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bCBA Classification Based on Association Rules

Description

Build a classifier using a transaction boosting classification by association algorithm. The algorithm
is currently in development, and is not yet formally documented.

Usage

bCBA(formula, data, gamma = 0.05, cost = 10.0,
parameter = NULL, control = NULL, sort.parameter = NULL, lhs.support = FALSE,
class.weights = NULL, disc.method = "mdlp", verbose = FALSE, ...)

Arguments

formula A symbolic description of the model to be fitted. Has to be of form class ~ ..
The class is the variable name (part of the item label before =).

data A data.frame containing the training data.

gamma, cost Hyperparameters for the bCBA algorithm.

verbose Optional logical flag to allow verbose execution, where additional intermediary
execution information is printed at runtime.

parameter, control

Optional parameter and control lists for apriori.

sort.parameter Ordered vector of arules interest measures (as characters) which are used to sort
rules in preprocessing.

lhs.support Logical variable, which, when set to default value of True, indicates that LHS
support should be used for rule mining.

class.weights Weights that should be assigned to the rows of each class (ordered by appearance
in levels(classColumn))

disc.method Discretization method for factorizing numeric input (default: "mdlp"). See
discretizeDF.supervised for more supervised discretization methods.

... Additional parameters are added to the apriori parameters (e.g., support and
confidence).
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Details

Formats the input data frame and calls a C implementation of a transaction-boosted classification
algorithm which is currently being developed. This R package provides an interface to the current
most stable release

Before the ’bCBA’ algorithm in C is executed, association rules are generated with the Apriori
algorithm from the arules package.

A default class is selected for the classifier. Note that for datasets which do not yield any strong
association rules it’s possible that no rules will be included in the classifier, and only a default class.

Value

Returns an object of class CBA representing the trained classifier with fields:

rules the classifier rule base.

default default class label.

levels levels of the class variable.

Author(s)

Ian Johnson

See Also

predict.CBA, CBA.object, apriori

Examples

data("iris")

classifier <- bCBA(Species ~ ., data = iris, supp = 0.05, conf = 0.9,
lhs.support = TRUE)

classifier

predict(classifier, head(iris))

CBA Classification Based on Association Rules Algorithm (CBA)

Description

Build a classifier based on association rules using the ranking, pruning and classification strategy of
the CBA algorithm by Liu, et al. (1998).
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Usage

CBA(formula, data, pruning = "M1",
parameter = NULL, control = NULL, balanceSupport = FALSE,
disc.method = "mdlp", verbose = FALSE, ...)

pruneCBA_M1(formula, rules, transactions, verbose = FALSE)
pruneCBA_M2(formula, rules, transactions, verbose = FALSE)

Arguments

formula A symbolic description of the model to be fitted. Has to be of form class ~ .
or class ~ predictor1 + predictor2.

data A data.frame or a transaction set containing the training data. Data frames are
automatically discretized and converted to transactions.

pruning Pruning strategy used: "M1" or "M2".

parameter, control

Optional parameter and control lists for apriori.

balanceSupport balanceSupport parameter passed to mineCARs function.

disc.method Discretization method used to discretize continuous variables if data is a data.frame
(default: "mdlp"). See discretizeDF.supervised for more supervised dis-
cretization methods.

... For convenience, additional parameters are used to create the parameter control
list for apriori (e.g., to specify the support and confidence thresholds).

rules, transactions

prune a set of rules using a transaction set.

verbose Show progress?

Details

Implementation the CBA algorithm with the M1 or M2 pruning strategy introduced by Liu, et al.
(1998).

Candidate classification association rules (CARs) are mined with the standard APRIORI algorithm.
Rules are ranked by confidence, support and size. Then either the M1 or M2 algorithm are used to
perform database coverage pruning and to determin the number of rules to use and the default class.

Value

Returns an object of class CBA.object representing the trained classifier.

Author(s)

Ian Johnson and Michael Hahsler
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References

Liu, B. Hsu, W. and Ma, Y (1998). Integrating Classification and Association Rule Mining.
KDD’98 Proceedings of the Fourth International Conference on Knowledge Discovery and Data
Mining, New York, 27-31 August. AAAI. pp. 80-86. https://dl.acm.org/doi/10.5555/
3000292.3000305

See Also

CBA.object, mineCARs.

