The clonal diversity of the repertoire can be analyzed using the general form of the diversity index, as proposed by Hill in:

Coupled with resampling strategies to correct for variations in sequencing depth, as well as inference of complete clonal abundance distributions as described in:

This package provides methods for the inference of a complete clonal abundance distribution, using the estimateAbundance function, along with two approaches to assess diversity of these distributions:

1. Generation of a smooth diversity (D) curve over a range of diversity orders (q) using rarefyDiversity.
2. A significance test of the diversity (D) at a fixed diversity order (q) using testDiversity.

Example data

A small example Change-O database, ExampleDb, is included in the alakazam package. Diversity calculation requires the CLONE field (column) to be present in the Change-O file, as well as an additional grouping column. In this example we will use the grouping columns SAMPLE and ISOTYPE.

```r
# Load required packages
library(alakazam)

# Load example data
data(ExampleDb)
```
Generate a clonal abundance curve

A simple table of the observed clonal abundance counts and frequencies may be generated using the `countClones` function either without copy numbers, where the size of each clone is determined by the number of sequence members:

```
# Partitions the data based on the SAMPLE column
clones <- countClones(ExampleDb, groups="SAMPLE")
head(clones, 5)
```

```
## Source: local data frame [5 x 4]
## Groups: SAMPLE [1]
##
## # A tibble: 5 x 4
## SAMPLE CLONE SEQ_COUNT SEQ_FREQ
## <chr> <chr> <int> <dbl>
## 1 +7d 3128 100 0.100
## 2 +7d 3100 50 0.050
## 3 +7d 3141 44 0.044
## 4 +7d 3177 30 0.030
## 5 +7d 3170 28 0.028
```

You may also specify a column containing the abundance count of each sequence (usually copy numbers), that will including weighting of each clone size by the corresponding abundance count. Furthermore, multiple grouping columns may be specified such that `SEQ_FREQ` (unweighted clone size as a fraction of total sequences in the group) and `COPY_FREQ` (weighted faction) are normalized to within multiple group data partitions.

```
# Partitions the data based on both the SAMPLE and ISOTYPE columns
# Weights the clone sizes by the DUPCOUNT column
clones <- countClones(ExampleDb, groups=c("SAMPLE", "ISOTYPE"), copy="DUPCOUNT")
head(clones, 5)
```

```
## Source: local data frame [5 x 7]
## Groups: SAMPLE, ISOTYPE [2]
##
## # A tibble: 5 x 7
## SAMPLE ISOTYPE CLONE SEQ_COUNT COPY_COUNT SEQ_FREQ COPY_FREQ
## <chr> <chr> <chr> <int> <int> <dbl> <dbl>
## 1 +7d IgA 3128 88 0.33082707 0.49732620
## 2 +7d IgG 3100 49 0.09280303 0.17296962
## 3 +7d IgA 3141 44 0.16541353 0.18334607
## 4 +7d IgG 3192 19 0.03598485 0.08741476
## 5 +7d IgG 3177 29 0.05492424 0.08059516
```

While `countClones` will report observed abundances, it will not correct the distribution nor provide confidence intervals. A complete clonal abundance distribution may be inferred using the `estimateAbundance` function with confidence intervals derived via bootstrapping. This output may be visualized using the `plotAbundance` function.
Partitions the data on the SAMPLE column
Calculates a 95% confidence interval via 200 bootstrap realizations
clones <- estimateAbundance(ExampleDb, group="SAMPLE", ci=0.95, nboot=200)

head(clones, 5)

A tibble: 5 x 6
GROUP CLONE P LOWER UPPER RANK
<chr> <chr> <dbl> <dbl> <dbl> <int>
1 +7d 3128 0.100 0.08066119 0.11933881 1
2 +7d 3100 0.050 0.03602211 0.06397789 2
3 +7d 3141 0.044 0.03050826 0.05749174 3
4 +7d 3177 0.030 0.01999395 0.04000605 4
5 +7d 3170 0.028 0.01819331 0.03780669 5

Plots a rank abundance curve of the relative clonal abundances
sample_colors <- c("-1h"="seagreen", "+7d"="steelblue")
plotAbundance(clones, colors=sample_colors, legend_title="Sample")

Generate a diversity curve

The function rarefyDiversity performs uniform resampling of the input sequences and recalculates
the clone size distribution, and diversity, with each resampling realization. Diversity (D) is calculated
over a range of diversity orders (q) to generate a smooth curve.

