Package ‘abundant’

January 4, 2022

Type Package
Title High-Dimensional Principal Fitted Components and Abundant Regression
Version 1.2
Date 2022-01-04
Author Adam J. Rothman
Maintainer Adam J. Rothman <arothman@umn.edu>
Depends R (>= 2.10), glasso
Description Fit and predict with the high-dimensional principal fitted components model. This model is described by Cook, Forzani, and Rothman (2012) <doi:10.1214/11-AOS962>.
License GPL-2
NeedsCompilation yes
Repository CRAN
Date/Publication 2022-01-04 15:30:19 UTC

R topics documented:

abundant-package .. 1
fit.pfc ... 2
pred.response .. 5

Index

abundant-package Abundant regression and high-dimensional principal fitted components

Description

Fit and predict with the high-dimensional principal fitted components model.
Details

The main functions are `fit.pfc`, `pred.response`.

Author(s)

Adam J. Rothman

Maintainer: Adam J. Rothman <arothman@umn.edu>

References

fit.pfc

Fit a high-dimensional principal fitted components model using the method of Cook, Forzani, and Rothman (2012).

Description

Let $(x_1, y_1), \ldots, (x_n, y_n)$ denote the n measurements of the predictor and response, where $x_i \in \mathbb{R}^p$ and $y_i \in \mathbb{R}$. The model assumes that these measurements are a realization of n independent copies of the random vector $(X, Y)'$, where

$$X = \mu_X + \Gamma \beta \{ f(Y) - \mu_f \} + \epsilon,$$

$\mu_X \in \mathbb{R}^p$; $\Gamma \in \mathbb{R}^{p \times d}$ with rank d; $\beta \in \mathbb{R}^{d \times r}$ with rank d; $f: \mathbb{R} \rightarrow \mathbb{R}^r$ is a known vector valued function; $\mu_f = E\{ f(Y) \}$; $\epsilon \sim N_p(0, \Delta)$; and Y is independent of ϵ. The central subspace is $\Delta^{-1} \text{span}(\Gamma)$.

This function computes estimates of these model parameters by imposing constraints for identifiability. The mean parameters μ_X and μ_f are estimated with $\bar{x} = n^{-1} \sum_{i=1}^n x_i$ and $\bar{f} = n^{-1} \sum_{i=1}^n f(y_i)$. Let $\hat{\Phi} = n^{-1} \sum_{i=1}^n \{ f(y_i) - \bar{f} \} \{ f(y_i) - \bar{f} \}'$, which we require to be positive definite. Given a user-specified weight matrix \hat{W}, let

$$(\hat{\Gamma}, \hat{\beta}) = \arg \min_{G \in \mathbb{R}^{p \times d}, B \in \mathbb{R}^{d \times r}} \sum_{i=1}^n [x_i - \bar{x} - GB\{ f(y_i) - \bar{f} \}]' \hat{W} [x_i - \bar{x} - GB\{ f(y_i) - \bar{f} \}],$$

subject to the constraints that $G' \hat{W} G$ is diagonal and $B \hat{W} B' = I$. The sufficient reduction estimate $\hat{R}: \mathbb{R}^p \rightarrow \mathbb{R}^d$ is defined by $\hat{R}(x) = (\hat{\Gamma}' \hat{W} \hat{\Gamma})^{-1} \hat{\Gamma}' \hat{W} (x - \bar{x})$.

Usage

```r
fit.pfc(X, y, r=4, d=NULL, F.user=NULL, weight.type=c("sample", "diag", "L1"),
        lam.vec=NULL, kfold=5, silent=TRUE, qrtol=1e-10, cov.tol=1e-4,
        cov.maxit=1e3, NPERM=1e3, level=0.01)
```
Arguments

X
The predictor matrix with \(n \) rows and \(p \) columns. The \(i \)th row is \(x_i \) defined above.

y
The vector of measured responses with \(n \) entries. The \(i \)th entry is \(y_i \) defined above.

r
When polynomial basis functions are used (which is the case when \(F.user=NULL \)), \(r \) is the polynomial order, i.e., \(f(y) = (y, y^2, \ldots, y^r)' \). The default is \(r=4 \). This argument is not used when \(F.user \) is specified.

d
The dimension of the central subspace defined above. This must be specified by the user when \(weight.type="L1" \). If unspecified by the user this function will use the sequential permutation testing procedure, described in Section 8.2 of Cook, Forzani, and Rothman (2012), to select \(d \).

F.user
A matrix with \(n \) rows and \(r \) columns, where the \(i \)th row is \(f(y_i) \) defined above. This argument is optional, and will typically be used when polynomial basis functions are not desired.

weight.type
The type of weight matrix estimate \(\hat{W} \) to use. Let \(\hat{\Delta} \) be the observed residual sample covariance matrix for the multivariate regression of \(X \) on \(f(Y) \) with \(n - r - 1 \) scaling. There are three options for \(\hat{W} \):

- weight.type="sample" uses a Moore-Penrose generalized inverse of \(\hat{\Delta} \) for \(\hat{W} \), when \(p \leq n - r - 1 \) this becomes the inverse of \(\hat{\Delta} \);
- weight.type="diag" uses the inverse of the diagonal matrix with the same diagonal as \(\hat{\Delta} \) for \(\hat{W} \);
- weight.type="L1" uses the L1-penalized inverse of \(\hat{\Delta} \) described in equation (5.4) of Cook, Forzani, and Rothman (2012). In this case, \(lam.vec \) and \(d \) must be specified by the user. The glasso algorithm of Friedman et al. (2008) is used through the R package glasso.

