Package ‘bain’

November 26, 2021

Type Package
Date 2021-11-26
Title Bayes Factors for Informative Hypotheses
Version 0.2.7

License GPL (>= 3)
Encoding UTF-8
LazyData true
URL https://informative-hypotheses.sites.uu.nl/software/bain/

BugReports https://github.com/cjvanlissa/bain/

NeedsCompilation yes
RoxygenNote 7.1.2
Depends R (>= 3.0.0), stats
Imports lavaan
Suggests MASS, testthat, knitr, rmarkdown
VignetteBuilder knitr

Author Xin Gu [aut],
Herbert Hoijtink [aut],
Joris Mulder [aut],
Caspar J van Lissa [aut, cre],
Van Zundert Camiel [ctb],
Jeff Jones [ctb],
Niels Waller [ctb]
Description

bain is an acronym for "Bayesian informative hypotheses evaluation". It uses the Bayes factor to evaluate hypotheses specified using equality and inequality constraints among (linear combinations of) parameters in a wide range of statistical models. A **tutorial** by Hoijtink, Mulder, van Lissa, and Gu (2018), was published in Psychological Methods. The preprint of that tutorial is available on PsyArxiv (doi: 10.31234/osf.io/v3shc) or on the bain website at https://informative-hypotheses.sites.uu.nl/software/bain/ Users are advised to read the tutorial AND the vignette that is provided with this package before using bain.

Usage

```r
bain(x, hypothesis, fraction = 1, ...)
```

Arguments

- `x` An R object containing the outcome of a statistical analysis. Currently, the following objects can be processed: `lm()`, `t.test()`, lavaan objects created with the `sem()`, `cfa()`, and `growth()` functions, and named vector objects. See the vignette for elaborations.
- `hypothesis` A character string containing the informative hypotheses to evaluate. See the vignette for elaborations.
- `fraction` A number representing the fraction of information in the data used to construct the prior distribution. The default value 1 denotes the minimal fraction, 2 denotes twice the minimal fraction, etc. See the vignette for elaborations.
- `...` Additional arguments. See the vignette for elaborations.
Value

The main output resulting from analyses with bain are Bayes factors and posterior model probabilities associated with the hypotheses that are evaluated. See the tutorial and the vignette for further elaborations.

Author(s)

The main authors of the bain package are Xin Gu, Caspar van Lissa, Herbert Hoijtink and Joris Mulder with smaller contributions by Marlyne Bosman, Camiel van Zundert, and Fayette Klaassen. Contact information can be found on the bain website at https://informative-hypotheses.sites.uu.nl/software/bain/

References

For a tutorial on this method, see:

For applications in structural equation modeling, see:

For the statistical underpinnings, see:

Examples

Evaluation of informative hypotheses for an ANOVA
make a factor of variable site
sesamesim$site <- as.factor(sesamesim$site)
execute an analysis of variance using lm() which, due to the -1, returns
estimates of the means of postnumb per group
anov <- lm(postnumb~site-1,sesamesim)
take a look at the estimated means and their names
coef(anov)
set a seed value
set.seed(100)
use the names to formulate and test hypotheses with bain
results <- bain(anov, "site1=site2=site3=site4=site5; site2>site5>site1>site3>site4")
bain_sensitivity

Description

Conducts a sensitivity analysis for bain.

Usage

bain_sensitivity(x, hypothesis, fractions = 1, ...)

Arguments

x An R object containing the outcome of a statistical analysis. Currently, the follow-
ing objects can be processed: lm(), t_test(), lavaan objects created with the sem(), cfa(), and growth() functions, and named vector objects. See the vignette for elaborations.

hypothesis A character string containing the informative hypotheses to evaluate. See the vignette for elaborations.

fractions A number representing the fraction of information in the data used to construct the prior distribution. The default value 1 denotes the minimal fraction, 2 denotes twice the minimal fraction, etc. See the vignette for elaborations.

... Additional arguments passed to bain.