Examples

data("iris")

# 1. Learn a classifier using automatic default discretization
classifier <- CBA(Species ~ ., data = iris, supp = 0.05, conf = 0.9)
classifier

# inspect the rule base
inspect(rules(classifier))

# make predictions
predict(classifier, head(iris))
table(pred = predict(classifier, iris), true = iris$Species)

# 2. Learn classifier from transactions (and use verbose)
iris_trans <- prepareTransactions(Species ~ ., iris, disc.method = "mdlp")
iris_trans
classifier <- CBA(Species ~ ., data = iris_trans, supp = 0.05, conf = 0.9, verbose = TRUE)
classifier

# make predictions. Note: response extracts class information from transactions.
predict(classifier, head(iris_trans))
table(pred = predict(classifier, iris_trans), true = response(Species ~ ., iris_trans))

CBA.object Objects for Classifiers Based on Association Rules

Description

Objects for classifiers based on association rules have class "CBA". A creator function CBA_ruleset()
and several methods are provided.

Usage

CBA_ruleset(formula, rules, method = "first", weights = NULL, default = NULL,
description = "Custom rule set")

https://dl.acm.org/doi/10.5555/3000292.3000305
https://dl.acm.org/doi/10.5555/3000292.3000305
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## S3 method for class 'CBA'
print(x, ...)
## S3 method for class 'CBA'
rules(x)
## S3 method for class 'CBA'
predict(object, newdata, type = c("class", "score"), ...)

Arguments

formula A symbolic description of the model to be fitted. Has to be of form class ~ ..
The class is the variable name (part of the item label before =).

rules A set of class association rules mined with mineCars or apriori (from arules).

method Classification method "first" found rule or "majority".

weights Rule weights for method majority. Either a quality measure available in rules
or a numeric vector of the same length are rules can be specified. If missing,
then equal weights are used

default Default class of the form variable=level. If not specified then the most fre-
quent RHS in rules is used.,

description Description field used when the classifier is printed.

x, object An object of class CBA.

newdata A data.frame or transactions containing rows of new entries to be classified.

type Predict "class" labels. Some classifiers can also return "scores".

... Additional arguments currently not used.

Details

CBA_ruleset creates a new object of class CBA using the provides rules as the rule base. For
method "first", the user needs to make sure that the rules are predictive and sorted from most to
least predictive.

Value

CBA_ruleset() returns an object of class CBA representing the trained classifier with fields:

formula used formula.

discretization discretization information.

rules the classifier rule base.

default default class label ot NA.

weights rule weights.

biases class biases.

method classification method.

description description in human readable form.

predict returns predicted labels for newdata.

rules returns the rule base.
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Author(s)

Michael Hahsler

See Also

CBA, mineCARs, apriori, rules, transactions.

Examples

data("iris")

# discretize and create transactions
iris.disc <- discretizeDF.supervised(Species ~., iris)
trans <- as(iris.disc, "transactions")

# create rule base with CARs
cars <- mineCARs(Species ~ ., trans, parameter = list(support = .01, confidence = .8))

cars <- cars[!is.redundant(cars)]
cars <- sort(cars, by = "conf")

# create classifier
cl <- CBA_ruleset(Species ~ ., cars)
cl

# look at the rule base
rules(cl)

# make predictions
prediction <- predict(cl, trans)
table(prediction, response(Species ~ ., trans))

# use weighted majority
cl <- CBA_ruleset(Species ~ ., cars, method = "majority", weights = "lift")
cl

prediction <- predict(cl, trans)
table(prediction, response(Species ~ ., trans))

classFrequency Extracting the Response and Class Frequency for Transactions or CAR
Sets

Description

Converts the class items in transactions/CARs back to a class label. Class frequency can be used
to check transactions for class imbalance or the proportion of rules for each class label in a set of
CARs.
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Usage

response(formula, x)
classFrequency(formula, x, type = "relative")
majorityClass(formula, transactions)

Arguments

formula A symbolic description of the model to be fitted.
x, transactions

An object of class transactions or rules.

type "relative" or "absolute" to return proportions or absolute counts.

Value

response returns the response label as a factor.

classFrequency returns the item frequency for each class label as a vector.

majorityClass returns the most frequent class label in the transactions.

Author(s)

Michael Hahsler

See Also

itemFrequency, rules, transactions.

