Package ‘bcaboot’

May 9, 2021

Title Bias Corrected Bootstrap Confidence Intervals
Version 0.2-3
VignetteBuilder knitr
Depends R (>= 3.5.0)
BugReports https://github.com/bnaras/bcaboot/issues
License GPL (>= 2)
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
Suggests glmnet, rmarkdown, knitr
Imports graphics, stats, utils
NeedsCompilation no
Author Bradley Efron [aut],
 Balasubramanian Narasimhan [aut, cre]
Maintainer Balasubramanian Narasimhan <naras@stat.stanford.edu>
Repository CRAN
Date/Publication 2021-05-09 05:10:19 UTC

R topics documented:

bcaboot .. 2
becjack .. 2
becjack2 .. 4
bcapar .. 6
bcaplot .. 8
diabetes ... 9
Automatic Construction of Bootstrap Confidence Intervals

Description

Bootstrap confidence intervals depend on three elements: (a) the cumulative distribution of the bootstrap replications, (b) the bias-correction, and (c) the acceleration number that measures the rate of change in the standard deviation of the estimate as the data changes. The first two of these depend only on the bootstrap distribution, and not how it is generated: parametrically or non-parametrically. Therefore, the only difference in a parametric bca analysis would lie in the nonparametric estimation of the acceleration, often a negligible error.

Nonparametric bias-corrected and accelerated bootstrap confidence limits

Description

This routine computes nonparametric confidence intervals for bootstrap estimates. For reproducibility, save or set the random number state before calling this routine.

Usage

bcajack(
 x,
 B,
 func,
 ...,
 m = nrow(x),
 mr = 5,
 K = 2,
 J = 10,
 alpha = c(0.025, 0.05, 0.1, 0.16),
 verbose = TRUE
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>an (n \times p) data matrix, rows are observed (p)-vectors, assumed to be independently sampled from target population. If (p) is 1 then (x) can be a vector.</td>
</tr>
<tr>
<td>B</td>
<td>number of bootstrap replications. It can also be a vector of (B) bootstrap replications of the estimated parameter of interest, computed separately.</td>
</tr>
<tr>
<td>func</td>
<td>function (\hat{\theta} = func(x)) computing estimate of the parameter of interest; (func(x)) should return a real value for any (n' \times p) matrix (x'), (n') not necessarily equal to (n),</td>
</tr>
</tbody>
</table>
additional arguments for func.

m an integer less than or equal to n; the routine collects the n rows of x into m
groups to speed up the jackknife calculations for estimating the acceleration
value a; typically m is 20 or 40 and does not have to exactly divide n. However,
warnings will be shown.

mr if m < n then mr repetitions of the randomly grouped jackknife calculations are
averaged.

K a non-negative integer. If K > 0, bcajack also returns estimates of internal stan-
dard error, that is, of the variability due to stopping at B bootstrap replications
rather than going on to infinity. These are obtained from a second type of jack-
knifing, taking an average of K separate jackknife estimates, each randomly splitting
the B bootstrap replications into J groups.

J the number of groups into which the bootstrap replications are split

alpha percentiles desired for the bca confidence limits. One only needs to provide
alpha values below 0.5; the upper limits are automatically computed

verbose logical for verbose progress messages

Details

Bootstrap confidence intervals depend on three elements:

- the cdf of the B bootstrap replications $t_i^*, i = 1 \ldots B$
- the bias-correction number $z_0 = \Phi(\sum_{i=1}^B I(t_i^* < t_0)/B)$ where $t_0 = f(x)$ is the original estimate
- the acceleration number a that measures the rate of change in σ_{t_0} as x, the data changes.

The first two of these depend only on the bootstrap distribution, and not how it is generated: para-
metrically or non-parametrically. Program bcajack can be used in a hybrid fashion in which the
vector tt of B bootstrap replications is first generated from a parametric model.