Details

The Bayes factor for equality constraints is sensitive to a scaling factor applied to the prior distribution. The argument fraction adjusts this scaling factor. The function bain_sensitivity is a wrapper for bain, which accepts a vector for the fractions argument, and returns a list of bain results objects. A table with a sensitivity analysis for specific statistics can be obtained using the summary() function, which accepts the argument summary(which_stat = ...). The available statistics are elements of the $fit table (Fit_eq, Com_eq, Fit_in, Com_in, Fit, Com, BF, PMPa, and PMPb), and elements of the BFmatrix, which can be accessed by matrix notation, e.g.: summary(bain_sens,which_stat = "BFmatrix[1,2]").

Value

A data.frame of class "bain_sensitivity".
Examples

```r
sesamesim$site <- as.factor(sesamesim$site)
res <- lm(sesamesim$postnumb~sesamesim$site-1)
set.seed(4583)
bain_sens <- bain_sensitivity(res, "site1=site2; site2>site5",
                          fractions = c(1,2,3))
summary(bain_sens, which_stat = "BF.c")
summary(bain_sens, which_stat = "BFmatrix[1,2]")
```

seBeta

Standard Errors and CIs for Standardized Regression Coefficients

Description

Computes Normal Theory and ADF Standard Errors and CIs for Standardized Regression Coefficients

Usage

```r
seBeta(
  X = NULL,
  y = NULL,
  cov.x = NULL,
  cov.xy = NULL,
  var.y = NULL,
  Nobs = NULL,
  alpha = 0.05,
  estimator = "ADF"
)
```

Arguments

- `X` Matrix of predictor scores.
- `y` Vector of criterion scores.
- `cov.x` Covariance or correlation matrix of predictors.
- `cov.xy` Vector of covariances or correlations between predictors and criterion.
- `var.y` Criterion variance.
- `Nobs` Number of observations.
- `alpha` Desired Type I error rate; default = .05.
- `estimator` 'ADF' or 'Normal' confidence intervals - requires raw X and raw y; default = 'ADF'.
Value

cov.Beta Normal theory or ADF covariance matrix of standardized regression coefficients.

se.Beta standard errors for standardized regression coefficients.

alpha desired Type-I error rate.

CI.Beta Normal theory or ADF (1-alpha) intervals for standardized regression coefficients.

estimator estimator = "ADF" or "Normal".

Author(s)

Jeff Jones and Niels Waller

References

Examples

```r
set.seed(123)
R <- matrix(.5, 3, 3)
diag(R) <- 1
X <- sesamesim[, c("peabody", "prenumb", "postnumb")]
y <- sesamesim$age
results <- seBeta(X, y, Nobs = nrow(sesamesim), alpha = .05, estimator = "ADF")
print(results, digits = 3)

library(MASS)
set.seed(123)
R <- matrix(.5, 3, 3)
diag(R) <- 1
X <- mvrnorm(n = 200, mu = rep(0, 3), Sigma = R, empirical = TRUE)
Beta <- c(.2, .3, .4)
y <- X %*% Beta + .64 * scale(rnorm(200))
results <- seBeta(X, y, Nobs = 200, alpha = .05, estimator = "ADF")
print(results, digits = 3)
```
Description

This is a simulated counterpart of part of the Sesame Street data presented by Stevens (1996, Appendix A) concerning the effect of the first year of the Sesame street series on the knowledge of 240 children in the age range 34 to 69 months. We will use the following variables: sex; site of child’s origin; setting in which Sesame Street is watched; age; whether or not the child is encouraged to watch; Peabody mental age score; score on numbers test before, after and in a follow up measurement; and scores on knowledge of body parts, letters, forms, numbers, relations, and classifications, both before and after watching Sesame Street for a year.

Usage

data(sesamesim)

Format

A data frame with 240 rows and 21 variables.