lam.vec
A vector of candidate tuning parameter values to use when \(weight.type="L1" \). If this vector has more than one entry, then \(kfold \) cross validation will be performed to select the optimal tuning parameter value.

kfold
The number of folds to use in cross-validation to select the optimal tuning parameter when \(weight.type="L1" \). Only used if \(lam.vec \) has more than one entry.

silent
Logical. When \(silent=FALSE \), progress updates are printed.

qr.tol
The tolerance for calls to qr.solve().

cov.tol
The convergence tolerance for the QUIC algorithm used when \(weight.type="L1" \).

cov.maxit
The maximum number of iterations allowed for the QUIC algorithm used when \(weight.type="L1" \).

NPERM
The number of permutations to used in the sequential permutation testing procedure to select \(d \). Only used when \(d \) is unspecified.

level
The significance level to use to terminate the sequential permutation testing procedure to select \(d \).

Details

Value

A list with

- \(\Gammahat \): this is the \(\hat{\Gamma} \) described above.
- \(\betahat \): this is the \(\hat{\beta} \) described above.
- \(\Rmat \): this is \(\hat{W}'\hat{W}\hat{\Gamma}'\hat{\Gamma}^{-1} \).
- \(\What \): this is \(\hat{W} \) described above.
- \(\d \): this is \(d \) described above.
- \(\r \): this is \(r \) described above.
- \(\GWG \): this is \(\hat{\Gamma}'\hat{W}\hat{\Gamma} \).
- \(\fc \): a matrix with \(n \) rows and \(r \) columns where the \(i \)th row is \(f(y_i) - \bar{f} \).
- \(\Xc \): a matrix with \(n \) rows and \(p \) columns where the \(i \)th row is \(x_i - \bar{x} \).
- \(\y \): the vector of \(n \) response measurements.
- \(\mx \): this is \(\bar{x} \) described above.
- \(\mf \): this is \(\bar{f} \) described above.
- \(\bestlam \): this is the selected tuning parameter value used when weight.type="L1", will be NULL otherwise.
- \(\lamvec \): this is the vector of candidate tuning parameter values used when weight.type="L1", will be NULL otherwise.
- \(\errvec \): this is the vector of validation errors from cross validation, one error for each entry in lam.vec. Will be NULL unless weight.type="L1" and lam.vec has more than one entry.
- \(\testinfo \): a dataframe that summarizes the results from the sequential testing procedure. Will be NULL unless \(d \) is unspecified.

Author(s)

Adam J. Rothman

References

See Also

pred.response
Examples

```r
set.seed(1)
n=20
p=30
d=2
y=sqrt(12)*runif(n)
Gam=matrix(rnorm(p*d), nrow=p, ncol=d)
beta=diag(2)
E=matrix(0.5*rnorm(n*p), nrow=n, ncol=p)
V=matrix(c(1, sqrt(12), sqrt(12), 12.8), nrow=2, ncol=2)
tmp=eigen(V, symmetric=TRUE)
V.msqrt=tcrossprod(tmp$vec*rep(tmp$val^(-0.5), each=2), tmp$vec)
Fyc=cbind(y-sqrt(3),y^2-4)%*%V.msqrt
X=0+Fyc%*%t(beta)%*%t(Gam) + E

fit=fit.pfc(X=X, y=y, r=3, weight.type="sample")
## display hypothesis testing information for selecting d
fit$test.info
## make a response versus fitted values plot
plot(pred.response(fit), y)
```

pred.response

Predict the response with the fitted high-dimensional principal fitted components model

Description

Let \(x \in \mathbb{R}^p \) denote the values of the \(p \) predictors. This function computes \(\widehat{E}(Y|X = x) \) using equation (8.1) of Cook, Forzani, and Rothman (2012).

Usage

`pred.response(fit, newx=NULL)`

Arguments

- `fit` The object returned by `fit.pfc()`.
- `newx` A matrix with \(N \) rows and \(p \) columns where each row is an instance of \(x \) described above. If this argument is unspecified, then the fitted values are returned, i.e., \(newx=X \), where \(X \) was the predictor matrix used in the call to `fit.pfc()`.

Details

See Cook, Forzani, and Rothman (2012) for more information.

Value

A vector of response prediction with `nrow(newx)` entries.
Author(s)

Adam J. Rothman

References

See Also

fit.pfc

Examples

```r
set.seed(1)
n=25
p=50
d=1
true.G = matrix(rnorm(p*d), nrow=p, ncol=d)
y=rnorm(n)
fy = y
E=matrix(rnorm(n*p), nrow=n, ncol=p)
X=fy%*%true.G + E
fit=fit.pfc(X=X, r=4, d=d, y=y, weight.type="diag")
fitted.values=pred.response(fit)
mean((y-fitted.values)^2)
plot(fitted.values, y)

n.new=100
y.new=rnorm(n.new)
fy.new=y.new
E.new=matrix(rnorm(n.new*p), nrow=n.new, ncol=p)
X.new = fy.new%*%true.G + E.new
mean((y.new - pred.response(fit, newx=X.new))^2)
```
Index

abundant (abundant-package), 1
abundant-package, 1

fit.pfc, 2, 2, 6

pred.response, 2, 4, 5