So, in the diabetes example below, we might first draw bootstrap samples $y^* \sim N(X\hat{\beta}, \hat{\sigma}^2 I)$ where
$\hat{\beta}$ and $\hat{\sigma}$ were obtained from lm(y~X); each y^* would then provide a bootstrap replication $tstar =$
rfun(cbind(X,ystar)). Then we could get bca intervals from bcajack(Xy, tt, rfun) with tt,
the vector of B tstar values. The only difference from a full parametric bca analysis would lie in
the nonparametric estimation of a, often a negligible error.

Value

a named list of several items

- **lims** : first column shows the estimated bca confidence limits at the requested alpha per-
centiles. These can be compared with the standard limits $\hat{\theta} + \sigma z_\alpha$, third column. The second
column jacksd gives the internal standard errors for the bca limits, quite small in the example.
Column 4, pct, gives the percentiles of the ordered B bootstrap replications corresponding to
the bca limits, eg the 897th largest replication equalling the .975 bca limit .557.

- **stats** : top line of stats shows 5 estimates: theta is $f(x)$, original point estimate of the parame-
ter of interest; sdboot is its bootstrap estimate of standard error; $z\theta$ is the bca bias correction
value, in this case quite negative; a is the acceleration, a component of the bca limits (nearly
zero here); sdjack is the jackknife estimate of standard error for theta. Bottom line gives the internal standard errors for the five quantities above. This is substantial for z0 above.

- **B.mean**: bootstrap sample size B, and the mean of the B bootstrap replications \(\hat{\theta}^* \)
- **ustats**: The bias-corrected estimator \(2 \times t0 - \text{mean}(tt) \), and an estimate sdu of its sampling error
- **seed**: The random number state for reproducibility

References

Efron B (1987). Better bootstrap confidence intervals. JASA 82 171-200

Examples

```r
data(diabetes, package = "bcaboot")
Xy <- cbind(diabetes$x, diabetes$y)
rfun <- function(Xy) {
y <- Xy[, 11]
X <- Xy[, 1:10]
summary(lm(y~X) )$adj.r.squared
}
set.seed(1234)
## n = 442 = 34 * 13
bcajack(x = Xy, B = 1000, func = rfun, m = 34, verbose = FALSE)
```

bcajack2

Nonparametric bias-corrected and accelerated bootstrap confidence limits

Description

This function is a version of bcajack that allows all the recomputations of the original statistic function \(f \) to be carried out separately. This is an advantage if \(f \) is time-consuming, in which case the B replications for the nonparametric bca calculations might need to be done on a distributed basis.

To use bcajack2 in this mode, we first compute a list Blist via Blist <-list(Y = Y, tt = tt, t0 = t0). Here tt is a vector of length B having i-th entry tt[i] <-func(x[Ii,],...), where x is the \(n \times p \) data matrix and Ii is a bootstrap vector of (observation) indices. Y is a B by \(n \) count matrix, whose i-th row is the counts corresponding to Ii. For example if \(n = 5 \) and \(Ii = (2, 5, 2, 1, 4) \), then \(Yi = (1, 2, 0, 1, 1) \). Having computed Blist, bcajack2 is invoked as bcajack2(Blist) without need to enter the function \(func \).
Usage

```r
caja2j2(x,
B,
func,
...
,
m = nrow(x),
mr,
pct = 0.333,
K = 2,
J = 12,
alpha = c(0.025, 0.05, 0.1, 0.16),
verbose = TRUE
)
```