Examples

data("iris")

iris.disc <- discretizeDF.supervised(Species ~ ., iris)
iris.trans <- as(iris.disc, "transactions")
inspect(head(iris.trans, n = 2))

# convert the class items back to a class label
response(Species ~ ., head(iris.trans, n = 2))

# Class distribution. The iris dataset is perfectly balanced.
classFrequency(Species ~ ., iris.trans)

# Majority Class
# (Note: since all class frequencies for iris are the same, the first one is returned)
majorityClass(Species ~ ., iris.trans)

# Use for CARs
cars <- mineCARs(Species ~ ., iris.trans, parameter = list(support = 0.3))

# Number of rules for each class
classFrequency(Species ~ ., cars, type = "absolute")



discretizeDF.supervised 9

# conclusion (item in the RHS) of the rule as a class label
response(Species ~ ., head(iris.trans, n = 2))

discretizeDF.supervised

Supervised Methods to Convert Continuous Variables into Categorical
Variables

Description

This function implements several supervised methods to convert continuous variables into a cate-
gorical variables (factor) suitable for association rule mining and building associative classifiers. A
whole data.frame is discretized (i.e., all numeric columns are discretized).

Usage

discretizeDF.supervised(formula, data, method = "mdlp", dig.lab = 3, ...)

Arguments

formula a formula object to specify the class variable for supervised discretization and
the predictors to be discretized in the form class ~ . or class ~ predictor1 +
predictor2.

data a data.frame containing continuous variables to be discretized

method discretization method. Available are: "mdlp", "caim", "cacc", "ameva", "chi2",
"chimerge", "extendedchi2", and "modchi2".

dig.lab integer; number of digits used to create labels.

... Additional parameters are passed on to the implementation of the chosen dis-
cretization method.

Details

discretizeDF.supervised only implements supervised discretization. See discretizeDF in
package arules for unsupervised discretization.

Value

discretizeDF returns a discretized data.frame. Discretized columns have an attribute "discretized:breaks"
indicating the used breaks or and "discretized:method" giving the used method.

Author(s)

Michael Hahsler
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See Also

Unsupervised discretization from arules: discretize, discretizeDF.

Details about the available supervised discretization methods from discretization: mdlp, caim,
cacc, ameva, chi2, chiM, extendChi2, modChi2.

Examples

data("iris")
summary(iris)

# supervised discretization using Species
iris.disc <- discretizeDF.supervised(Species ~ ., iris)
summary(iris.disc)

attributes(iris.disc$Sepal.Length)

# discretize the first few instances of iris using the same breaks as iris.disc
discretizeDF(head(iris), methods = iris.disc)

# only discretize predictors Sepal.Length and Petal.Length
iris.disc2 <- discretizeDF.supervised(Species ~ Sepal.Length + Petal.Length, iris)
head(iris.disc2)

FOIL Use FOIL to learn a rule set for classification

Description

Build a classifier rule base using FOIL (First Order Inductive Learner), a greedy algorithm that
learns rules to distinguish positive from negative examples.

Usage

FOIL(formula, data, max_len = 3, min_gain = .7, best_k = 5,
disc.method = "mdlp")

Arguments

formula A symbolic description of the model to be fitted. Has to be of form class ~ .
or class ~ predictor1 + predictor2.

data A data.frame or a transaction set containing the training data. Data frames are
automatically discretized and converted to transactions.

max_len maximal length of the LHS of the created rules.

min_gain minimal gain required to expand a rule.

best_k use the average expected accuracy (laplace) of the best k rules per class for
prediction.
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disc.method Discretization method used to discretize continuous variables if data is a data.frame
(default: "mdlp"). See discretizeDF.supervised for more supervised dis-
cretization methods.

Details

Implements FOIL (Quinlan and Cameron-Jones, 1995) to learn rules and then use them as a classi-
fier following Xiaoxin and Han (2003).

For each class, we find the positive and negative examples and lean the rules using FOIL. Then the
rules for all classes are combined and sorted by Laplace accuracy on the training data.

Following Xiaoxin and Han (2003), we classify new examples by

1. select all the rules whose bodies are satisfied by the example;

2. from the rules select the best k rules per class (highest expected Laplace accuracy);

3. average the expected Laplace accuracy per class and choose the class with the highest average.

Value

Returns an object of class CBA.object representing the trained classifier.

Author(s)

Michael Hahsler

References

Quinlan, J.R., Cameron-Jones, R.M. Induction of logic programs: FOIL and related systems.
NGCO 13, 287-312 (1995). doi: 10.1007/BF03037228

Yin, Xiaoxin and Jiawei Han. CPAR: Classification based on Predictive Association Rules, SDM,
2003. doi: 10.1137/1.9781611972733.40

See Also

CBA.object.

