Package ‘airt’

November 23, 2020

Type Package
Title Evaluation of Algorithm Collections Using Item Response Theory
Version 0.2.0
Maintainer Sevvandi Kandanaarachchi <sevvandik@gmail.com>
Description An evaluation framework for algorithm portfolios using Item Response Theory (IRT). We use continuous and polytomous IRT models to evaluate algorithms and introduce algorithm characteristics such as stability, effectiveness and anomalousness (Kandanaarachchi, Smith-Miles 2020) <doi:10.13140/RG.2.2.11363.09760>.
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
Depends R (>= 3.4.0)
Imports pracma, mirt, tidyr, EstCRM, rlang
Suggests knitr, rmarkdown, ggplot2
VignetteBuilder knitr
URL https://sevvandi.github.io/airt/
NeedsCompilation no
Author Sevvandi Kandanaarachchi [aut, cre]
 (https://orcid.org/0000-0002-0337-0395)
Repository CRAN
Date/Publication 2020-11-23 10:50:22 UTC

R topics documented:

 algo_effectiveness.crm .. 2
 algo_effectiveness_poly .. 3
 cirtmodel ... 4
 classification_cts ... 5
Computes the actual and predicted effectiveness of a given algorithm.

Description

This function computes the actual and predicted effectiveness of a given algorithm for different tolerance values.

Usage

algo_effectiveness_crm(mod, num = 1)

Arguments

mod A fitted mirt model using the function irtmodel or R package mirt.
num The algorithm number, for which the goodness of the IRT model is computed.

Value

A list with the following components:

effective The x,y coordinates for the actual and predicted effectiveness curves for algorithm num.
predictedEff The area under the predicted effectiveness curve.
actualEff The area under the actual effectiveness curve.
Examples

```r
set.seed(1)
x1 <- runif(100)
x2 <- runif(100)
x3 <- runif(100)
X <- cbind.data.frame(x1, x2, x3)
max_item <- rep(1,3)
min_item <- rep(0,3)
mod <- cirtmodel(X, max.item=max_item, min.item=min_item)
out <- algo_effectiveness_crm(mod$model, num=1)
out
```

algo_effectiveness_poly

Computes the actual and predicted effectiveness of a given algorithm.

Description

This function computes the actual and predicted effectiveness of a given algorithm for different tolerance values.

Usage

```r
algo_effectiveness_poly(mod, num = 1)
```

Arguments

- `mod`: A fitted `mirt` model using the function `irtmodel` or R package `mirt`.
- `num`: The algorithm number

Value

A list with the following components:

- `effective`: The x,y coordinates for the actual and predicted effectiveness curves for algorithm num.
- `predictedEff`: The area under the predicted effectiveness curve.
- `actualEff`: The area under the actual effectiveness curve.

```r
# @examples set.seed(1) x1 <- sample(1:5, 100, replace = TRUE) x2 <- sample(1:5, 100, replace = TRUE) x3 <- sample(1:5, 100, replace = TRUE) X <- cbind.data.frame(x1, x2, x3) mod <- pirtmodel(X) out <- algo_effectiveness_poly(mod$model, num=1) out
```
cirtmodel \hspace{1cm} \textit{Fits a continuous IRT model.}

Description

This function fits a continuous Item Response Theory (IRT) model to the algorithm performance data. The function EstCRMItem in the R package EstCRM is updated to accommodate negative discrimination.

Usage

cirtmodel(df, max.item = NULL, min.item = NULL)

Arguments

- **df**: The performance data in a matrix or dataframe.
- **max.item**: A vector with the maximum performance value for each algorithm.
- **min.item**: A vector with the minimum performance value for each algorithm.

Value

A list with the following components:

- **model**: The IRT model.
- **anomalous**: A binary value for each algorithm. It is set to 1 if an algorithm is anomalous. Otherwise it is set to 0.
- **stability**: The stability of each algorithm.
- **easiness_threshold**: The easiness threshold of each algorithm. A lower threshold indicates that the algorithm finds more test instances easy.

