Package ‘baggr’

Type Package

Title Bayesian Aggregate Treatment Effects

Version 0.6.9

Maintainer Witold Wiecek <witold.wiecek@gmail.com>

Description Running and comparing meta-analyses of data with hierarchical Bayesian models in Stan, including convenience functions for formatting data, plotting and pooling measures specific to meta-analysis. This implements many models from Meager (2019) <doi:10.1257/app.20170299>.

License GPL (>= 3)

Encoding UTF-8

LazyData true

Biarch true

Depends R (>= 3.5.0), Rcpp (>= 0.12.17)

Imports rstan (>= 2.18.1), rstantools (>= 2.1.1), bayesplot, crayon, forestplot, ggplot2, gridExtra, utils, stats, testthat, quantreg, methods

LinkingTo StanHeaders (>= 2.18.1), rstan (>= 2.18.1), BH (>= 1.66.0-1), Rcpp (>= 0.12.17), RcppParallel (>= 5.0.1), RcppEigen (>= 0.3.3.4.0)

SystemRequirements GNU make

NeedsCompilation yes

RoxygenNote 7.1.1

Suggests knitr, covr, rmarkdown

VignetteBuilder knitr

URL https://github.com/wwiecek/baggr

BugReports https://github.com/wwiecek/baggr/issues

Language en-GB
Author Witold Wiecek [cre, aut],
 Rachael Meager [aut],
 Brice Green [ctb] (predict(), loo_compare, many visuals),
 Trustees of Columbia University [cph] (tools/make_cc.R)
Repository CRAN
Date/Publication 2021-09-02 06:50:02 UTC

R topics documented:

- baggr-package .. 3
- baggr ... 4
- baggr_compare ... 8
- baggr_plot .. 10
- baggr_theme_set .. 11
- binary_to_individual .. 13
- chicks ... 14
- convert_inputs .. 14
- data_spike ... 16
- effect_draw ... 16
- effect_plot ... 17
- fixed_effects .. 18
- forest_plot ... 19
- get_n_samples .. 20
- get_order ... 20
- group_effects .. 21
- is.baggr_cv ... 22
- labbe ... 23
- loo.cv ... 24
- loo_compare ... 25
- microcredit ... 26
- microcredit_simplified .. 26
- mint ... 27
- mutau_cor ... 28
- plot.baggr ... 28
- plot.baggr_compare .. 29
- plot_quantiles .. 30
- pooling ... 31
- pp_check.baggr ... 32
- predict.baggr .. 33
- predict_mutau .. 34
- predict_quantiles ... 34
- predict_rubin .. 35
- predict_unknown ... 35
- prepare_ma .. 36
- prepare_prior .. 37
- print.baggr .. 38
- print.baggr_compare ... 39
Description

This is baggr (pronounced as bagger or badger), a Bayesian meta-analysis package for R that uses Stan to fit the models. Baggr is intended to be user-friendly and transparent so that it’s easier to understand the models you are building and criticise them.

Details

Baggr package provides a suite of models that work with both summary data and full data sets, to synthesise evidence collected from different groups, contexts or time periods. The baggr command automatically detects the data type and, by default, fits a partial pooling model (which you may know as random effects models) with weakly informative priors by calling Stan to carry out Bayesian inference. Modelling of variances or quantiles, standardisation and transformation of data are also possible.

Getting help

This is only a simple package help file. For documentation of the main function for conducting analyses see baggr. For description of models, data types and priors available in the package, try the built-in vignette (vignette("baggr")).

References

Description

Bayesian inference on parameters of an average treatment effects model that’s appropriate to the supplied individual- or group-level data, using Hamiltonian Monte Carlo in Stan. (For overall package help file see baggr-package)

Usage

```r
baggr(
  data,
  model = NULL,
  pooling = "partial",
  effect = NULL,
  covariates = c(),
  prior_hypermean = NULL,
  prior_hypersd = NULL,
  prior_hypercor = NULL,
  prior_beta = NULL,
  prior_control = NULL,
  prior_control_sd = NULL,
  prior = NULL,
  ppd = FALSE,
  pooling_control = "none",
  test_data = NULL,
  quantiles = seq(0.05, 0.95, 0.1),
  outcome = "outcome",
  group = "group",
  treatment = "treatment",
  silent = FALSE,
  warn = TRUE,
  ...
)
```

Arguments

data data frame with summary or individual level data to meta-analyse

model if NULL, detected automatically from input data otherwise choose from "rubin", "mutau", "rubin_full", "quantiles" (see Details).

pooling Type of pooling: choose from "none", "partial" (default) and "full". If you are not familiar with the terms, consult the vignette; "partial" can be understood as random effects and "full" as fixed effects

effect Label for effect. Will default to "mean" in most cases, "log OR" in logistic model, quantiles in quantiles model etc. These labels are used in various print
and plot outputs. Comparable models (e.g. in \texttt{bagr_compare}) should have same effect.

covariates Character vector with column names in data. The corresponding columns are used as covariates (fixed effects) in the meta-regression model (in case of aggregate data). In the case of individual level data the model does not differentiate between group-level variables (same values of the covariate for all rows related to a given group) and individual-level covariates.

prior_hypermean

prior distribution for hypermean; you can use "plain text" notation like \texttt{prior_hypermean=normal(0,100)} or \texttt{uniform(-10,10)}. See Details:Priors section below for more possible specifications. If unspecified, the priors will be derived automatically based on data (and printed out in the console).

prior_hypersd
prior for hyper-standard deviation, used by Rubin and "mutau" models; same rules apply as for _hypermean;

prior_hypercor
prior for hypercorrelation matrix, used by the "mutau" model

prior_beta
prior for regression coefficients if covariates are specified; will default to experimental normal(0, 10^2) distribution

prior_control
prior for the mean in the control arm (baseline), currently used in "logit" model only; if \texttt{pooling_control = "partial"}, the prior is hyperprior for all baselines, if "none", then it is an independent prior for all baselines

prior_control_sd
prior for the SD in the control arm (baseline), currently used in "logit" model only; this can only be used if \texttt{pooling_control = "partial"}

prior alternative way to specify all priors as a named list with \texttt{hypermean}, \texttt{hypersd}, \texttt{hypercor}, \texttt{beta}, analogous to _prior_arguments above, e.g. \texttt{prior = list(hypermean = normal(0,10), beta = uniform(-50,50))}

ppd logical; use prior predictive distribution? (p.p.d.) If \texttt{ppd=TRUE}, Stan model will sample from the prior distribution(s) and ignore data in inference. However, data argument might still be used to infer the correct model (if \texttt{model=NULL}) and to set the default priors, therefore you must specify it.

pooling_control
Pooling for group-specific control mean terms (currently only in logit). Either "none" or "partial".

test_data data for cross-validation; NULL for no validation, otherwise a data frame with the same columns as data argument. See "Cross-validation" section below.

quantiles if \texttt{model = "quantiles"}, a vector indicating which quantiles of data to use (with values between 0 and 1)

outcome character; column name in (individual-level) data with outcome variable values

group character; column name in data with grouping factor; it’s necessary for individual-level data, for summarised data it will be used as labels for groups when displaying results

treatment character; column name in (individual-level) data with treatment factor;

silent Whether to silence messages about prior settings and about other automatic behaviour.
warn
print an additional warning if Rhat exceeds 1.05
...
extra options passed to Stan function, e.g. control = list(adapt_delta = 0.99), number of iterations etc.

Details

Running baggr requires 1/ data preparation, 2/ choice of model, 3/ choice of priors. All three are discussed in depth in the package vignette (vignette("baggr")).