Details

- **sex** integer
 Sex of the child; 1 = boy, 2 = girl

- **site** integer
 Site of the child’s origin; 1 = disadvantaged inner city, 2 = advantaged suburban, 3 = advantaged rural, 4 = disadvantaged rural, 5 = disadvantaged Spanish speaking

- **setting** integer
 Setting in which the child watches Sesame Street; 1 = at home, 2 = at school

- **age** integer
 Age of the child in months

- **viewenc** integer
 Whether or not the child is encouraged to watch Sesame Street; 0 = no, 1 = yes

- **peabody** integer
 Peabody mental age score of the child; the higher the score the higher the mental age

- **prenumb** integer
 Score on a numbers test before watching Sesame Street for a year

- **postnumb** integer
 Score on a numbers test after watching Sesame Street for a year

- **funumb** integer
 Follow up numbers test score measured one year after postnumb

- **Bb** integer
 Knowledge of body parts before

- **Bl** integer
 Knowledge of letters before

- **Bf** integer
 Knowledge of forms before

- **Bn** integer
 Knowledge of numbers before

- **Br** integer
 Knowledge of relations before

- **Bc** integer
 Knowledge of classifications before

- **Ab** integer
 Knowledge of body parts after

- **Al** integer
 Knowledge of letters after

- **Af** integer
 Knowledge of forms after

- **An** integer
 Knowledge of numbers after

- **Ar** integer
 Knowledge of relations after

- **Ac** integer
 Knowledge of classifications after
References

t_test

Description

This function is a wrapper for the function \texttt{t.test}, which returns group-specific sample sizes and variances, in addition to the usual output of \texttt{t.test}.

Usage

\texttt{t_test(x, ...)}

Arguments

\begin{itemize}
 \item \texttt{x} \hspace{2cm} An object for which an S3 method of \texttt{t.test} exists (vector or formula).
 \item \texttt{...} \hspace{2cm} arguments passed to \texttt{t.test}.
\end{itemize}

Details

This wrapper allows users to enjoy the functionality of \texttt{bain} with the familiar interface of the \texttt{stats} function \texttt{t.test}.

For more documentation, see \texttt{t.test}.

Value

A list with class "\texttt{t_test}" containing the following components:

\begin{itemize}
 \item \texttt{statistic} \hspace{2cm} the value of the t-statistic.
 \item \texttt{parameter} \hspace{2cm} the degrees of freedom for the t-statistic.
 \item \texttt{p.value} \hspace{2cm} the p-value for the test.
 \item \texttt{conf.int} \hspace{2cm} a confidence interval for the mean appropriate to the specified alternative hypothesis.
 \item \texttt{estimate} \hspace{2cm} the estimated mean or difference in means depending on whether it was a one-sample test or a two-sample test.
 \item \texttt{null.value} \hspace{2cm} the specified hypothesized value of the mean or mean difference depending on whether it was a one-sample test or a two-sample test.
 \item \texttt{alternative} \hspace{2cm} a character string describing the alternative hypothesis.
 \item \texttt{method} \hspace{2cm} a character string indicating what type of t-test was performed.
 \item \texttt{data.name} \hspace{2cm} a character string giving the name(s) of the data.
 \item \texttt{v} \hspace{2cm} The variance or group-specific variances.
 \item \texttt{n} \hspace{2cm} The sample size, or group-specific sample size.
\end{itemize}
See Also
t.test

Examples

tmp <- t_test(extra ~ group, data = sleep)
tmp$n
tmp$v
tmp2 <- t_test(extra ~ group, data = sleep)
tmp2$n
tmp2$v
tmp <- t_test(extra ~ group, data = sleep, paired = TRUE)
tmp$n
tmp$v
tmp2 <- t_test(extra ~ group, data = sleep, paired = TRUE)
tmp2$n
tmp2$v
t._test(sesamesim$postnumb)
tmp <- t_test(sesamesim$prenumb)
tmp$n
tmp$v
tmp2 <- t_test(sesamesim$prenumb)
tmp2$n
tmp2$v
tmp <- t_test(sesamesim$prenumb, sesamesim$postnumb)
tmp$n
tmp$v
tmp2 <- t_test(sesamesim$prenumb, sesamesim$postnumb)
tmp2$n
tmp2$v
tmp <- t_test(sesamesim$prenumb, sesamesim$postnumb, paired = TRUE)
tmp$n
tmp$v
tmp2 <- t_test(sesamesim$prenumb, sesamesim$postnumb, paired = TRUE)
tmp2$n
tmp2$v
Index

* Statistics
 seBeta, 5
* datasets
 sesamesim, 7
* htest
 t_test, 8
bain, 2, 4
bain_sensitivity, 4
seBeta, 5
sesamesim, 7
t.test, 8, 9
t_test, 8