

Usage
TRRsim(r, p, u, n)

Arguments
- r: The dimension of response, a vector with length larger than 2.
- p: The dimension of predictor, a scale.
- u: The structural dimension of envelopes at each mode, a vector with the same length as r.
- n: The sample size.

Details
The tensor response regression model is of the form,

\[Y = B \bar{\times} (m + 1) X + \epsilon \]

where predictor \(X \in \mathbb{R}^p \), response \(Y \in \mathbb{R}^{r_1 \times \cdots \times r_m} \), \(B \in \mathbb{R}^{r_1 \times \cdots \times r_m \times p} \) and the error term is tensor normal distributed as follows,

\[\epsilon \sim TN(0; \Sigma_1, \ldots, \Sigma_m). \]

According to the tensor envelope structure, we have

\[B = [\Theta; \Gamma_1, \ldots, \Gamma_m, I_p], \]

\[\Sigma_k = \Gamma_k \Omega_k \Gamma_k^T + \Gamma_0 \Omega_0 \Gamma_0^T, \]

for some \(\Theta \in \mathbb{R}^{u_1 \times \cdots \times u_m \times p} \), \(\Omega_k \in \mathbb{R}^{u_k \times u_k} \), and \(\Omega_0 \in \mathbb{R}^{(p_k - u_k) \times (p_k - u_k)} \), \(k = 1, \ldots, m. \)

Value
- x: The predictor of dimension \(p \times n \).
- y: The response of dimension \(r_1 \times \cdots \times r_m \times n \).
- Gamma: The envelope subspace basis of dimension \(r_k \times u_k \), \(k = 1, \ldots, m. \)
- coefficients: The tensor coefficients of dimension \(r_1 \times \cdots \times r_m \times p \).
- Sigma: A lists of estimated covariance matrices at each mode for the error term, i.e., \(\Sigma_1, \ldots, \Sigma_m. \)
- p, r, u: The input p, r, u.
Note
The length of r must match that of u, and each element of u must be less than the corresponding element in r.

References

See Also
TPR.fit, TPRsim.

Examples

```r
r <- c(10, 10, 10)
u <- c(2, 2, 2)
p <- 5
n <- 100
dat <- TRRsim(r = r, p = p, u = u, n = n)
x <- dat$x
y <- dat$y
fit_std <- TRR.fit(x, y, method="standard")
```

Description
Matrix product of two tensors unfolded on the specified modes.

Usage

```r
ttt(x, y, ms)
```

Arguments

- `x`: A tensor instance.
- `y`: A tensor instance.
- `ms`: The indices of the modes to compute on. A single value or a vector.

Details
Suppose x is a s-way tensor with dimension $p_1 \times \ldots \times p_s$ and y is a t-way tensor with dimension $r_1 \times \ldots \times r_t$. ms specifies the indices on which the tensors x and y are unfolded as columns. Thus, ms must be a subset of $1: \min(s, t)$. Meanwhile, the sizes of the dimensions specified by ms must match, e.g., if $ms = 1:k$ where $k \leq \min(s, t)$, then $p_1 \times \ldots \times p_k = s_1 \times \ldots \times s_k$. Let X_0 and Y_0 denote the unfolded matrices, the matrix $X_0 \times Y_0^T$ is returned. See Examples for a better illustration.
Value

Return the matrix product of tensors x and y.

Examples

```r
x <- rTensor::as.tensor(array(runif(24), c(3, 4, 2)))
y <- rTensor::as.tensor(array(runif(24), c(3, 4, 2)))
z <- ttt(x, y, 1:2)
```
Index

* datasets
 bat, 4
 EEG, 6
 square, 25
 bat, 4, 38
 coef, 32, 38
 ECD, 5
 EEG, 6
 FGfun, 6, 8
 fitted, 32, 38

kroncov, 9

manifold1D, 10
manifoldFG, 11
MenvU_sim, 11, 13, 16

oneD_bic, 14, 39, 40
OptM1D, 16, 16
OptMFG, 17
OptStiefelGBB, 18, 19

plot, 31, 37
plot.Tenv, 21, 31, 32, 37, 38
PMSE, 22
predict, 31, 37
predict.Tenv, 24, 31, 32, 37, 38
print.summary.Tenv (summary.Tenv), 28

residuals, 32, 38

simplsMU, 24
square, 25, 32
std_err, 27
subspace, 11, 27
summary, 31, 37
summary.Tenv, 28, 31, 32, 37, 38

Tenv_Pval, 29
TPR (TPR.fit), 30
TPR.fit, 22, 24, 28, 29, 30, 31, 36, 42
TPRdim, 31, 32, 33
TPRsim, 23, 31, 32, 34, 35, 42
TRES (TRES-package), 3
TRES-package, 3
TRR (TRR.fit), 36
TRR.fit, 22, 24, 28, 29, 36, 37
TRRdim, 36, 38, 39
TRRsim, 23, 36–38, 40, 41
ttt, 42