Arguments

- **x**: an \(n \times p \) data matrix, rows are observed \(p \)-vectors, assumed to be independently sampled from target population. If \(p = 1 \) then \(x \) can be a vector.
- **B**: number of bootstrap replications. \(B \) can also be a vector of \(B \) bootstrap replications of the estimated parameter of interest, computed separately. If \(B \) is \(\text{Blist} \) as explained above, \(x \) is not needed.
- **func**: function \(\hat{\theta} = func(x) \) computing estimate of the parameter of interest; \(func(x) \) should return a real value for any \(n' \times p \) matrix \(x' \), \(n' \) not necessarily equal to \(n \)
- **...**: additional arguments for \(func \).
- **m**: an integer less than or equal to \(n \); the routine collects the \(n \) rows of \(x \) into \(m \) groups to speed up the jackknife calculations for estimating the acceleration value \(a \); typically \(m \) is 20 or 40 and does not have to exactly divide \(n \). However, warnings will be shown.
- **mr**: if \(m < n \) then \(mr \) repetitions of the randomly grouped jackknife calculations are averaged.
- **pct**: \(\text{bcajax2} \) uses those count vectors nearest \((1,1,...,1)\) to estimate the gradient of the statistic, "nearest" being defined as those count vectors in the smallest \(\text{pct} \) of all \(B \) of them. Default value for ‘\(\text{pct} \)’ is 1/3 (see appendix in Efron and Narasimhan for further details)
- **K**: a non-negative integer. If \(K > 0 \), \(\text{bcajax2} \) also returns estimates of internal standard error, that is, of the variability due to stopping at \(B \) bootstrap replications rather than going on to infinity. These are obtained from a second type of jackknifing, taking an average of \(K \) separate jackknife estimates, each randomly splitting the \(B \) bootstrap replications into \(J \) groups.
- **J**: the number of groups into which the bootstrap replications are split
- **alpha**: percentiles desired for the bca confidence limits. One only needs to provide \(\text{alpha} \) values below 0.5; the upper limits are automatically computed
- **verbose**: logical for verbose progress messages
Value

- **lims**: first column shows the estimated bca confidence limits at the requested alpha percentiles. These can be compared with the standard limits $\hat{\theta} + \hat{\sigma} z_{\alpha}$, third column. The second column jacksd gives the internal standard errors for the bca limits, quite small in the example. Column 4, pct, gives the percentiles of the ordered B bootstrap replications corresponding to the bca limits, eg the 897th largest replication equalling the .975 bca limit .557.

- **stats**: top line of stats shows 5 estimates: theta is $func(x)$, original point estimate of the parameter of interest; sdboot is its bootstrap estimate of standard error; z_0 is the bca bias correction value, in this case quite negative; a is the acceleration, a component of the bca limits (nearly zero here); sddjack is the jackknife estimate of standard error for theta. Bottom line gives the internal standard errors for the five quantities above. This is substantial for z_0 above.

- **B.mean**: bootstrap sample size B, and the mean of the B bootstrap replications $\hat{\theta}^*$

- **ustats**: The bias-corrected estimator $2 \times t_0 - \text{mean}(tt)$, and an estimate sdu of its sampling error

- **seed**: The random number state for reproducibility

Examples

data(diabetes, package = "bcaboot")
Xy <- cbind(diabetes$x, diabetes$y)
rfun <- function(Xy) {
y <- Xy[, 11]
X <- Xy[, 1:10]
summary(lm(y~X))$adj.r.squared
}
set.seed(1234)
bcajack2(x = Xy, B = 1000, func = rfun, m = 40, verbose = FALSE)

bcapar

Compute parametric bootstrap confidence intervals

Description

bcapar computes parametric bootstrap confidence intervals for a real-valued parameter theta in a p-parameter exponential family. It is described in Section 4 of the reference below.

Usage

bcapar(
 t0,
 tt,
 bb,
alpha = c(0.025, 0.05, 0.1, 0.16),
J = 10,
K = 6,
trun = 0.001,
pct = 0.333,
cd = 0,
func
)

Arguments

\(t_0 \)
Observed estimate of theta, usually by maximum likelihood.

\(tt \)
A vector of parametric bootstrap replications of theta of length \(B \), usually large, say \(B = 2000 \)

\(bb \)
A \(B \) by \(p \) matrix of natural sufficient vectors, where \(p \) is the dimension of the exponential family.