Compare diversity curve across values in the "SAMPLE" column
q ranges from 0 (min_q=0) to 32 (max_q=32) in 0.05 incriments (step_q=0.05)
A 95% confidence interval will be calculated (ci=0.95)
2000 resampling realizations are performed (nboot=200)
sample_div <- rarefyDiversity(ExampleDb, "SAMPLE", min_q=0, max_q=32, step_q=0.05, ci=0.95, nboot=200)

Compare diversity curve across values in the "ISOTYPE" column
Analyse is restricted to ISOTYPE values with at least 30 sequences by min_n=30
Excluded groups are indicated by a warning message
isotype_div <- rarefyDiversity(ExampleDb, "ISOTYPE", min_n=30, min_q=0, max_q=32, step_q=0.05, ci=0.95, nboot=200)

Plot a log-log (log_q=TRUE, log_d=TRUE) plot of sample diversity
Indicate number of sequences resampled from each group in the title
sample_main <- paste0("Sample diversity (n=", sample_div@n, ")")
sample_colors <- c("-1h"="seagreen", "+7d"="steelblue")
plotDiversityCurve(sample_div, colors=sample_colors, main_title=sample_main, legend_title="Sample", log_q=TRUE, log_d=TRUE)

Warning: Transformation introduced infinite values in continuous x-axis

Warning: Transformation introduced infinite values in continuous x-axis

Plot isotype diversity using default set of Ig isotype colors
isotype_main <- paste0("Isotype diversity (n=", isotype_div@n, ")")
plotDiversityCurve(isotype_div, colors=IG_COLORS, main_title=isotype_main, legend_title="Isotype", log_q=TRUE, log_d=TRUE)

Warning: Transformation introduced infinite values in continuous x-axis

Warning: Transformation introduced infinite values in continuous x-axis
Warning: Transformation introduced infinite values in continuous x-axis

Test diversity at a fixed diversity order

The function `testDiversity` performs resampling and diversity calculation in the same manner as `rarefyDiversity`, but only for a single diversity order. Significance testing across groups is performed using the delta of the bootstrap distributions between groups.

```r
# Test diversity at q=0 (species richness) across values in the "SAMPLE" column
# 2000 bootstrap realizations are performed (nboot=200)
sample_test <- testDiversity(ExampleDb, 0, "SAMPLE", nboot=200)

# Print p-value table
print(sample_test)

## test DELTA_MEAN DELTA_SD PVALUE
## 1 +7d != -1h 477.965 17.67643 0

# Test diversity across values in the "ISOTYPE" column
# Analyse is restricted to ISOTYPE values with at least 30 sequences by min_n=30
# Excluded groups are indicated by a warning message
isotype_test <- testDiversity(ExampleDb, 2, "ISOTYPE", min_n=30, nboot=200)

# Print p-value table
print(isotype_test)

## test DELTA_MEAN DELTA_SD PVALUE
## 5
```
<table>
<thead>
<tr>
<th></th>
<th>Immunoglobulin Comparison</th>
<th>p-value</th>
<th>q-value</th>
<th>Replications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IgA != IgD</td>
<td>191.11969</td>
<td>10.465739</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>IgA != IgG</td>
<td>26.14645</td>
<td>4.624659</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>IgA != IgM</td>
<td>229.24679</td>
<td>6.644936</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>IgD != IgG</td>
<td>164.97324</td>
<td>10.767137</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>IgD != IgM</td>
<td>38.12710</td>
<td>11.526852</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>IgG != IgM</td>
<td>203.10034</td>
<td>7.573028</td>
<td>0</td>
</tr>
</tbody>
</table>