Examples

```r
set.seed(1)
x1 <- runif(100)
x2 <- runif(100)
x3 <- runif(100)
X <- cbind.data.frame(x1, x2, x3)
max_item <- rep(1,3)
min_item <- rep(0,3)
mod <- cirtmodel(X, max.item=max_item, min.item=min_item)
```
classification_cts

A dataset containing classification algorithm performance data in a continuous format.

Description
This dataset contains the performance of 10 classification algorithms on 235 datasets discussed in the paper Instance Spaces for Machine Learning Classification by M. A. Munoz, L. Villanova, D. Baatar, and K. A. Smith-Miles.

Usage
classification_cts

Format
A dataframe of 235 x 10 dimensions.

Dimension 1 Each row contains the algorithm performance of a dataset on 10 classification algorithms.

Dimensions 2 Each column contains the algorithm performance of a single algorithm.

Source
https://matilda.unimelb.edu.au/matilda/problems/learning/classification#classification

classification_poly

A dataset containing classification algorithm performance data in a polytomous format.

Description
This dataset contains the performance of 10 classification algorithms on 235 datasets discussed in the paper Instance Spaces for Machine Learning Classification by M. A. Munoz, L. Villanova, D. Baatar, and K. A. Smith-Miles.

Usage
classification_poly

Format
A dataframe of 235 x 10 dimensions.

Dimension 1 Each row contains the algorithm performance of a dataset on 10 classification algorithms.

Dimensions 2 Each column contains the algorithm performance of a single algorithm.
effectiveness_crm

Computes the actual and predicted effectiveness of the collection of algorithms.

Description
This function computes the actual and predicted effectiveness of the collection of algorithms for different tolerance values.

Usage
effectiveness_crm(mod)

Arguments
mod
A fitted mirt model using the function irtmodel or R package mirt.

Value
A list with the following components:

effectivenessAUC
The area under the actual and predicted effectiveness curves.

actcurves
The x,y coordinates for the actual effectiveness curves for each algorithm.

prdcurves
The x,y coordinates for the predicted effectiveness curves for each algorithm.

Examples
set.seed(1)
x1 <- runif(100)
x2 <- runif(100)
x3 <- runif(100)
X <- cbind.data.frame(x1, x2, x3)
max_item <- rep(1,3)
min_item <- rep(0,3)
mod <- cirtmodel(X, max.item=max_item, min.item=min_item)
out <- effectiveness_crm(mod$model)
out
effectiveness_poly

Computes the actual and predicted effectiveness of the collection of algorithms.

Description

This function computes the actual and predicted effectiveness of the collection of algorithms for different tolerance values.

Usage

\texttt{effectiveness_poly(mod)}

Arguments

\begin{itemize}
 \item \texttt{mod} \quad A fitted \texttt{mirt} model using the function \texttt{irtmodel} or \texttt{R} package \texttt{mirt}.
\end{itemize}

Value

A list with the following components:

\begin{itemize}
 \item \texttt{effectivenessAUC} \quad The area under the actual and predicted effectiveness curves.
 \item \texttt{actcurves} \quad The x,y coordinates for the actual effectiveness curves for each algorithm.
 \item \texttt{prdcurves} \quad The x,y coordinates for the predicted effectiveness curves for each algorithm.
\end{itemize}

Examples

\begin{verbatim}
set.seed(1)
x1 <- sample(1:5, 100, replace = TRUE)
x2 <- sample(1:5, 100, replace = TRUE)
x3 <- sample(1:5, 100, replace = TRUE)
X <- cbind.data.frame(x1, x2, x3)
mod <- pirtmodel(X)
out <- effectiveness_poly(mod$model)
out
\end{verbatim}
latent_trait_analysis Performs the latent trait analysis

Description

This function performs the latent trait analysis of the datasets/problems after fitting a continuous IRT model. It fits a smoothing spline to the points to compute the latent trait.

Usage

latent_trait_analysis(df, paras, min_item = 0, max_item = 1)

Arguments

df The performance data in a matrix or dataframe.
paras The parameters from fitting cirtmodel.
min_item A vector with the minimum performance value for each algorithm.
max_item A vector with the maximum performance value for each algorithm.

Value

A list with the following components:

crmtheta The problem trait output computed from the R package EstCRM.
crmtheta The problem trait output computed from the R package EstCRM.
latent The latent trait occupancy of each algorithm.
dfl The dataset in a long format of latent trait occupancy.
plt The ggplot object showing the fitted smoothing splines.

Examples

set.seed(1)
x1 <- runif(100)
x2 <- runif(100)
x3 <- runif(100)
X <- cbind.data.frame(x1, x2, x3)
max_item <- rep(1,3)
min_item <- rep(0,3)
mod <- cirtmodel(X, max.item=max_item, min.item=min_item)
out <- latent_trait_analysis(X, mod$model$param, min_item= min_item, max_item = max_item)
out
make_polyIRT_data

Converts continuous performance data to polytomous data with 5 categories.

Description

This function converts continuous performance data to polytomous data with 5 categories.

Usage

make_polyIRT_data(df, method = 1)

Arguments

df: The input data in a dataframe or a matrix

method: If 1, then the data is an accuracy measure between 0 and 1. If 2, then the performance data is possibly has a bigger range. So we divide it into 5 equal bins to make it polytomous.

Value

The polytomous data frame.

Examples

set.seed(1)
x1 <- runif(500)
x2 <- runif(500)
x3 <- runif(500)
x <- cbind(x1, x2, x3)
xout <- make_polyIRT_data(x)

model_goodness_crm

Computes the goodness of IRT model for all algorithms.

Description

This function computes the goodness of the IRT model for all algorithms for different goodness tolerances.

Usage

model_goodness_crm(mod)
model_goodness_for_algo_crm

Arguments

mod A fitted mirt model using the function irtmodel or R package mirt.

Value

A list with the following components:

goodnessAUC The area under the model goodness curve for each algorithm.
curves The x,y coordinates for the model goodness curves for each algorithm.

Examples

set.seed(1)
x1 <- runif(100)
x2 <- runif(100)
x3 <- runif(100)
X <- cbind.data.frame(x1, x2, x3)
max_item <- rep(1,3)
min_item <- rep(0,3)
mod <- cirtmodel(X, max.item=max_item, min.item=min_item)
out <- model_goodness_crm(mod$model)
out

model_goodness_for_algo_crm

Computes the goodness of IRT model for a given algorithm.

Description

This function computes the goodness of the IRT model for a given algorithm for different goodness tolerances.

Usage

model_goodness_for_algo_crm(mod, num = 1)

Arguments

mod A fitted mirt model using the function irtmodel or R package mirt.
num The algorithm number, for which the goodness of the IRT model is computed.

Value

A list with the following components:

xy The x values denote the goodness tolerances. The y values denote the model goodness.
auc The area under the model goodness curve.
Examples

```r
set.seed(1)
x1 <- runif(100)
x2 <- runif(100)
x3 <- runif(100)
X <- cbind.data.frame(x1, x2, x3)
max_item <- rep(1,3)
min_item <- rep(0,3)
mod <- cirtmodel(X, max.item=max_item, min.item=min_item)
out <- model_goodness_for_algo_crm(mod$model, num=1)
out
```

`model_goodness_for_algo_poly`

Computes the goodness of the IRT model fit for a given algorithm.

Description

This function computes the goodness of the IRT model fit for a given algorithm using the empirical cumulative distribution function of errors.

Usage

```r
model_goodness_for_algo_poly(mod, num = 1)
```

Arguments

- `mod` A fitted `mirt` model using the function `irtmodel` or `R` package `mirt`.
- `num` The algorithm number

Value

A list with the following components:

- `xy` The x values denote the error tolerances. The y values denotes its empirical cumulative distribution function.
- `auc` The area under the CDF.
- `mse` The mean squared error.
Examples

```r
set.seed(1)
x1 <- sample(1:5, 100, replace = TRUE)
x2 <- sample(1:5, 100, replace = TRUE)
x3 <- sample(1:5, 100, replace = TRUE)
X <- cbind.data.frame(x1, x2, x3)
mod <- pirtmodel(X)
out <- model_goodness_for_algo_poly(mod$model, num=1)
out
```

model_goodness_poly

Computes the goodness of IRT model for all algorithms.

Description

This function computes the goodness of the IRT model for all algorithms using the empirical cumulative distribution function of errors.

Usage

```r
model_goodness_poly(mod)
```

Arguments

- `mod` A fitted mirt model using the function irtmodel or R package mirt.

Value

A list with the following components:

- `goodnessAUC` The area under the model goodness curve for each algorithm.
- `mse` The mean squared error.
- `curves` The x,y coordinates for the model goodness curves for each algorithm.

Examples

```r
set.seed(1)
x1 <- sample(1:5, 100, replace = TRUE)
x2 <- sample(1:5, 100, replace = TRUE)
x3 <- sample(1:5, 100, replace = TRUE)
X <- cbind.data.frame(x1, x2, x3)
mod <- pirtmodel(X)
out <- model_goodness_poly(mod$model)
out
```
pirtmodel

Fits a polytomous IRT model.

Description

This function fits a polytomous Item Response Theory (IRT) model to the algorithm performance data.

Usage

pirtmodel(dat, ncycle = NULL, vpara = TRUE)

Arguments

dat The performance data in a matrix or dataframe.
ncycle The number of cycles for mirt. The default is 500.
vpara It TRUE the verbose parameter for the mirt would be set to true.

Value

A list with the following components:

model The IRT model using the R package mirt.
anomalous A binary value for each algorithm. It is set to 1 if an algorithm is anomalous. Otherwise it is set to 0.
stability The stability of each algorithm.
easiness_threshold The easiness thresholds for each algorithm. Lower thresholds indicates that the algorithm finds more test instances easy.

Examples

set.seed(1)
x1 <- sample(1:5, 100, replace = TRUE)
x2 <- sample(1:5, 100, replace = TRUE)
x3 <- sample(1:5, 100, replace = TRUE)
X <- cbind.data.frame(x1, x2, x3)
mod <- pirtmodel(X)
prepare_for_plots_crm
Utility function to make a dataframe from the continuous IRTmodel

Description
This is a utility function to make a dataframe from the continuous IRTmodel, which makes it easier to plot the surfaces

Usage
```r
prepare_for_plots_crm(mod, thetarange = c(-6, 6))
```

Arguments
- `mod`: IRT model, either from function `cirtmodel` or the R package `EstCRM`.
- `thetarange`: The range for theta, default from -6 to 6.

Value
Dataframe with output probabilities from the IRT model for all algorithms.

Examples
```r
data(classification_cts)
mod <- cirtmodel(classification_cts)
dat <- prepare_for_plots_crm(mod$model)
head(dat)
```

prepare_for_plots_poly
Utility function to make a dataframe from the polytomous IRTmodel

Description
This is a utility function to make a dataframe from the polytomous IRTmodel, which makes it easier to plot trace lines

Usage
```r
prepare_for_plots_poly(mod)
```

Arguments
- `mod`: IRT model, either from function `pirtmodel` or the R package `mirt`.
Value

Dataframe with output probabilities from the IRT model for all algorithms.

Examples

```r
data(classification_poly)
mod <- pirtmodel(classification_poly)
dat <- prepare_for_plots_poly(mod$model)
head(dat)
```
Index

* datasets
 classification_cts, 5
 classification_poly, 5

algo_effectiveness_crm, 2
algo_effectiveness_poly, 3

cirtmodel, 4
classification_cts, 5
classification_poly, 5

effectiveness_crm, 6
effectiveness_poly, 7

latent_trait_analysis, 8

make_polyIRT_data, 9
model_goodness_crm, 9
model_goodness_for_algo_crm, 10
model_goodness_for_algo_poly, 11
model_goodness_poly, 12

pirtmodel, 13
prepare_for_plots_crm, 14
prepare_for_plots_poly, 14