Data. For aggregate data models you need a data frame with columns tau and se or tau, mu, se.tau, se.mu. An additional column can be used to provide labels for each group (by default column group is used if available, but this can be customised – see the example below). For individual level data three columns are needed: outcome, treatment, group. These are identified by using the outcome, treatment and group arguments.

Many data preparation steps can be done through a helper function prepare_ma. It can convert individual to summary-level data, calculate odds/risk ratios (with/without corrections) in binary data, standardise variables and more. Using it will automatically format data inputs to work with baggr().

Models. Available models are:

- for the continuous variable means: "rubin" model for average treatment effect (using summary data), "mutau" version which takes into account means of control groups (also using summary data), "rubin_full", which is the same model as "rubin" but works with individual-level data
- for continuous variable quantiles: "quantiles" model (see Meager, 2019 in references)
- for mixture data: "sslab" (experimental)
- for binary data: "logit" model can be used on individual-level data; you can also analyse continuous statistics such as log odds ratios and logs risk ratios using the models listed above; see vignette("baggr_binary") for tutorial with examples

If no model is specified, the function tries to infer the appropriate model automatically. Additionally, the user must specify type of pooling. The default is always partial pooling.

Covariates. Both aggregate and individual-level data can include extra columns, given by covariates argument (specified as a character vector of column names) to be used in regression models. We also refer to impact of these covariates as fixed effects.

Two types of covariates may be present in your data:

- In "rubin" and "mutau" models, covariates that change according to group unit. In that case, the model accounting for the group covariates is a meta-regression model. It can be modelled on summary-level data.
- In "logit" and "rubin_full" models, covariates that change according to individual unit. Then, such a model is commonly referred to as a mixed model. It has to be fitted to individual-level data. Note that meta-regression is a special case of a mixed model for individual-level data.

Priors. It is optional to specify priors yourself, as the package will try propose an appropriate prior for the input data if you do not pass a prior argument. To set the priors yourself, use prior_arguments. For specifying many priors at once (or re-using between models), a single prior =
list(...) argument can be used instead. Meaning of the prior parameters may slightly change from model to model. Details and examples are given in vignette("baggr"). Setting ppd=TRUE can be used to obtain prior predictive distributions, which is useful for understanding the prior assumptions, especially useful in conjunction with effect_plot. You can also baggr_compare different priors by setting baggr_compare(...,compare="prior").

Cross-validation. When test_data are specified, an extra parameter, the log predictive density, will be returned by the model. (The fitted model itself is the same regardless of whether there are test_data.) To understand this parameter, see documentation of loocv, a function that can be used to assess out of sample prediction of the model using all available data. If using individual-level data model, test_data should only include treatment arms of the groups of interest. (This is because in cross-validation we are not typically interested in the model’s ability to fit heterogeneity in control arms, but only heterogeneity in treatment arms.) For using aggregate level data, there is no such restriction.

Outputs. By default, some outputs are printed. There is also a plot method for baggr objects which you can access via baggr_plot (or simply plot()). Other standard functions for working with baggr object are

- treatment_effect for distribution of hyperparameters
- group_effects for distributions of group-specific parameters
- fixed_effects for coefficients in (meta-)regression
- effect_draw and effect_plot for posterior predictive distributions
- baggr_compare for comparing multiple baggr models
- loocv for cross-validation
- pp_check for posterior predictive checks

Value

baggr class structure: a list including Stan model fit alongside input data, pooling metrics, various model properties. If test data is used, mean value of -2*lpd is reported as mean_lpd

Author(s)

Witold Wiecek, Rachael Meager

Examples

df_pooled <- data.frame("tau" = c(1, -1, .5, -.5, .7, -.7, 1.3, -1.3),
 "se" = rep(1, 8),
 "state" = datasets::state.name[1:8])
baggr(df_pooled) \#baggr automatically detects the input data
same model, but with correct labels,
different pooling & passing some options to Stan
baggr(df_pooled, group = "state", pooling = "full", iter = 500)
model with non-default (and very informative) priors
baggr(df_pooled, prior_hypersd = normal(0, 2))
"mu & tau" model, using a built-in dataset
prepare_ma() can summarise individual-level data
ms <- microcredit_simplified
microcredit_summary_data <- prepare_ma(ms, outcome = "consumption")
baggr(microcredit_summary_data, model = "mutau",
 iter = 500, #this is just for illustration -- don't set it this low normally!
 pooling = "partial", prior_hypercor = lkj(1),
 prior_hypersd = normal(0,10),
 prior_hypermean = multinormal(c(0,0),matrix(c(10,3,3,10),2,2)))

baggr_compare

(Run and) compare multiple baggr models

Description

Compare multiple baggr models by either providing multiple already existing models as (named) arguments or passing parameters necessary to run a baggr model.

Usage

```
baggr_compare(
    ..., 
    what = "pooling", 
    compare = "groups", 
    transform = NULL, 
    plot = FALSE 
)
```

Arguments

- `...` Either some (at least 1) objects of class baggr (you should name your objects, see the example below) or the same arguments you'd pass to baggr. In the latter case you must specify what to compare.
- `what` One of "pooling" (comparison between no, partial and full pooling) or "prior" (comparison between prior and posterior predictive). If pre-existing baggr models are passed to . . . , this argument is ignored.
- `compare` When plotting, choose between comparison of "groups" (default) or (hyper-) "effects". The former is not available when what = "prior".
- `transform` a function (e.g. exp(), log()) to apply to the values of group (and hyper, if hyper=TRUE) effects before plotting; when working with effects that are on log scale, exponent transform is used automatically, you can plot on log scale by setting transform = identity
- `plot` logical; calls plot.baggr_compare when running baggr_compare
Details

If you pass parameters to the function you must specify what kind of comparison you want, either "pooling", which will run fully/partially/un-pooled models and then compare them, or "prior" which will generate estimates without the data and compare them to the model with the full data. For more details see baggr, specifically the ppd argument.

Value

an object of class baggr_compare

Author(s)

Witold Wiecek, Brice Green

See Also

plot.baggr_compare and print.baggr_compare for working with results of this function

Examples

Most basic comparison between no, partial and full pooling
(This will run the models)
run model with just prior and then full data for comparison
with the same arguments that are passed to baggr
prior_comparison <-
 baggr_compare(schools,
 model = 'rubin',
 #this is just for illustration -- don't set it this low normally!
 iter = 500,
 prior_hypermean = normal(0, 3),
 prior_hypersd = normal(0,2),
 prior_hypercor = lkj(2),
 what = "prior")
print the aggregated treatment effects
prior_comparison
plot the comparison of the two distributions
plot(prior_comparison)
Now compare different types of pooling for the same model
pooling_comparison <-
 baggr_compare(schools,
 model = 'rubin',
 #this is just for illustration -- don't set it this low normally!
 iter = 500,
 prior_hypermean = normal(0, 3),
 prior_hypersd = normal(0,2),
 prior_hypercor = lkj(2),
 what = "pooling",
 # You can automatically plot:
 plot = TRUE)
Compare existing models (you don't have to, but best to name them):
bg1 <- baggr(schools, pooling = "partial")
bg2 <- baggr(schools, pooling = "full")
baggr_compare("Partial pooling model" = bg1, "Full pooling" = bg2)

#' ...or simply draw from prior predictive dist (note ppd=T)
bg1 <- baggr(schools, ppd=TRUE)
bg2 <- baggr(schools, prior_hypermean = normal(0, 5), ppd=TRUE)
baggr_compare("Prior A, p.p.d."=bg1,
 "Prior B p.p.d."=bg2,
 compare = "effects")

Compare how posterior predictive effect varies with e.g. choice of prior
bg1 <- baggr(schools, prior_hypersd = uniform(0, 20))
bg2 <- baggr(schools, prior_hypersd = normal(0, 5))
baggr_compare("Uniform prior on SD"=bg1,
 "Normal prior on SD"=bg2,
 compare = "effects", plot = TRUE)

Models don't have to be identical. Compare different subsets of input data:
bg1_small <- baggr(schools[1:6,], pooling = "partial")
baggr_compare("8 schools model" = bg1, "First 6 schools" = bg1_small,
 plot = TRUE)

baggr_plot
Plotting method in baggr package

Description

Extracts study effects from the baggr model and sends them to one of bayesplot package plotting functions.