\(alpha \)
Percentiles desired for the bca confidence limits. One only needs to provide \(alpha \) values below 0.5; the upper limits are automatically computed

\(J, K \)
Parameters controlling the jackknife estimates of Monte Carlo error: \(J \) jackknife folds, with the jackknife standard errors averaged over \(K \) random divisions of \(bb \)

\(trun \)
Truncation parameter used in the calculation of the acceleration \(a \).

\(pct \)
Proportion of "nearby" \(b \) vectors used in the calculation of \(t_0 \), the gradient vector of theta.

\(cd \)
If \(cd \) is 1 the bca confidence density is also returned; see Section 11.6 in reference Efron and Hastie (2016) below

\(func \)
Function \(\hat{\theta} = func(b) \). If this is not missing then output includes \(abc \) estimates; see reference DiCiccio and Efron (1992) below

Value

a named list of several items:

- **lims**: Bca confidence limits (first column) and the standard limits (fourth column). Also the abc limits (fifth column) if \(func \) is provided. The second column, jacksd, are the jackknife estimates of Monte Carlo error; pct, the third column are the proportion of the replicates \(tt \) less than each bcalim value

- **stats**: Estimates and their jackknife Monte Carlo errors: \(\theta = \hat{\theta} \); sd, the bootstrap standard deviation for \(\hat{\theta} \); \(a \) the acceleration estimate; \(az \) another acceleration estimate that depends less on extreme values of \(tt \); \(z_0 \) the bias-correction estimate; \(A \) the big-A measure of raw acceleration; \(sdd \) delta method estimate for standard deviation of \(\hat{\theta} \); mean the average of \(tt \)

- **abcstats**: The abc estimates of \(a \) and \(z_0 \), returned if \(func \) was provided

- **ustats**: The bias-corrected estimator \(2 \times t_0 - \text{mean}(tt) \). ustats gives ustat, an estimate \(sdu \) of its sampling error, and jackknife estimates of monte carlo error for both ustat and sdu. Also given is \(B \), the number of bootstrap replications

- **seed**: The random number state for reproducibility
References

Efron B (1987). Better bootstrap confidence intervals. JASA 82, 171-200

Examples

data(diabetes, package = "bcaboot")
X <- diabetes$x
y <- scale(diabetes$y, center = TRUE, scale = FALSE)
lm.model <- lm(y ~ X - 1)
mu.hat <- lm.model$fitted.values
sigma.hat <- stats::sd(lm.model$residuals)
t0 <- summary(lm.model)$adj.r.squared
y.star <- sapply(mu.hat, rnorm, n = 1000, sd = sigma.hat)
tt <- apply(y.star, 1, function(y) summary(lm(y ~ X - 1))$adj.r.squared)
b.star <- y.star %*% X
set.seed(1234)
bcapar(t0 = t0, tt = tt, bb = b.star)

bcaplot

Plots of bca confidence limits

Description

bcaplot uses the output of bcajack, bcajack2, or bcapar to plot bca and standard confidence limits for the parameter of interest.

Usage

bcaplot(
 vl,
 main = " ",
 xlab = "coverage",
 ylab = "limits",
 alpha = c(0.025, 0.05, 0.1, 0.16),
 ylim,
 xlim,
 add = 0,
 sub = "black=bca, green=standard",
 sw = 1,
 ...
)
diabetes

Arguments

vl output of bcajack, bcajack2, or bcapar
main The main caption (can be empty)
xlab The x axis label (supplied if not specified)
ylab The y axis labels (supplied if not specified)
alpha Coverages are \(1 - 2\alpha\), e.g. alpha=c(.025,.05) plots intervals [.025,.975] and [.05,.95]. Default is alpha=c(.025,.05,.1,.16) giving coverages .95,.90,.80,.68
ylim y axis plot limits set automatically if not provided
xlim x axis plot limits set automatically if not provided
add add=1 adds a new plot of bca limits (in red) to an existing plot
sub subtitle (can be empty)
sw sw=1 draws light vertical dashed lines showing the bca intervals
 ... further args for plot

Details

confidence interval endpoints are plotted vertically versus two-sided coverages \(1 - 2\alpha\). