Package ‘aum’

February 8, 2022

Type Package
Title Area Under Minimum of False Positives and Negatives
Version 2022.2.7
Author Toby Dylan Hocking
Maintainer Toby Dylan Hocking <toby.hocking@r-project.org>
Description Standard template library sort is used to implement an efficient algorithm <arXiv:2107.01285> for computing Area Under Minimum and directional derivatives.
License GPL-3
LinkingTo Rcpp
URL https://github.com/tdhock/aum
BugReports https://github.com/tdhock/aum/issues
Imports Rcpp, data.table
Suggests testthat, ggplot2, WeightedROC, penaltyLearning, knitr, markdown, mlbench, directlabels, microbenchmark, covr
VignetteBuilder knitr
NeedsCompilation yes
Repository CRAN
Date/Publication 2022-02-08 16:30:05 UTC

R topics documented:

aum .. 2
aum_diffs ... 3
aum_diffs_binary 4
aum_diffs_penalty 5
aum_errors 6
fn.not.zero ... 7
plot.aum_diffs 8

Index 9
Description

Compute the Area Under Minimum of False Positives and False Negatives, and its directional derivatives.

Usage

\[\text{aum}(\text{error.diff.df}, \text{pred.vec}) \]

Arguments

- `error.diff.df`: data frame of error differences, typically computed via `aum_diffs_binary` or `aum_diffs_penalty`. There should be one row for each change in error functions. "example" column indicates example ID (int from 1 to N), "pred" column indicates predicted value where there is a change in the error function(s), "fp_diff" and "fn_diff" columns indicate differences in false positives and false negatives at that predicted value. Note that this representation assumes that each error function has fp=0 at pred=-Inf and fn=0 at pred=Inf.

- `pred.vec`: numeric vector of N predicted values.

Value

Named list of two items: `aum` is numeric scalar loss value, `derivative_mat` is N x 2 matrix of directional derivatives (first column is derivative from left, second column is derivative from right).

Author(s)

Toby Dylan Hocking

Examples

\[(\text{bin.diffs} \leftarrow \text{aum::aum_diffs_binary}(c(0,1)))\]
\[\text{aum::aum(bin.diffs, c(-10,10))}\]
\[\text{aum::aum(bin.diffs, c(0,0))}\]
\[\text{aum::aum(bin.diffs, c(10,-10))}\]
Description

Create error differences data table which can be used as input to `aum` function. Typical users should not use this function directly, and instead use `aum_diffs_binary` for binary classification, and `aum_diffs_penalty` for error defined as a function of non-negative penalty.

Usage

```r
aum_diffs(example, pred, 
  fp_diff, fn_diff, 
  pred.name.vec)
```

Arguments

- `example` Integer or character vector identifying different examples.
- `pred` Numeric vector of predicted values at which the error changes.
- `fp_diff` Numeric vector of difference in fp at `pred`.
- `fn_diff` Numeric vector of difference in fn at `pred`.
- `pred.name.vec` Character vector of example names for predictions.

Value

data table of class "aum_diffs" in which each rows represents a breakpoint in an error function. Columns are interpreted as follows: there is a change of "fp_diff","fn_diff" at predicted value "pred" for example/observation "example". This can be used for computing Area Under Minimum via `aum` function, and plotted via `plot.aum_diffs`.

Author(s)

Toby Dylan Hocking

Examples

```r
aum::aum_diffs_binary(c(0,1))
aum::aum_diffs(c("positive", "negative"), 0, c(0,1), c(-1,1), c("negative", "positive"))
rbind(aum::aum_diffs(0L, 0, 1, 0), aum_diffs(1L, 0, 0, -1))
```
Description

Convert binary labels to error differences.

Usage

```r
aum_diffs_binary(label.vec,
                 pred.name.vec, denominator = "count")
```

Arguments

- `label.vec`: Numeric vector representing binary labels (either all 0,1 or all -1,1). If named, names are used to identify each example.
- `pred.name.vec`: Character vector of prediction example names, used to convert names of `label.vec` to integers.
- `denominator`: Type of diffs, either "count" or "rate".

Value

Data table of class "aum_diffs" in which each rows represents a breakpoint in an error function. Columns are interpreted as follows: there is a change of "fp_diff", "fn_diff" at predicted value "pred" for example/observation "example". This can be used for computing Area Under Minimum via `aum` function, and plotted via `plot.aum_diffs`.

Author(s)

Toby Dylan Hocking

Examples

```r
aum_diffs_binary(c(0,1))
aum_diffs_binary(c(-1,1))
aum_diffs_binary(c(a=0,b=1,c=0), pred.name.vec=c("c","b"))
aum_diffs_binary(c(0,0,1,1), denominator="rate")
```
Description

Convert penalized errors to error differences. A typical use case is for penalized optimal change-point models, for which small penalty values result in large fp/fn, and large penalty values result in small fp/fn.

Usage

```r
aum::aum_diffs_penalty(errors.df, 
                        pred.name.vec, denominator = "count")
```

Arguments

- `errors.df`: data.frame which describes error as a function of penalty/lambda, with at least columns `example`, `min.lambda`, `fp`, `fn`. Interpreted as follows: fp/fn occur from all penalties from `min.lambda` to the next value of `min.lambda` within the current value of `example`.
- `pred.name.vec`: Character vector of prediction example names, used to convert names of `label.vec` to integers.
- `denominator`: Type of diffs, either "count" or "rate".

Value

Data table of class "aum_diffs" in which each rows represents a breakpoint in an error function. Columns are interpreted as follows: there is a change of "fp_diff","fn_diff" at predicted value "pred" for example/observation "example". This can be used for computing Area Under Minimum via `aum` function, and plotted via `plot.aum_diffs`.

Author(s)

Toby Dylan Hocking

Examples

```r
# Simple synthetic example with two changes in error function.
simple.df <- data.frame(
    example=1L,
    min.lambda=c(0, exp(1), exp(2), exp(3)),
    fp=c(6,2,2,0),
    fn=c(0,1,1,5))
(simple.diffs <- aum::aum_diffs_penalty(simple.df))
if(requireNamespace("ggplot2"))plot(simple.diffs)
(simple.rates <- aum::aum_diffs_penalty(simple.df, denominator="rate"))
if(requireNamespace("ggplot2"))plot(simple.rates)
```
Simple real data with four example, one has non-monotonic fn.
if(requireNamespace("penaltyLearning")) {
 datanb.err <- with(neuroblastomaProcessed$errors, data.frame(
 example=paste0(profile.id, ".", chromosome),
 min.lambda,
 max.lambda,
 fp, fn))
 nb.diffs <- aum::aum_diffs_penalty(nb.err, c("1.2", "1.1", "4.1", "4.2"))
 if(requireNamespace("ggplot2")) plot(nb.diffs)
}

More complex real data example
if(requireNamespace("ggplot2")) plot(nb.diffs)

if(require("ggplot2")){
 name2id <- structure(seq(0, length(pred.names)-1L), names=pred.names)
 fn.not.zero.wide <- fn.not.zero[, .(example=name2id[example], min.lambda, max.lambda, fp, fn)]
 fn.not.zero.tall <- data.table::melt(fn.not.zero.wide, measure=c("fp", "fn"))
 ggplot()+
 geom_segment(aes(
 -log(min.lambda), value,
 xend=-log(max.lambda), yend=value,
 color=variable, size=variable),
 data=fn.not.zero.tall)+
 geom_point(aes(
 -log(min.lambda), value,
 color="black",
 shape=21,
 data=fn.not.zero.tall)+
 geom_vline(aes(
 xintercept=pred),
 data=fn.not.zero.diffs)+
 scale_size_manual(values=c(fp=2, fn=1))+
 facet_grid(example ~ ., labeller=label_both)
}

Description
Convert diffs to canonical errors, used internally in `plot.aum_diffs`.

| aum_errors | aum errors |

Description

Convert diffs to canonical errors, used internally in `plot.aum_diffs`.

Usage

 aum_errors(diffs.df)

Arguments

diffs.df data.table of diffs from aum_diffs.

Value

data.table suitable for plotting piecewise constant error functions, with columns example, min.pred, max.pred, fp, fn.

Author(s)

Toby Dylan Hocking

Examples

 (bin.diffs <- aum::aum_diffs_binary(c(0,1)))
 if(requireNamespace("ggplot2"))plot(bin.diffs)
 aum::aum_errors(bin.diffs)

fn.not.zero Penalized models with non-zero fn at penalty=0

Description

Usually we assume that fn must be zero at penalty=0, but this is not always the case in real data/labels. For example in the PeakSegDisk model with penalty=0, there are peaks almost everywhere but if a positive label is too small or misplaced with respect to the detected peaks, then there can be false negatives.

Usage

 data("fn.not.zero")

Format

A data frame with 156 observations on the following 5 variables.

 example a character vector
 min.lambda a numeric vector
 max.lambda a numeric vector
 fp a numeric vector
 fn a numeric vector
Source
https://github.com/tdhock/feature-learning-benchmark

plot.aum_diffs plot aum diffs

Description
Plot method for aum_diffs which shows piecewise constant error functions. Uses aum_errors internally to compute error functions which are plotted. Not recommended for large number of examples (>20).

Usage
S3 method for class 'aum_diffs'
plot(x, ...)

Arguments
x data table with class "aum_diffs".
... ignored.

Value
ggplot of error functions, each example in a different panel.

Author(s)
Toby Dylan Hocking
Index

* datasets
 fn.not.zero, 7

aum, 2, 3–5
aum_diffs, 3, 7, 8
aum_diffs_binary, 2, 3, 4
aum_diffs_penalty, 2, 3, 5
aum_errors, 6, 8

fn.not.zero, 7

plot.aum_diffs, 3–6, 8