Usage

```r
baggr_plot(
  bg,
  hyper = FALSE,
  style = "intervals",
  transform = NULL,
  prob = 0.5,
  prob_outer = 0.95,
  vline = FALSE,
  order = TRUE,
  ...
)
```

Arguments

- **bg**: object of class `baggr`
- **hyper**: logical; show hypereffect as the last row of the plot?
- **style**: either "intervals" or "areas"
- **transform**: a function (e.g. `exp()`, `log()`) to apply to the values of group (and hyper, if hyper=TRUE) effects before plotting; when working with effects that are on log scale, exponent transform is used automatically, you can plot on log scale by setting `transform = identity`
- **prob**: Probability mass for the inner interval in visualisation
- **prob_outer**: Probability mass for the outer interval in visualisation
- **vline**: logical; show vertical line through 0 in the plot?
- **order**: logical; sort groups by magnitude of treatment effect?
- **...**: extra arguments to pass to the `bayesplot` functions

Value

ggplot2 object

Author(s)

Witold Wiecek; the visual style is based on `bayesplot` package

See Also

`bayesplot::MCMC-intervals` for more information about `bayesplot` functionality; `forest_plot` for a typical meta-analysis alternative; `effect_plot` for plotting treatment effects for a new group

Examples

```r
fit <- baggr(schools, pooling = "none")
plot(fit)
plot(fit, style = "areas", order = FALSE)
```

baggr_theme_set
Set, get, and replace themes for baggr plots

Description

These functions get, set, and modify the ggplot2 themes of the baggr plots. `baggr_theme_get()` returns a ggplot2 theme function for adding themes to a plot. `baggr_theme_set()` assigns a new theme for all plots of baggr objects. `baggr_theme_update()` edits a specific theme element for the current theme while holding the theme’s other aspects constant. `baggr_theme_replace()` is used for wholesale replacing aspects of a plot’s theme (see `ggplot2::theme_get()`).
Usage

```r
baggr_theme_set(new = bayesplot::theme_default())

baggr_theme_get()

baggr_theme_update(...)

baggr_theme_replace(...)
```

Arguments

- `new`: New theme to use for all baggr plots
- `...`: A named list of theme settings

Details

Under the hood, many of the visualizations rely on the bayesplot package, and thus these leverage the `bayesplot::bayesplot_theme_get()` functions. By default, these match the bayesplot’s package theme to make it easier to form cohesive graphs across this package and others. The trickiest of these to use is `baggr_theme_replace`; 9 times out of 10 you want `baggr_theme_update`.

Value

The get method returns the current theme, but all of the others invisibly return the old theme.

See Also

- `bayesplot::bayesplot_theme_get`

Examples

```r
# make plot look like default ggplots

library(ggplot2)

fit <- baggr(schools)
baggr_theme_set(theme_grey())
baggr_plot(fit)

# use baggr_theme_get to return theme elements for current theme
qplot(mtcars$mpg) + baggr_theme_get()

# update specific aspect of theme you are interested in
baggr_theme_update(text = element_text(family = "mono"))

# undo that silliness
baggr_theme_update(text = element_text(family = "serif"))

# update and replace are similar, but replace overwrites the
Generate individual-level binary outcome data from an aggregate statistics

Description

This is a helper function that is typically used automatically by some of `baggr` functions, such as when running `model="logit"` in `baggr`, when summary-level data are supplied.

Usage

```r
binary_to_individual(data, group = "group")
```

Arguments

- `data` A data frame with columns `a`, `c` and `b/n1`, `d/n2`. See vignette("baggr_binary") for an example of use and notation details.
- `group` Column name storing group

Value

A data frame with columns `group`, `outcome` and `treatment`.

See Also

`prepare_ma` uses this function

Examples

```r
df_yusuf <- read.table(text="
trial a n1i c n2i
Balcon 14 56 15 58
Clausen 18 66 19 64
Multicentre 15 100 12 95
Barber 10 52 12 47
Norris 21 226 24 228
Kahler 3 38 6 31
Ledwich 2 20 3 20
", header=TRUE)

bti <- binary_to_individual(df_yusuf, group = "trial")

head(bti)
```
# to go back to summary-level data
prepare_ma(bti, effect = "logOR")
# the last operation is equivalent to simply doing
prepare_ma(df_yusuf, group="trial", effect="logOR")

---

**chicks**

*Chickens: impact of electromagnetic field on calcium ion efflux in chicken brains*

---

**Description**

An experiment conducted by Blackman et al. (1988) and documented in the following GitHub repository by Vakar and Gelman. The dataset consists of a large number of experiments (tau, se.tau) repeated at varying wave frequencies. Sham experiments (mu, se.mu) are also included, allowing us to compare performance of models with and without control measurements.

**Usage**

chicks

**Format**

An object of class `data.frame` with 38 rows and 7 columns.

**References**


---

**convert_inputs**

*Convert inputs for baggr models*

**Description**

Converts data to Stan inputs, checks integrity of data and suggests default model if needed. Typically all of this is done automatically by `baggr`, this function is only for debugging or running models "by hand".
Usage

convert_inputs(
  data,
  model,
  quantiles,
  group = "group",
  outcome = "outcome",
  treatment = "treatment",
  covariates = c(),
  test_data = NULL,
  silent = FALSE
)

Arguments

data 'data.frame' with desired modelling input
model valid model name used by baggr; see baggr for allowed models if model = NULL, this function will try to find appropriate model automatically
quantiles vector of quantiles to use (only applicable if model = "quantiles")
group name of the column with grouping variable
outcome name of column with outcome variable (designated as string)
treatment name of column with treatment variable
covariates Character vector with column names in data. The corresponding columns are used as covariates (fixed effects) in the meta-regression model.
test_data same format as data argument, gets left aside for testing purposes (see baggr)
silent Whether to print messages when evaluated

Details

Typically this function is only called within baggr and you do not need to use it yourself. It can be useful to understand inputs or to run models which you modified yourself.

Value

R structure that’s appropriate for use by baggr Stan models; group_label, model and n_groups are included as attributes and are necessary for baggr to work correctly

Author(s)

Witold Wiecek

Examples

# simple meta-analysis example,
# this is the formatted input for Stan models in baggr():
convert_inputs(schools, "rubin")
data_spike  
Spike & slab example dataset

Description
Spike & slab example dataset

Usage
data_spike

Format
An object of class data.frame with 1500 rows and 4 columns.

effect_draw  
Make predictive draws from baggr model

Description
This function takes the samples of hyperparameters from a baggr model (typically hypermean and hyper-SD, which you can see using treatment_effect) and draws values of new realisations of treatment effect, i.e. an additional draw from the "population of studies". This can be used for both prior and posterior draws, depending on baggr model.

Usage
effect_draw(
x,  
n,  
  transform = NULL,  
  summary = FALSE,  
  message = TRUE,  
  interval = 0.95
)

Arguments

x  
A baggr class object.

n  
How many values to draw? The default is as long as the number of samples in the baggr object (see Details).

transform  
a transformation (an R function) to apply to the result of a draw.

summary  
logical; if TRUE returns summary statistics rather than samples from the distribution;

message  
logical; use to disable messages prompted by using with no pooling models

interval  
uncertainty interval width (numeric between 0 and 1), if summary=TRUE
Details

The predictive distribution can be used to "combine" heterogeneity between treatment effects and uncertainty in the mean treatment effect. This is useful both in understanding impact of heterogeneity (see Riley et al, 2011, for a simple introduction) and for study design e.g. as priors in analysis of future data (since the draws can be seen as an expected treatment effect in a hypothetical study).

The default number of samples is the same as what is returned by Stan model implemented in baggr, (depending on such options as iter, chains, thin). If n is larger than what is available in Stan model, we draw values with replacement. This is not recommended and warning is printed in these cases.

Under default settings in baggr, a posterior predictive distribution is obtained. But effect_draw can also be used for prior predictive distributions when setting ppd=T in baggr. The two outputs work exactly the same way.

Value

A vector (with n values) for models with one treatment effect parameter, a matrix (n rows and same number of columns as number of parameters) otherwise.

References


See Also

treatment_effect returns samples of hypermean and hyper-SD which are used by this function

effect_plot

Plot predictive draws from baggr model

Description

This function plots values from effect_draw, the predictive distribution (under default settings, posterior predictive), for one or more baggr objects.

Usage

effect_plot(..., transform = NULL)

Arguments

... Object(s) of class baggr. If there is more than one, a comparison will be plotted and names of objects will be used as a plot legend (see examples).

transform a transformation to apply to the result, should be an R function; (this is commonly used when calling group_effects from other plotting or printing functions)
fixed_effects

Details

Under default settings in `baggr` posterior predictive is obtained. But `effect_plot` can also be used for prior predictive distributions when setting `ppd=TRUE` in `baggr`. The two outputs work exactly the same, but labels will change to indicate this difference.

Value

A ggplot object.

See Also

effect_draw documents the process of drawing values; `baggr_compare` can be used as a shortcut for `effect_plot` with argument `compare = "effects"`.

Examples

```r
A single effects plot
bg1 <- baggr(schools, prior_hypersd = uniform(0, 20))
effect_plot(bg1)

Compare how posterior depends on the prior choice
bg2 <- baggr(schools, prior_hypersd = normal(0, 5))
effect_plot("Uniform prior on SD"=bg1,
 "Normal prior on SD"=bg2)

Compare the priors themselves (ppd=TRUE)
bg1_ppd <- baggr(schools, prior_hypersd = uniform(0, 20), ppd=TRUE)
bg2_ppd <- baggr(schools, prior_hypersd = normal(0, 5), ppd=TRUE)
effect_plot("Uniform prior on SD"=bg1_ppd,
 "Normal prior on SD"=bg2_ppd)
```

---

**fixed_effects**

**Effects of covariates on outcome in baggr models**

Description

Effects of covariates on outcome in baggr models

Usage

```r
fixed_effects(bg, summary = FALSE, transform = NULL, interval = 0.95)
```
forest_plot

Arguments

bg          a baggr model
summary     logical; if TRUE returns summary statistic instead of all MCMC samples
transform   a transformation (R function) to apply to the result; (this is commonly used when
calling from other plotting or printing functions)
interval    uncertainty interval width (numeric between 0 and 1), if summary=TRUE

Value

A list with 2 vectors (corresponding to MCMC samples) \( \tau \) (mean effect) and \( \sigma_\tau \) (SD).
If summary=TRUE, both vectors are summarised as mean and lower/upper bounds according to

interval

See Also

treatment_effect for overall treatment effect across groups, group_effects for effects within each
group, effect_draw and effect_plot for predicted treatment effect in new group

forest_plot

Draw a forest plot for a baggr model

Description

The forest plot functionality in baggr is a simple interface for calling the forestplot function. By
default the forest plot displays raw (unpooled) estimates for groups and the treatment effect estimate
underneath. This behaviour can be modified to display pooled group estimates.

Usage

forest_plot(
  bg,
  show = c("inputs", "posterior", "both", "covariates"),
  print = show,
  prob = 0.95,
  digits = 3,
  ...
)

Arguments

bg          a baggr class object
show        if "inputs", then plotted points and lines correspond to raw inputs for each
group; if "posterior" – to posterior distribution; you can also plot "both" inputs and posteriors; if "covariates", then fixed effect coefficients are plotted
print       which values to print next to the plot: values of "inputs" or "posterior"
means? (if show="covariates", it must be "posterior")
get_n_samples

prob        width of the intervals (lines) for the plot
digits      number of digits to display when printing out mean and SD in the plot
...         other arguments passed to forestplot

See Also

forestplot function and its vignette for examples; effect_plot and baggr_plot for non-forest plots of baggr results

Examples

bg <- baggr(schools, iter = 500)
forest_plot(bg)
forest_plot(bg, show = "posterior", print = "inputs", digits = 2)

get_n_samples  Extract number of samples from a baggr object

Description

Extract number of samples from a baggr object

Usage

get_n_samples(x)

Arguments

x  baggr fit to get samples from

Details

Checks for number of iterations and number of Markov chains, returns maximum number of valid samples
### get_order

Separate out ordering so we can test directly

**Description**

Separate out ordering so we can test directly

**Usage**

```r
get_order(df_groups, hyper)
```

**Arguments**

- `df_groups`: data.frame of group effects used in `plot.baggr_compare`
- `hyper`: show parameter estimate? same as in `plot.baggr_compare`

**Details**

Given a set of effects measured by models, identifies the model which has the biggest range of estimates and ranks groups by those estimates, returning the order

### group_effects

Extract baggr study effects

**Description**

Given a baggr object, returns the raw MCMC draws of the posterior for each group’s effect or a summary of these draws. If there are no covariates in the model, this effect is a single random variable. If there are covariates, the group effect is a sum of effect of covariates (fixed effects) and the study-specific random variable (random effects). This is an internal function currently used as a helper for plotting and printing of results.

**Usage**

```r
group_effects(
 bg,
 summary = FALSE,
 transform = NULL,
 interval = 0.95,
 random_only = FALSE
)
```
Arguments

- **bg**: baggr object
- **summary**: logical; if TRUE returns summary statistics as explained below.
- **transform**: a transformation to apply to the result, should be an R function; (this is commonly used when calling group_effects from other plotting or printing functions)
- **interval**: uncertainty interval width (numeric between 0 and 1), if summarising
- **random_only**: logical; for meta-regression models, should fixed_effects be included in the returned group effect?

Details

If `summary = TRUE`, the returned object contains, for each study or group, the following 5 values:
- the posterior medians,
- the lower and upper bounds of the uncertainty intervals using the central posterior credible interval of width specified in the argument `interval`,
- the posterior mean, and
- the posterior standard deviation.

Value

Either an array with MCMC samples (if `summary = FALSE`) or a summary of these samples (if `summary = TRUE`). For arrays the three dimensions are: N samples, N groups and N effects (equal to 1 for the basic models).

See Also

- `fixed_effects` for effects of covariates on outcome. To extract random effects when covariates are present, you can use either `random_effects` or, equivalently, `group_effects(random_only=TRUE).

Examples

```r
fit1 <- baggr(schools)

Extract group effects

group_effects(fit1, summary = TRUE, interval = 0.5)
```

---

**is.baggr_cv**  
*Check if something is a baggr_cv object*

**Description**

Check if something is a baggr_cv object

**Usage**

`is.baggr_cv(x)`

**Arguments**

- **x**: object to check
**labbe**  

*L'Abbe plot for binary data*

---

**Description**

This plot shows relationship between proportions of events in control and treatment groups in binary data.

**Usage**

```r
labbe(
 data,
 group = "group",
 plot_model = FALSE,
 labels = TRUE,
 shade_se = c("rr", "or", "none")
)
```

**Arguments**

- `data` a data frame with binary data (must have columns a, c, b/n1, d/n2)
- `group` a character string specifying group names (e.g. study names), used for labels;
- `plot_model` if TRUE, then odds ratios and risk ratios baggr models are estimated (using default settings) and their mean estimates of effects are plotted as lines
- `labels` if TRUE, names from the group column are displayed
- `shade_se` if "none", nothing is plotted, if "or" or "rr", a shaded area corresponding to inverse of effect’s (OR or RR) SE is added to each data point; the default is "rr"

**Value**

A ggplot object

**See Also**

vignette("baggr_binary") for an illustrative example
loocv

*Leave one group out cross-validation for baggr models*

### Description
Performs exact leave-one-group-out cross-validation on a baggr model.

### Usage
```r
loocv(data, return_models = FALSE, ...)
```

### Arguments
- **data**: Input data frame - same as for baggr function.
- **return_models**: logical; if FALSE, summary statistics will be returned and the models discarded; if TRUE, a list of models will be returned alongside summaries
- **...**: Additional arguments passed to baggr.

### Details
The values returned by `loocv()` can be used to understand how excluding any one group affects the overall result, as well as how well the model predicts the omitted group. LOO-CV approaches are a good general practice for comparing Bayesian models, not only in meta-analysis.

This function automatically runs \( K \) baggr models, where \( K \) is number of groups (e.g. studies), leaving out one group at a time. For each run, it calculates *expected log predictive density* (ELPD) for that group (see Gelman et al 2013). (In the logistic model, where the proportion in control group is unknown, each of the groups is divided into data for controls, which is kept for estimation, and data for treated units, which is not used for estimation but only for calculating predictive density. This is akin to fixing the baseline risk and only trying to infer the odds ratio.)

The main output is the cross-validation information criterion, or -2 times the ELPD averaged over \( K \) models. This is related to, and often approximated by, the Watanabe-Akaike Information Criterion. When comparing models, smaller values mean a better fit. For more information on cross-validation see this [overview article](#).

For running more computation-intensive models, consider setting the `mc.cores` option before running `loocv`, e.g. options`(`mc.cores = 4`)` (by default baggr runs 4 MCMC chains in parallel). As a default, rstan runs "silently" (refresh=0). To see sampling progress, please set e.g. `loocv(data, refresh = 500)`.

### Value
- log predictive density value, an object of class `baggr_cv`; full model, prior values and `lpd` of each model are also returned. These can be examined by using `attributes()` function.

### Author(s)
Witold Wiecek
References


See Also

`loo_compare` for comparison of many LOO CV results

Examples

```r
Not run:
even simple examples may take a while
cv <- loo_cv(schools, pooling = "partial")
print(cv) # returns the lpd value
attributes(cv) # more information is included in the object

End(Not run)
```

---

**Description**

Given multiple `loo_cv` outputs, calculate differences in their expected log predictive density.

**Usage**

`loo_compare(x, ...)`

**Arguments**

- `x` An object of class `baggr_cv` or a list of such objects.
- `...` Additional objects of class "baggr_cv"

**See Also**

`loo_cv` for fitting LOO CV objects and explanation of the procedure

**Examples**

```r
Not run:
2 models with more/less informative priors -- this will take a while to run
cv_1 <- loo_cv(schools, model = "rubin", pooling = "partial")
cv_2 <- loo_cv(schools, model = "rubin", pooling = "partial",
 prior_hypermean = normal(0, 5), prior_hypersd = cauchy(0,4))
loo_compare(cv_1, cv_2)

End(Not run)
```
microcredit

### Description
This dataframe contains the data used in Meager (2019) to estimate hierarchical models on the data from 7 randomized controlled trials of expanding access to microcredit.

### Usage
microcredit

### Format
A data frame with 40267 rows, 7 study identifiers and 7 outcomes

### Details
The columns include the group indicator which gives the name of the lead author on each of the respective studies, the value of the 6 outcome variables of most interest (consumer durables spending, business expenditures, business profit, business revenues, temptation goods spending and consumption spending) all of which are standardised to USD PPP in 2009 dollars per two weeks (these are flow variables), and finally a treatment assignment status indicator.

The dataset has not otherwise been cleaned and therefore includes NAs and other issues common to real-world datasets.

For more information on how and why these variables were chosen and standardised, see Meager (2019) or consult the associated code repository which includes the standardisation scripts: link

### References

---

microcredit_simplified

### Description
Simplified version of the microcredit dataset.

### Usage
microcredit_simplified
Format

A data frame with 14224 rows, 7 study identifiers and 1 outcome

Details

The columns include the group indicator which gives the name of the lead author on each of the respective studies, the value of the household consumption spending standardised to USD PPP in 2009 dollars per two weeks (these are flow variables), and finally a treatment assignment status indicator.

The dataset has not otherwise been cleaned and therefore includes NAs and other issues common to real data.

For more information on how and why these variables were chosen and standardised, see Meager (2019) or consult the associated code repository: link

This dataset includes only complete cases and only the consumption outcome variable.

References


Description

This function is just a convenient shorthand for getting typical summary statistics.

Usage

mint(y, int = 0.95, digits = NULL, median = FALSE, sd = FALSE)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>matrix or a vector; for matrices, mint is done by-column</td>
</tr>
<tr>
<td>int</td>
<td>probability interval (default is 95 percent) to calculate</td>
</tr>
<tr>
<td>digits</td>
<td>number of significant digits to round values by.</td>
</tr>
<tr>
<td>median</td>
<td>return median value?</td>
</tr>
<tr>
<td>sd</td>
<td>return SD?</td>
</tr>
</tbody>
</table>

Examples

mint(rnorm(100, 12, 5))
## mutau_cor

**Correlation between mu and tau in a baggr model**

### Description

Correlation between mu and tau in a baggr model

### Usage

```r
mutau_cor(bg, summary = FALSE, interval = 0.95)
```

### Arguments

- `bg` - a `baggr` model where `model = "mutau"`
- `summary` - logical; if TRUE returns summary statistics as explained below.
- `interval` - uncertainty interval width (numeric between 0 and 1), if summarising

### Value

a vector of values

## plot.baggr

**Generic plot for baggr package**

### Description

Using generic `plot()` on `baggr` output invokes `baggr_plot` visual. See therein for customisation options. Note that plot output is `ggplot2` object.

### Usage

```r
S3 method for class 'baggr'
plot(x, ...)
```

### Arguments

- `x` - object of class `baggr`
- `...` - optional arguments, see `baggr_plot`

### Value

ggplot2 object from `baggr_plot`

### Author(s)

Witold Wiecek
Description

Allows plots that compare multiple baggr models that were passed for comparison purposes to `baggr_compare` or run automatically by `baggr_compare`.

Usage

```r
S3 method for class 'baggr_compare'
plot(
 x,
 compare = x$compare,
 style = "areas",
 grid_models = FALSE,
 grid_parameters = TRUE,
 interval = 0.95,
 hyper = TRUE,
 transform = NULL,
 order = F,
 vline = FALSE,
 ...
)
```

Arguments

- `x`: baggr_compare model to plot
- `compare`: When plotting, choose between comparison of "groups" (default) or (hyper-) "effects". The former is not available when `what = "prior"`. 
- `style`: What kind of plot to display (if `grid_models = TRUE`), passed to the style argument in `baggr_plot`. 
- `grid_models`: If FALSE (default), generate a single comparison plot; if TRUE, display each model (using individual `baggr_plot`'s) side-by-side. 
- `grid_parameters`: If TRUE, uses ggplot-style facetting when plotting models with many parameters (especially "quantiles", "sslab"); if FALSE, returns separate plot for each parameter. 
- `interval`: Probability level used for display of posterior interval. 
- `hyper`: Whether to plot pooled treatment effect in addition to group treatment effects. 
- `transform`: A function (e.g. exp(), log()) to apply to the values of group (and hyper, if hyper=TRUE) effects before plotting; when working with effects that are on log scale, exponent transform is used automatically, you can plot on log scale by setting transform = identity.
order  Whether to sort by median treatment effect by group. If yes, medians from the model with largest range of estimates are used for sorting. If not, groups are shown alphabetically.

vline  logical; show vertical line through 0 in the plot?

...  ignored for now, may be used in the future

### Description

Plot results for baggr quantile models. Displays results facetted per group. Results are ggplot2 plots and can be modified.

### Usage

```r
plot_quantiles(fit, ncol, hline = TRUE)
```

### Arguments

- **fit**: an object of class `baggr`
- **ncol**: number of columns for the plot; defaults to half of number of groups
- **hline**: logical; plots a line through 0

### Value

ggplot2 object

### Examples

```r
Not run:
bg <- baggr(microcredit_simplified, model = "quantiles",
 quantiles = c(0.25, 0.50, 0.75),
 iter = 1000, refresh = 0,
 outcome = "consumption")
#vanilla plot
plot_quantiles(bg)[[1]]
plot_quantiles(bg, hline = TRUE)[[2]] +
 ggplot2::coord_cartesian(ylim = c(-2, 5)) +
 ggplot2::ggtitle("Works like a ggplot2 plot!")

End(Not run)
```
**Description**

Compute statistics relating to heterogeneity (whole model) and pooling (for each group) given a bagrr meta-analysis model. The statistics are the pooling metric by Gelman & Pardoe (2006) or its complement, the *I*-squared statistic.

**Usage**

```r
pooling(bg, type = c("groups", "total"), summary = TRUE)

heterogeneity(bg, summary = TRUE)
```

**Arguments**

- `bg`: output of a bagrr() function
- `type`: In pooling calculation is done for each of the "groups" (default) or for "total" hypereffect(s). See Details section for how calculation is done.
- `summary`: logical; if FALSE a whole vector of pooling values is returned, otherwise only the means and intervals

**Details**

Pooling statistic describes the extent to which group-level estimates of treatment effect are "pooled" (or pulled!) closer to average treatment effect in the meta-analysis model. If pooling = "none" or "full" in bagrr, then the values are always 0 or 1, respectively. If pooling = "partial", the value is somewhere between 0 and 1.

**Formulae for the calculations below are provided in main package vignette.**

**Value**

Matrix with mean and intervals for chosen pooling metric, each row corresponding to one meta-analysis group.

**Group pooling**

This is the calculation done by pooling() if type = "groups" (default). See vignette("bagrr") for more details on pooling calculations.

In a partial pooling model (see baggr), group *k* (e.g. study) has standard error of treatment effect estimate, *se*ₖ. The treatment effect (across *k* groups) is variable across groups, with hyper-SD parameter *σ*(τ).

The quantity of interest is ratio of variation in treatment effects to the total variation. By convention, we subtract it from 1, to obtain a pooling metric *p*.

\[
p = 1 - (\sigma(\tau)^2/(\sigma(\tau)^2 + se_k^2))
\]
- If $p < 0.5$, the variation across studies is higher than variation within studies.
- Values close to 1 indicate nearly full pooling. Variation across studies dominates.
- Values close to 0 indicate no pooling. Variation within studies dominates.

Note that, since $\sigma^2_\tau$ is a Bayesian parameter (rather than a single fixed value), $p$ is also a parameter. It is typical for $p$ to have very high dispersion, as in many cases we cannot precisely estimate $\sigma_\tau$.

To obtain the whole distribution of $p$ (rather than summarised values), set `summary=FALSE`.

### Overall pooling in the model

Typically researchers want to report a single measure from the model, relating to heterogeneity across groups. This is calculated by either `pooling(mymodel,type = "total")` or simply `heterogeneity(mymodel)`.

In many contexts, i.e. medical statistics, it is typical to report $I - P$, called $I^2$ (see Higgins and Thompson, 2002; sometimes another statistic, $H^2 = 1/P$, is used). Higher values of $I$-squared indicate higher heterogeneity; Von Hippel (2015) provides useful details for $I$-squared calculations.

To obtain such single estimate we need to substitute average variability of group-specific treatment effects and then calculate the same way we would calculate $p$. By default we use the mean across $k \sigma^2_k$ values. Typically, implementations of $I^2$ in statistical packages use a different calculation for this quantity, which may make $I$'s not comparable when different studies have different SE's.

Same as for group-specific estimates, $P$ is a Bayesian parameter and its dispersion can be high.

### Relationship to R-squared statistic

See Gelman & Pardoe (2006) Section 1.1 for a short explanation of how $R^2$ statistic relates to the pooling metric.

### References


---

### Description

Performs posterior predictive checks with the `bayesplot` package.

### Usage

```r
S3 method for class 'baggr'
pp_check(x, type = "dens_overlay", nsamples = 40)
```
Arguments

- **x**  
  Model to check

- **type**  
  type of pp_check. For a list see [here](#).

- **nsamples**  
  number of samples to compare

Details

For a detailed explanation of each of the ppc functions, see the PPC documentation of the bayesplot package.

---

**predict.baggr**  
*Predict method for baggr objects*

Description

Predict method for baggr objects

Usage

```r
S3 method for class 'baggr'
predict(object, nsamples, newdata = NULL, allow_new_levels = TRUE, ...)
```

Arguments

- **object**  
  model to predict from

- **nsamples**  
  Number of samples to draw from the posterior. Cannot exceed the number of samples in the fitted model.

- **newdata**  
  optional, new data to predict observations from

- **allow_new_levels**  
  whether to allow the model to make predictions about unobserved groups. Without additional group-level information the model will use the unconditional, pooled estimate.

- **...**  
  other arguments to pass to predict function (currently not used)
predict_mutau  
*Predict function for the mu & tau model*

**Description**

Predict function for the mu & tau model

**Usage**

```r
predict_mutau(x, nsamples, newdata = NULL, allow_new_levels = TRUE)
```

**Arguments**

- `x` model to predict from
- `nsamples` number of samples to predict
- `newdata` new data to predict, defaults to NULL
- `allow_new_levels` allow the predictive of new, unobserved groups

---

predict_quantiles  
*Predict function for the quantiles model*

**Description**

Predict function for the quantiles model

**Usage**

```r
predict_quantiles(x, nsamples, newdata = NULL, allow_new_levels = TRUE)
```

**Arguments**

- `x` model to predict from
- `nsamples` number of samples to predict
- `newdata` new data to predict, defaults to NULL
- `allow_new_levels` allow the predictive of new, unobserved groups
**predict_rubin**  
*Predict function for the rubin model*

**Description**

Predict function for the rubin model

**Usage**

```r
predict_rubin(x, nsamples, newdata = NULL, allow_new_levels = TRUE)
```

**Arguments**

- `x` : model to predict from
- `nsamples` : number of samples to predict
- `newdata` : new data to predict, defaults to NULL
- `allow_new_levels` : allow the predictive of new, unobserved groups

**predict_unknown**  
*Predict method for model that is unknown or not implemented*

**Description**

Predict method for model that is unknown or not implemented

**Usage**

```r
predict_unknown(x)
```

**Arguments**

- `x` : baggr model to generate predictions from
prepare_ma

Convert from individual to summary data in meta-analyses

Description

Allows for one-way conversion from full to summary data or for calculation of effects for binary data. Input must be pre-formatted appropriately.

Usage

```r
prepare_ma(
 data,
 effect = c("mean", "logOR", "logRR"),
 rare_event_correction = 0.25,
 log = FALSE,
 cfb = FALSE,
 summarise = TRUE,
 treatment = "treatment",
 baseline = NULL,
 group = "group",
 outcome = "outcome"
)
```

Arguments

data  
either a data.frame of individual-level observations with columns for outcome (numeric), treatment (values 0 and 1) and group (numeric, character or factor); or, a data frame with binary data (must have columns a, c, b/n1, d/n2).

effect  
what effect to calculate? a mean (and SE) of outcome in groups or (for binary data) logOR (odds ratio), logRR (risk ratio);

rare_event_correction  
If effect is logOR or logRR, this correction is used when working with binary data only. The value of correction is added to all arms in trials where some arms had 0 events. Using corrections may bias results but is the only alternative to avoid infinite values.

log  
logical; log-transform the outcome variable?

cfb  
logical; calculate change from baseline? If yes, the outcome variable is taken as a difference between values in outcome and baseline columns

summarise  
logical; TRUE by default, but you can disable it to obtain converted (e.g. logged) data with columns renamed

treatment  
name of column with treatment variable

baseline  
name of column with baseline variable

group  
name of the column with grouping variable

outcome  
name of column with outcome variable
Details

The conversions done by this function are not typically needed and may happen automatically when data is given to baggr. However, this function can be used to explicitly convert from full to reduced (summarised) data without analysing it in any model. It can be useful for examining your data and generating summary tables.

If multiple operations are performed, they are taken in this order:

1. conversion to log scale,
2. calculating change from baseline,
3. summarising data (using appropriate effect)

Value

- If you summarise: a data.frame with columns for group, tau and se.tau (for effect = "mean", also baseline means; for "logRR" or "logOR" also a, b, c, d, which correspond to typical contingency table notation, that is: a = events in exposed; b = no events in exposed, c = events in unexposed, d = no events in unexposed).
- If you do not summarise data, individual level data will be returned, but some columns may be renamed or transformed (see the arguments above).

Author(s)

Witold Wiecek

See Also

convert_inputs for how any type of data is (internally) converted into a list of Stan inputs;

Usage

```r
prepare_prior(
 prior,
 data,
 stan_data,
 model,
 pooling,
 covariates,
)```

Description

This is an internal function called by baggr. You can use it for debugging or to run modified models. It extracts and prepares priors passed by the user. Then, if any necessary priors are missing, it sets them automatically and notifies user about these automatic choices.
print.baggr

```r
quantiles = c(),
silent = FALSE
)
```

Arguments

- `prior`: prior argument passed from `baggr` call
- `data`: another argument in `baggr`
- `stan_data`: list of inputs that will be used by sampler this is already pre-obtained through `convert_inputs`
- `model`: same as in `baggr`
- `pooling`: same as in `baggr`
- `covariates`: same as in `baggr`
- `quantiles`: same as in `baggr`
- `silent`: same as in `baggr`

Value

A named list with prior values that can be appended to `stan_data` and passed to a Stan model.

print.baggr
S3 print method for objects of class `baggr` (model fits)

Description

This prints a concise summary of the main `baggr` model features. More info is included in the summary of the model and its attributes.

Usage

```r
## S3 method for class 'baggr'
print(x, exponent = FALSE, digits = 2, group, fixed = TRUE, ...)
```

Arguments

- `x`: object of class `baggr`
- `exponent`: if `TRUE`, results (for means) are converted to exp scale
- `digits`: Number of significant digits to print.
- `group`: logical: print group effects? If unspecified, they are printed only if less than 20 groups are present
- `fixed`: logical: print fixed effects?
- `...`: currently unused by this package: further arguments passed to or from other methods (print requirement)
print.baggr_compare
Print method for baggr_compare models

Description

Print method for baggr_compare models

Usage

```r
## S3 method for class 'baggr_compare'
print(x, digits, ...)
```

Arguments

- `x` : baggr_compare model
- `digits` : number of significant digits for effect estimates
- `...` : other parameters passed to print

print.baggr_cv
Print baggr cv objects nicely

Description

Print baggr cv objects nicely

Usage

```r
## S3 method for class 'baggr_cv'
print(x, digits = 3, ...)
```

Arguments

- `x` : baggr_cv object to print
- `digits` : number of digits to print
- `...` : additional arguments for s3 consistency
print.compare_baggr_cv

Print baggr_cv comparisons

Description

Print baggr_cv comparisons

Usage

```r
## S3 method for class 'compare_baggr_cv'
print(x, digits = 3, ...)
```

Arguments

- `x`: baggr_cv comparison to print
- `digits`: number of digits to print
- `...`: additional arguments for s3 consistency

print_dist

Output a distribution as a string

Description

Used for printing nicely formatted outputs when reporting results etc.

Usage

```r
print_dist(dist)
```

Arguments

- `dist`: distribution name, one of `priors`

Value

Character string like `normal(0,10^2)`.
Description

This page provides a list of all available distributions that can be used to specify priors in `baggr()`. These convenience functions are designed to allow the user to write the priors in the most "natural" way when implementing them in baggr. Apart from passing on the arguments, their only other role is to perform a rudimentary check if the distribution is specified correctly.

Usage

- `multinormal(location, Sigma)`
- `lkj(shape, order = NULL)`
- `normal(location, scale)`
- `cauchy(location, scale)`
- `uniform(lower, upper)`

Arguments

- `location`: Mean for normal and multivariate normal (in which case `location` is a vector), and median for Cauchy distributions.
- `Sigma`: Variance-covariance matrix for multivariate normal.
- `shape`: Shape parameter for LKJ.
- `order`: Order of LKJ matrix (typically it does not need to be specified, as it is inferred directly in the model).
- `scale`: SD for Normal, scale for Cauchy.
- `lower`: Lower bound for Uniform.
- `upper`: Upper bound for Uniform.

Details

The prior choice in `baggr` is always done via 3 distinct arguments: `prior_hypermean`, `prior_hypersd`, and `prior_hypercor`.

These respectively refer to the priors on the average of the effects across the groups (hypermean), the standard deviation of the effects across the groups (hypersd), and the correlation in the distribution of parameters across groups when the model allows multivariate shrinkage (say on control group means and effects).

Notation for priors is "plain-text", in that you can write the distributions as `normal(5, 10)`, `uniform(0, 100)` etc. As with any other argument one has the option to simply input the prior directly, e.g. `prior_hypermean`
= normal(0,1), or by creating a named list of custom priors and then inputting the list to the argument priors. See the examples below for more.

Different parameters admit different priors:

- prior_hypermean will take "normal", "uniform" and "cauchy" input for a scalar mean. For a vector mean, it will take any of these arguments and apply them independently to each component of the vector, or it can also take a "multinormal" argument (see the example below).
- prior_hypersd will take "normal" and "uniform"
- prior_hypercor allows "lkj" input

Author(s)

Witold Wiecek, Rachael Meager

References

Examples

(these are not the recommended priors -- for syntax illustration only)

change the priors for 8 schools:
baggr(schools, model = "rubin", pooling = "partial",
 prior_hypermean = normal(5,5),
 prior_hypersd = normal(0,20))

passing priors as a list
custom_priors <- list(hypercor = lkj(1), hypersd = normal(0,10),
 hypermean = multinormal(c(0,0),matrix(c(10,3,3,10),2,2)))
microcredit_summary_data <- prepare_ma(microcredit, outcome = "consumption")
baggr(microcredit_summary_data, model = "mutau",
 pooling = "partial", prior = custom_priors)

`random_effects`
`Extract random effects from a baggr model`

Description

This is a shortcut for writing `group_effects(random_only=TRUE,...)`

Usage

`random_effects(...)`
rubin_data

Arguments
... arguments passed to group_effects

rubin_data Make model matrix for the rubin data

Description
Make model matrix for the rubin data

Usage
rubin_data(x, newdata = NULL, allow_new_levels = TRUE)

Arguments
x model to get data from
newdata new data to use with model
allow_new_levels whether to allow for unobserved groups

schools 8 schools example

Description
A classic example of aggregate level continuous data in Bayesian hierarchical modelling. This dataframe contains a column of estimated treatment effects of an SAT prep program implemented in 8 different schools in the US, and a column of estimated standard errors.

Usage
schools

Format
An object of class data.frame with 8 rows and 3 columns.

Details
See Gelman et al (1995), Chapter 5, for context and applied example.

References
set_prior_val
Add prior values to Stan input for baggr

Description
Add prior values to Stan input for baggr

Usage
```
set_prior_val(target, name, prior, p = 1)
```

Arguments
- `target`: list object (Stan input) to which prior will be added
- `name`: prior name, like `hypermean`, `hypersd`, `hypercor`
- `prior`: one of prior distributions allowed by baggr like `normal`
- `p`: number of repeats of the prior, i.e. when P i.i.d. priors are set for P dimensional parameter as in "mu & tau" type of model

single_comp_plot
Plot single comparison plot in baggr_compare style

Description
Plot single comparison plot in baggr_compare style

Usage
```
single_comp_plot(df, title = "", legend = "top", ylab = "", grid = F)
```

Arguments
- `df`: data.frame with columns 'group', 'median', 'lci', 'uci', 'model' and optionally 'parameter'
- `title`: 'ggtitle'
- `legend`: 'legend.position'
- `ylab`: Y axis label
- `grid`: logical; if TRUE, facets by 'parameter' column

Value
a ggplot2 object
stop_not_implemented *Stop with informative error*

Description

Stop with informative error

Usage

```r
stop_not_implemented()
```

summarise_quantiles_data

Description

Given individual level data, return list of summary statistics of quantile means and Sigma’s, as well as K, N. This operation is done automatically inside `baggr` function but it can be used for exploring input data.

Usage

```r
summarise_quantiles_data(
  data, 
  quantiles, 
  outcome = "outcome", 
  group = "group", 
  treatment = "treatment", 
  means_only = FALSE 
)
```

Arguments

- `data` a data.frame with grouping, outcome, treatment variables
- `quantiles` a vector of quantiles (between 0 and 1)
- `outcome` character: column name in data for outcome variable
- `group` character: column name in data for grouping variable
- `treatment` character: column name in data for treatment variable
- `means_only` logical; if true, covariances and extra outputs are not returned, but only means (y_0 and y_1)
Details

This function is intended for data exploration outside of baggr function. When calling baggr, individual-level data should be supplied – they will be summarised automatically. (See baggr for documentation of how columns should be formatted.)

Estimates are obtained externally via quantreg::rq function of the quantreg package. This implementation is experimental and will change in the future versions of the package.

Value

A list with mean estimates for control and treatment (y_0 and y_1) and variance-covariance matrices ($\Sigma_{y_k,0}$ and $\Sigma_{y_k,1}$).

Examples

```r
summarise_quantiles_data(microcredit_simplified, c(.2, .4, .6),
  outcome = "consumption")
```

treatment_effect

Average treatment effect in a baggr model

Description

Average treatment effect in a baggr model

Usage

```r
treatment_effect(
  bg,
  summary = FALSE,
  transform = NULL,
  interval = 0.95,
  message = TRUE
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bg</td>
<td>a baggr model</td>
</tr>
<tr>
<td>summary</td>
<td>logical; if TRUE returns summary statistics as explained below.</td>
</tr>
<tr>
<td>transform</td>
<td>a transformation to apply to the result, should be an R function; (this is commonly used when calling treatment_effect from other plotting or printing functions)</td>
</tr>
<tr>
<td>interval</td>
<td>uncertainty interval width (numeric between 0 and 1), if summarising</td>
</tr>
<tr>
<td>message</td>
<td>logical; use to disable messages prompted by using with no pooling models</td>
</tr>
</tbody>
</table>
Value

A list with 2 vectors (corresponding to MCMC samples) \(\text{tau} \) (mean effect) and \(\text{sigma}_\text{tau} \) (SD). If summary=TRUE, both vectors are summarised as mean and lower/upper bounds according to interval.
Index

* datasets
 chicks, 14
 data_spike, 16
 microcredit, 26
 microcredit_simplified, 26
 schools, 43

baggr, 3, 4, 8, 9, 13–19, 23, 24, 28, 31, 37, 38, 41, 45, 46

baggr(), 41
baggr-package, 3, 4
baggr_compare, 5, 7, 8, 18
baggr_plot, 7, 10, 20, 28, 29
baggr_theme_get (baggr_theme_set), 11
baggr_theme_replace (baggr_theme_set), 11

baggr_theme_set, 11
baggr_theme_update (baggr_theme_set), 11

bayesplot::bayesplot_theme_get, 12
bayesplot::bayesplot_theme_get(), 12
bayesplot::MCMC-intervals, 11
binary_to_individual, 13

cauchy (priors), 41
chicks, 14
convert_inputs, 14, 37, 38

data_spike, 16

effect_draw, 7, 16, 17–19
effect_plot, 7, 11, 17, 19, 20

fixed_effects, 7, 18, 22
forest_plot, 11, 19
forestplot, 19, 20

get_n_samples, 20
get_order, 21
ggplot2::theme_get(), 11
group_effects, 7, 19, 21, 43

heterogeneity (pooling), 31

is.baggr_cv, 22
labbe, 23
lkj (priors), 41
loo_compare, 25, 25
loocv, 7, 24, 25

microcredit, 26
microcredit_simplified, 26
mint, 27
multinormal (priors), 41
mutau_cor, 28

normal, 44
normal (priors), 41

plot.baggr, 28
plot.baggr_compare, 8, 9, 21, 29
plot_quantiles, 30
pooling, 31
pp_check, 7
pp_check (pp_check.baggr), 32
pp_check.baggr, 32
PPC, 33
predict.baggr, 33
predict_mutau, 34
predict_quantiles, 34
predict_rubin, 35
predict_unknown, 35
prepare_ma, 6, 13, 36
prepare_prior, 37
print.baggr, 38
print.baggr_compare, 9, 39
print.baggr_cv, 39
print.compare_baggr_cv, 40
print_dist, 40
priors, 40, 41
random_effects, 22, 42
round, 27
rubin_data, 43
schools, 43
set_prior_val, 44
single_comp_plot, 44
stop_not_implemented, 45
summarise_quantiles_data, 45
treatment_effect, 7, 16, 17, 19, 46
uniform (priors), 41