Examples

data("iris")

# learn a classifier using automatic default discretization
classifier <- FOIL(Species ~ ., data = iris)
classifier

# inspect the rule base
inspect(rules(classifier))

# make predictions for the first few instances of iris
predict(classifier, head(iris))

https://doi.org/10.1007/BF03037228
https://doi.org/10.1137/1.9781611972733.40
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LUCS_KDD_CBA Interface to the LUCS-KDD Implementations of CMAR, PRM and
CPAR

Description

Interface for the LUCS-KDD Software Library Java implementations of CMAR (Li, Han and Pei,
2001), PRM, and CPAR (Yin and Han, 2003). Note: The Java implementations is not part of
arulesCBA and not covered by the packages license. It will be downloaded and compiled sepa-
rately. It is available free of charge for non-commercial use.

Usage

CMAR(formula, data, support = 0.1, confidence = 0.5,
disc.method = "mdlp", verbose = FALSE)

PRM(formula, data, best_k = 5, disc.method = "mdlp", verbose = FALSE)
CPAR(formula, data, best_k = 5, disc.method = "mdlp", verbose = FALSE)
FOIL2(formula, data, best_k = 5, disc.method = "mdlp", verbose = FALSE)

install_LUCS_KDD_CMAR(force = FALSE,
source = "https://cgi.csc.liv.ac.uk/~frans/KDD/Software/CMAR/cmar.tgz")

install_LUCS_KDD_CPAR(force = FALSE,
source = "https://cgi.csc.liv.ac.uk/~frans/KDD/Software/FOIL_PRM_CPAR/foilPrmCpar.tgz")

Arguments

formula a symbolic description of the model to be fitted. Has to be of form class ~ . or
class ~ predictor1 + predictor2.

data A data.frame or a transaction set containing the training data. Data frames are
automatically discretized and converted to transactions.

support, confidence

minimum support and minimum confidence thresholds for CMAR (range [0,
1]).

best_k use average expected accuracy (laplace) of the best k rules per class for predic-
tion.

disc.method Discretization method used to discretize continuous variables if data is a data.frame
(default: "mdlp"). See discretizeDF.supervised for more supervised dis-
cretization methods.

verbose Show verbose output?

force logical; force redownload, rebuilding and reinstallation?

source source for the code. A local file can be specified as a URI starting with file://
(see download.file).
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Details

Installation: The LUCS-KDD code is not part of the package and has to be downloaded, com-
piled and installed using install_LUCS_KDD_CMAR() and install_LUCS_KDD_CPAR(). You need
a complete Java JDK installation including the javac compiler. On some systems (Windows), you
may need to set the JAVA_HOME environment variable so the system finds the compiler.

Memory: The memory for Java can be increased via R options. For example: options(java.parameters
= "-Xmx1024m")

Note: The implementation does not expose the min. gain parameter for CPAR, PRM and FOIL2. It
is fixed at 0.7 (the value used by Yin and Han, 2001). FOIL2 is an alternative Java implementation
to the native implementation of FOIL already provided in the arulesCBA. FOIL exposes min. gain.

Value

Returns an object of class CBA.object representing the trained classifier.

References

Li W., Han, J. and Pei, J. CMAR: Accurate and Efficient Classification Based on Multiple Class-
Association Rules, ICDM, 2001, pp. 369-376.

Yin, Xiaoxin and Jiawei Han. CPAR: Classification based on Predictive Association Rules, SDM,
2003. doi: 10.1137/1.9781611972733.40

Frans Coenen et al. The LUCS-KDD Software Library, https://cgi.csc.liv.ac.uk/~frans/
KDD/Software/

Examples

## Not run:
data("iris")

# install and compile CMAR
install_LUCS_KDD_CMAR()

# build a classifier, inspect rules and make predictions
cl <- CMAR(Species ~ ., iris, support = .2, confidence = .8, verbose = TRUE)
cl

inspect(rules(cl))

predict(cl, head(iris))

# install CPAR (also installs PRM and FOIL2)
install_LUCS_KDD_CPAR()

cl <- CPAR(Species ~ ., iris)
cl

cl <- PRM(Species ~ ., iris)
cl

https://doi.org/10.1137/1.9781611972733.40
https://cgi.csc.liv.ac.uk/~frans/KDD/Software/
https://cgi.csc.liv.ac.uk/~frans/KDD/Software/
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cl <- FOIL2(Species ~ ., iris)
cl

## End(Not run)

Lymphography The Lymphography Domain Data Set (UCI)

Description

This is lymphography domain obtained from the University Medical Centre, Institute of Oncology,
Ljubljana, Yugoslavia. It was repeatedly used in the machine learning literature.

