package ‘ZIprop’

June 9, 2021

Type Package

Title Permutations Tests and Performance Indicator for Zero-Inflated Proportions Response

Version 0.1.1

Date 2021-06-07

Author Melina Ribaud

Maintainer Melina Ribaud <melina.ribaud@gmail.com>

Description Permutations tests to identify factor correlated to zero-inflated proportions response. Provide a performance indicator based on Spearman correlation to quantify the part of correlation explained by the selected set of factors. See details for the method at the following preprint e.g.: <https://hal.archives-ouvertes.fr/hal-02936779v3>.

URL https://gitlab.paca.inrae.fr/meribaud/ziprop

License GPL-3

Encoding UTF-8

LazyData true

Depends R (>= 3.5.0), rgenoud, purrr, data.table, parallel

Suggests markdown, knitr, ggplot2, ggrepel, ggthemes, kableExtra, stringr

RoxygenNote 7.1.1

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2021-06-09 13:20:02 UTC

R topics documented:

delta .. 2
diffFactors .. 3
equineDiffFactors 3
example_data 4
The scalar delta

Description

Calculate the scalar delta. This parameter comes from the optimal Spearman’s correlation when the rank of two vectors X and $proba$ are equal except on a given set of indices. In our context, this set correspond to the zero-values of the vector $proba$.

Usage

delta(X, proba)

Arguments

X a vector.

$proba$ a zero-inflated proportions response.

Value

Delta the scalar Delta calculated for the vector x and the vector $proba$.

Examples

```r
X = rnorm(100)
proba = runif(100)
proba[sample(1:100, 80)] = 0
Delta = delta(X, proba)
print(Delta)
```
Description

Data for the comparison of COVID-19 mortality in European and North American geographic entities

Usage

data(diffFactors)

Format

A data frame with 483 rows and 32 variables

Details

- geographic_entity_receptor are the entity receptor
- geographic_entity_source are the entity source
- proba is the probability that the receptor follows the mortality dynamics of the source
- other columns are the difference between factors

Author(s)

Melina Ribaud, Davide Martinetti and Samuel Soubeyrand

References

doi: 10.5281/zenodo.4769671

description

equineDiffFactors
equineDiffFactors

Description

Equine Influenza dataset

Usage

data(equineDiffFactors)

Format

A data frame with 2256 rows and 8 variables
Details

- ID.source are the ID of source hosts
- ID.recep are the ID of receiver hosts
- y are the vector of transmission probabilities source -> receiver
- other columns are the factors

Author(s)

Melina Ribaud and Joseph Hughes

References

example_data Zero-inflated proportions dataset

Description

A dataset example to test the package functions. The factor X1 to X5 and F1 to F5 are correlated to the responses y.

Usage

data(example_data)

Format

A data frame with 440 rows and 23 variables

Details

- ID.source are the ID of source hosts
- ID.recep are the ID of receiver hosts
- y are the vector of transmission probabilities source -> receiver
- X1 to X10 are continuous factor
- F1 to F10 are discrete factor
fact2mat
Turn factor into multiple column

Description

Turns a factor with several levels into a matrix with several columns composed of zeros and ones.

Usage

```r
fact2mat(x)
```

Arguments

- `x` a vector.

Value

Columns with zeros and ones.

Examples

```r
x = sample(1:3,100,replace = TRUE)
fact2mat(x)
```

indicator
The performance indicator

Description

Calculate the indicator for a vector `X` and a zero-inflated proportions response `proba`.

Usage

```r
indicator(X, proba)
```

Arguments

- `X` a vector.
- `proba` a zero-inflated proportions response.

Value

a scalar represents the performance indicator and the vector `proba`.
indicator_max

Examples

```r
X = rnorm(100)
proba = runif(100)
proba[sample(1:100,80)]=0
print(indicator(X,proba))
```

indicator_max

The max performance indicator

Description

Search for the set of parameters that maximize the indicator (equivalent to Spearman correlation). For a given set of factors scaled between 0 and 1 and a zero-inflated proportions response.

Usage

```r
indicator_max(
    DT,
    ColNameFactor,
    ColNameWeight = "weight",
    bounds = c(-10, 10),
    max_generations = 200,
    hard_limit = TRUE,
    wait_generations = 50,
    other_class = NULL
)
```

Arguments

- **DT**: a data table contains the factors and the response.
- **ColNameFactor**: a char vector with the name of the selected factor.
- **ColNameWeight**: a char with the name of the ZI response.
- **bounds**: default is $[-10;10]$. Upper and Lower bounds.
- **max_generations**: default is 200 see `genoud` for more information.
- **hard_limit**: default is TRUE see `genoud` for more information.
- **wait_generations**: default is 50 see `genoud` for more information.
- **other_class**: a char vector with the name of other classes than numeric (factor or char).

Value

Return a list of two elements with the value of the indicator and the associate set of parameters (beta).
model_matrix

Examples

```r
library(data.table)
data(example_data)
# For real cases increase max_generations and wait generations
I_max = indicator_max(example_data,
names(example_data)[c(4:8, 14:18)],
ColNameWeight = "proba",
max_generations = 20,
wait_generations = 5)
print(I_max)
```

model_matrix
Construct Design Matrix

Description

Creates a design matrix by expanding factors to a set of dummy variables.

Usage

```r
model_matrix(DT, ColNameFactor, other_class)
```

Arguments

- **DT**
a data table contains the factors and the response.
- **ColNameFactor**
a char vector with the name of the selected factor.
- **other_class**
a char vector with the name of other classes than numeric (factor or char).

Value

return the value.

Examples

```r
library(data.table)
data(example_data)
m = model_matrix (example_data,
colnames(example_data)[-c(1:3)],
other_class = colnames(example_data)[14:23])
print(m)
```
permDT

Permutations tests

Description

Permutations tests to identify factor correlated to a zero-inflated proportions response. The statistic are the Spearman’s correlation for numeric factor and mean by level for other factor.

Usage

```r
permDT(
  DT,   # a data table contains the factors and the response.
  ColNameFactor,   # a char vector with the name of the selected factor.
  B = 1000,   # number of permutations (use at least B=1000 permutations to get a correct accuracy of the p-value.)
  nclust = 1,   # number of proc for parallel computation.
  ColNameWeight = "weight",   # a char with the name of the ZI response.
  ColNameRecep = "ID.recep",   # colname of the column with the target names
  ColNameSource = "ID.source",   # colname of the column with the contributor names
  seed = NULL,   # vector with the seed for the permutations: size(seed)=B
  no_const = FALSE,   # FALSE for receiver block constraint for permutations: TRUE no constraint.
  num_class = ColNameFactor,   # a char vector with the name of numeric factor.
  other_class = NULL,   # a char vector with the name of other classes than numeric (factor or char).
  multiple_test = FALSE,   # useful option only for discrete factors: Set TRUE to calculate multiple tests.
  adjust_method = "none",   # p-values adjusted methods (default "none"). c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none").
  alpha = 0.05   # significant level (default 0.05).
)
```

Arguments

- **DT**: a data table contains the factors and the response.
- **ColNameFactor**: a char vector with the name of the selected factor.
- **B**: number of permutations (use at least B=1000 permutations to get a correct accuracy of the p-value.)
- **nclust**: number of proc for parallel computation.
- **ColNameWeight**: a char with the name of the ZI response.
- **ColNameRecep**: colname of the column with the target names
- **ColNameSource**: colname of the column with the contributor names
- **seed**: vector with the seed for the permutations: size(seed)=B
- **no_const**: FALSE for receiver block constraint for permutations: TRUE no constraint.
- **num_class**: a char vector with the name of numeric factor.
- **other_class**: a char vector with the name of other classes than numeric (factor or char).
- **multiple_test**: useful option only for discrete factors: Set TRUE to calculate multiple tests.
- **adjust_method**: p-values adjusted methods (default "none"). c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none").
- **alpha**: significant level (default 0.05).
Value

A data frame with two columns. One for the statistics and the other one for the p-value.

Examples

```r
library(data.table)
data(example_data)
res = permDT (example_data, 
colnames(example_data)[c(4,10,14,20)],
B = 10,
nclust = 1,
ColNameWeight = "y",
ColNameRecep = "ID.recep",
ColNameSource = "ID.source",
seed = NULL,
um_class = colnames(example_data)[c(4,10)],
other_class = colnames(example_data)[c(14,20)])
print(res)
```

scale_01

Scale vector

Description

Scale a vector between 0 and 1.

Usage

```r
scale_01(x)
```

Arguments

- `x` a vector.

Value

the scaled vector of `x`.

Examples

```r
x = runif(100,-10,10)
x_scale = scale_01(x)
range(x_scale)
```
T_stat_discr

Statistic for non-numeric factor tests

Description
Statistic for non-numeric factor tests (same statistic as H-test).

Usage
T_stat_discr(permu, al)

Arguments
permu: the response vector.
al: the factor.

Value
the statistic.

Examples
permu = runif(100,-10,10)
al = as.factor(sample(1:3,100,replace=TRUE))
T_stat_discr(permu, al)

T_stat_multi

Statistic for non-numeric factor multiple tests

Description
Statistic for non-numeric factor multiple tests (difference in mean ranks).

Usage
T_stat_multi(permu, al)

Arguments
permu: the response vector.
al: the factor.

Value
the means difference of two levels for a discrete factor.
Examples

```r
permu = runif(100,-10,10)
al = as.factor(sample(1:3,100,replace=TRUE))
T_stat_multi(permu, al)
```

ZIprop: A package for Zero-Inflated Proportions data (ZIprop)

Description

We propose a by block-permutation-based methodology (i) to identify factors (discrete or continuous) that are potentially significant, (ii) to define a performance indicator to quantify the percentage of correlation explained by the significant factors subset for Zero-Inflated Proportions data (ZIprop).

References

Melina Ribaud, Edith Gabriel, Joseph Hughes, Samuel Soubeyrand. Identifying potential significant factors impacting zero-inflated proportions data. 2020. hal-02936779
Index

* **diffFactors**
diffFactors, 3

* **equineDiffFactors**
equineDiffFactors, 3

* **example_data**
example_data, 4

delta, 2
diffFactors, 3

equineDiffFactors, 3
example_data, 4

fact2mat, 5

genoud, 6

indicator, 5
indicator_max, 6

model_matrix, 7

permDT, 8

scale_01, 9

T_stat_discr, 10
T_stat_multi, 10

ZIprop, 11