Usage

data("Lymphography")

Format

A data frame with 147 observations on the following 19 variables.

class a factor with levels normalfind metastases malignlymph fibrosis

lymphatics a factor with levels normal arched deformed displaced

blockofaffere a factor with levels no yes

bloflymphc a factor with levels no yes

bloflymphs a factor with levels no yes

bypass a factor with levels no yes

extravasates a factor with levels no yes

regenerationof a factor with levels no yes

earlyuptakein a factor with levels no yes

lymnodesdimin a factor with levels 0 1 2 3

lymnodesenlar a factor with levels 1 2 3 4

changesinlym a factor with levels bean oval round

defectinnode a factor with levels no lacunar lacmarginal laccentral

changesinnode a factor with levels no lacunar lacmargin laccentral

changesinstru a factor with levels no grainy droplike coarse diluted reticular stripped
faint

specialforms a factor with levels no chalices vesicles

dislocationof a factor with levels no yes

exclusionofno a factor with levels no yes

noofnodesin a factor with levels 0-9 10-19 20-29 30-39 40-49 50-59 60-69 >=70
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Source

The data set was obtained from the UCI Machine Learning Repository at http://archive.ics.
uci.edu/ml/datasets/Lymphography.

References

This lymphography domain was obtained from the University Medical Centre, Institute of Oncol-
ogy, Ljubljana, Yugoslavia. Thanks go to M. Zwitter and M. Soklic for providing the data. Please
include this citation if you plan to use this database.

Examples

data("Lymphography")

summary(Lymphography)

mineCARs Mine Class Association Rules

Description

Class Association Rules (CARs) are association rules that have only items with class values in the
RHS as introduced for the CBA algorithm by Liu et al., 1998.

Usage

mineCARs(formula, transactions, parameter = NULL, control = NULL,
balanceSupport = FALSE, verbose = TRUE, ...)

Arguments

formula A symbolic description of the model to be fitted.

transactions An object of class transactions containing the training data.

parameter, control

Optional parameter and control lists for the apriori algorithm.

balanceSupport logical; if TRUE, class imbalance is counteracted by using class specific mini-
mum support values. Alternatively, a support value for each class can be speci-
fied (see Details section).

verbose logical; report progress?

... For convenience, the mining parameters for apriori can be specified as .... Ex-
amples are the support and confidence thresholds, and the maxlen of rules.

http://archive.ics.uci.edu/ml/datasets/Lymphography
http://archive.ics.uci.edu/ml/datasets/Lymphography
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Details

Class association rules (CARs) are of the form

P ⇒ ci,

where the LHS P is a pattern (i.e., an itemset) and ci is a single items representing the class label.

Mining parameters. Mining parameters for apriori can be either specified as a list (or object of
APparameter) as argument parameter or, for convenience, as arguments in .... Note: mineCARs
uses by default a support of 0.1, a confidence of 0.5 and a maxlen (rule length including items in
the LHS and RHS) of 5.

Balancing minimum support. Using a single minimum support threshold for a highly class im-
balanced dataset will lead to the problem, that minority classes will only be presented in very few
rules. To address this issue, balanceSupport = TRUE can be used to adjust minimum support for
each class dependent on the prevalence of the class (i.e., the frequency of the ci in the transactions)
similar to the minimum class support suggested for CBA by Liu et al (2000) we use

minsuppi = minsuppt
supp(ci)

max(supp(C))
,

where max(supp(C)) is the support of the majority class. Therefore, the defined minimum support
is used for the majority class and then minimum support is scaled down for classes which are less
prevalent, giving them a chance to also produce a reasonable amount of rules. In addition, a named
numerical vector with a support values for each class can be specified.

Value

Returns an object of class rules.

Author(s)

Michael Hahsler

References

Liu, B. Hsu, W. and Ma, Y (1998). Integrating Classification and Association Rule Mining.
KDD’98 Proceedings of the Fourth International Conference on Knowledge Discovery and Data
Mining, New York, 27-31 August. AAAI. pp. 80-86.

Liu B., Ma Y., Wong C.K. (2000) Improving an Association Rule Based Classifier. In: Zighed D.A.,
Komorowski J., Zytkow J. (eds) Principles of Data Mining and Knowledge Discovery. PKDD 2000.
Lecture Notes in Computer Science, vol 1910. Springer, Berlin, Heidelberg.

See Also

apriori, APparameter, rules, transactions.
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Examples

data("iris")

# discretize and convert to transactions
iris.disc <- discretizeDF.supervised(Species ~ ., iris)
iris.trans <- as(iris.disc, "transactions")

# mine CARs with items for "Species" in the RHS.
# Note: mineCars uses a default confidence of .5 and maxlen of 5
cars <- mineCARs(Species ~ ., iris.trans)
inspect(head(cars))

# specify minimum support and confidence
cars <- mineCARs(Species ~ ., iris.trans,

parameter = list(support = 0.3, confidence = 0.9, maxlen = 3))
inspect(head(cars))

# for conveniance this can also be written without a list for parameter using ...
cars <- mineCARs(Species ~ ., iris.trans, support = 0.3, confidence = 0.9, maxlen = 3)

# restrict the predictors to items starting with "Sepal"
cars <- mineCARs(Species ~ Sepal, iris.trans)
inspect(cars)

# using different support for each class
cars <- mineCARs(Species ~ ., iris.trans, balanceSupport = c(

"Species=setosa" = 0.1,
"Species=versicolor" = 0.5,
"Species=virginica" = 0.01), confidence = 0.9)

cars

# balance support for class imbalance
data("Lymphography")
Lymphography_trans <- as(Lymphography, "transactions")

classFrequency(class ~ ., Lymphography_trans)

# mining does not produce CARs for the minority classes
cars <- mineCARs(class ~ ., Lymphography_trans, support = .3, maxlen = 3)
classFrequency(class ~ ., cars, type = "absolute")

# Balance support by reducing the minimum support for minority classes
cars <- mineCARs(class ~ ., Lymphography_trans, support = .3, maxlen = 3,

balanceSupport = TRUE)
classFrequency(class ~ ., cars, type = "absolute")

Mushroom The Mushroom Data Set (UCI)
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Description

The Mushroom data set includes descriptions of hypothetical samples corresponding to 23 species
of gilled mushrooms in the Agaricus and Lepiota Family. It contains information about 8123 mush-
rooms. 4208 (51.8%) are edible and 3916 (48.2%) are poisonous. The data contains 22 nominal
features plus the class attribute (edible or not).

Usage

data("Mushroom")

Format

A data frame with 8123 observations on the following 23 variables.

Class a factor with levels edible poisonous

CapShape a factor with levels bell conical flat knobbed sunken convex

CapSurf a factor with levels fibrous grooves smooth scaly

CapColor a factor with levels buff cinnamon red gray brown pink green purple white yellow

Bruises a factor with levels no bruises

Odor a factor with levels almond creosote foul anise musty none pungent spicy fishy

GillAttached a factor with levels attached free

GillSpace a factor with levels close crowded

GillSize a factor with levels broad narrow

GillColor a factor with levels buff red gray chocolate black brown orange pink green
purple white yellow

StalkShape a factor with levels enlarging tapering

StalkRoot a factor with levels bulbous club equal rooted

SurfaceAboveRing a factor with levels fibrous silky smooth scaly

SurfaceBelowRing a factor with levels fibrous silky smooth scaly

ColorAboveRing a factor with levels buff cinnamon red gray brown orange pink white yellow

ColorBelowRing a factor with levels buff cinnamon red gray brown orange pink white yellow

VeilType a factor with levels partial

VeilColor a factor with levels brown orange white yellow

RingNumber a factor with levels none one two

RingType a factor with levels evanescent flaring large none pendant

Spore a factor with levels buff chocolate black brown orange green purple white yellow

Population a factor with levels brown yellow

Habitat a factor with levels woods grasses leaves meadows paths urban waste

Source

The data set was obtained from the UCI Machine Learning Repository at http://archive.ics.
uci.edu/ml/datasets/Mushroom.

http://archive.ics.uci.edu/ml/datasets/Mushroom
http://archive.ics.uci.edu/ml/datasets/Mushroom
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References

Alfred A. Knopf (1981). Mushroom records drawn from The Audubon Society Field Guide to
North American Mushrooms. G. H. Lincoff (Pres.), New York.

Examples

data(Mushroom)

summary(Mushroom)

prepareTransactions Helper to Convert Data into Transactions

Description

Converts a data.frame into transactions by applying class-based discretization.

Usage

prepareTransactions(formula, data, disc.method = "mdlp", match = NULL)

Arguments

formula the formula.
data a data.frame with the data.
disc.method Discretization method used to discretize continuous variables if data is a data.frame

(default: "mdlp"). See discretizeDF.supervised for more supervised dis-
cretization methods.

match typically NULL. Only used internally if data is a already a set of transactions.

Value

An object of class transactions from arules with an attribute called "disc_info" that contains
information on the used discretization for each column.

Author(s)

Michael Hahsler

See Also

transactions.

Examples

data("iris")

iris_trans <- prepareTransactions(Species ~ ., iris)
iris_trans
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RCAR Regularized Class Association Rules for Multi-class Problems
(RCAR+)

Description

Build a classifier based on association rules mined for an input dataset and weighted with LASSO
regularized logistic regression following RCAR (Azmi, et al., 2019). RCAR+ extends RCAR from
a binary classifier to a multi-class classifier and can use support-balanced CARs.

Usage

RCAR(formula, data, lambda = NULL, alpha = 1, glmnet.args = NULL, cv.glmnet.args = NULL,
parameter = NULL, control = NULL, balanceSupport = FALSE,
disc.method = "mdlp", verbose = FALSE, ...)

Arguments

formula A symbolic description of the model to be fitted. Has to be of form class ~ .
or class ~ predictor1 + predictor2.

data A data.frame containing the training data.

lambda The amount of weight given to regularization during the logistic regression
learning process. If not specified (NULL) then cross-validation is used to de-
termine the best value (see Details section).

alpha The elastic net mixing parameter. alpha = 1 is the lasso penalty (default RCAR),
and alpha = 0 the ridge penalty.

cv.glmnet.args, glmnet.args

A list of arguments passed on to cv.glmnet and glmnet, respectively. See Ex-
ample section.

parameter, control

Optional parameter and control lists for apriori.

balanceSupport balanceSupport parameter passed to mineCARs function.

disc.method Discretization method for factorizing numeric input (default: "mdlp"). See
discretizeDF.supervised for more supervised discretization methods.

verbose Report progress?

... For convenience, additional parameters are used to create the parameter control
list for apriori (e.g., to specify the support and confidence thresholds).

Details

RCAR+ extends RCAR from a binary classifier to a multi-class classifier using regularized multi-
nomial logistic regression via glmnet.
If lambda is not specified (NULL) then cross-validation with the largest value of lambda such that
error is within 1 standard error of the minimum is used to determine the best value (see cv.glmnet).

See cv.glmnet for performing cross-validation in parallel.
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Value

Returns an object of class CBA representing the trained classifier with the additional field model
containing a list with the following elements:

all_rules all rules used to build the classifier, including the rules with a weight of zero.

reg_model them multinomial logistic regression model as an object of class glmnet.

cv contains the results for the cross-validation used determine lambda.

Author(s)

Tyler Giallanza and Michael Hahsler

References

M. Azmi, G.C. Runger, and A. Berrado (2019). Interpretable regularized class association rules
algorithm for classification in a categorical data space. Information Sciences, Volume 483, May
2019. Pages 313-331.

Azmi’s implementation on GitHub: https://github.com/azemi/RCAR.

See Also

CBA.object, mineCARs, glmnet and cv.glmnet.

Examples

data("iris")

classifier <- RCAR(Species~., iris)
classifier

# inspect the rule base sorted by the larges class weight
inspect(sort(rules(classifier), by = "weight"))

# make predictions for the first few instances of iris
predict(classifier, head(iris))

# inspecting the regression model and the cross-validation results to determine lambda
str(classifier$model$reg_model)
plot(classifier$model$cv)

# show progress report and use 5 instead of the default 10 cross-validation folds.
classifier <- RCAR(Species~., iris, cv.glmnet.args = list(nfolds = 5), verbose = TRUE)

https://github.com/azemi/RCAR
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RWeka_CBA CBA classifiers based on rule-based classifiers in RWeka

Description

Provides CBA-type classifiers based on RIPPER (Cohen, 1995), C4.5 (Quinlan, 1993) and PART
(Frank and Witten, 1998) using the implementation in Weka via RWeka (Hornik et al, 2009).

Usage

RIPPER_CBA(formula, data, control = NULL, disc.method = "mdlp")
PART_CBA(formula, data, control = NULL, disc.method = "mdlp")
C4.5_CBA(formula, data, control = NULL, disc.method = "mdlp")

Arguments

formula A symbolic description of the model to be fitted. Has to be of form class ~ .
or class ~ predictor1 + predictor2.

data A data.frame or a transaction set containing the training data. Data frames are
automatically discretized and converted to transactions.

disc.method Discretization method used to discretize continuous variables if data is a data.frame
(default: "mdlp"). See discretizeDF.supervised for more supervised dis-
cretization methods.

control algorithmic control options for R/Weka Rule learners (see Details Section).

Details

You need to install package RWeka to use these classifiers.

See R/Weka functions JRip (RIPPER), J48 (C4.5 rules) PART for algorithm details and how control
options can be passed on via control. An example is given in the Examples Section below.

Memory for RWeka can be increased using the R options (e.g., options(java.parameters =
"-Xmx1024m")) before RWeka or rJava is loaded or any RWeka-based classigier in this package is
used.

Value

Returns an object of class CBA.object representing the trained classifier.

Author(s)

Michael Hahsler
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References

W. W. Cohen (1995). Fast effective rule induction. In A. Prieditis and S. Russell (eds.), Proceedings
of the 12th International Conference on Machine Learning, pages 115-123. Morgan Kaufmann.
ISBN 1-55860-377-8.

E. Frank and I. H. Witten (1998). Generating accurate rule sets without global optimization. In J.
Shavlik (ed.), Machine Learning: Proceedings of the Fifteenth International Conference. Morgan
Kaufmann Publishers: San Francisco, CA.

R. Quinlan (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San
Mateo, CA.

Hornik K, Buchta C, Zeileis A (2009). "Open-Source Machine Learning: R Meets Weka." Compu-
tational Statistics, 24(2), 225-232. doi: 10.1007/s0018000801197

See Also

JRip (RIPPER), PART, CBA.object.

Examples

# You need to install rJava and RWeka

## Not run:
data("iris")

# learn a classifier using automatic default discretization
classifier <- RIPPER_CBA(Species ~ ., data = iris)
classifier

# inspect the rule base
inspect(rules(classifier))

# make predictions for the first few instances of iris
predict(classifier, head(iris))

table(predict(classifier, iris), iris$Species)

# C4.5
classifier <- C4.5_CBA(Species ~ ., iris)
inspect(rules(classifier))

# To use algorithmic options (here for PART), you need to load RWeka
library(RWeka)

# control options can be found using the Weka Option Wizard (WOW)
WOW(PART)

# build PART with control option U (Generate unpruned decision list) set to TRUE
classifier <- PART_CBA(Species ~ ., data = iris, control = RWeka::Weka_control(U = TRUE))
classifier
inspect(rules(classifier))
predict(classifier, head(iris))

https://doi.org/10.1007/s00180-008-0119-7
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## End(Not run)

wCBA Classification Based on Association Rules

Description

Build a classifier using a naive rule-weighting algorithm. The algorithm is currently in development,
and is not yet formally documented.

Usage

wCBA(formula, data, parameter = NULL, control = NULL,
sort.parameter = NULL, lhs.support = FALSE, class.weights = NULL,
disc.method = "mdlp", verbose = FALSE, ...)

Arguments

formula A symbolic description of the model to be fitted. Has to be of form class ~ ..
The class is the variable name (part of the item label before =).

data A data.frame containing the training data.
parameter, control

Optional parameter and control lists for apriori.

sort.parameter Ordered vector of arules interest measures (as characters) which are used to sort
rules in preprocessing.

lhs.support Logical variable, which, when set to default value of True, indicates that LHS
support should be used for rule mining.

class.weights Weights that should be assigned to the rows of each class (ordered by appearance
in levels(classColumn))

disc.method Discretization method for factorizing numeric input (default: "mdlp"). See
discretizeDF.supervised for more supervised discretization methods.

verbose Optional logical flag to allow verbose execution, where additional intermediary
execution information is printed at runtime.

... Additional parameters are added to the apriori parameters (e.g., support and
confidence).

Details

Mines association rules on input data and creates a weighted-vote classifier where a rules weight
is the product of its support and confidence. Default class is set to the most common class in the
training data.
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Value

Returns an object of class CBA representing the trained classifier with fields:

rules the classifier rule base.

default default class label.

levels levels of the class variable.

Author(s)

Ian Johnson

See Also

predict.CBA, CBA.object, apriori,

Examples

data("iris")

classifier <- wCBA(Species ~ ., data = iris, supp = 0.05, conf = 0.9)
classifier

predict(classifier, head(iris))
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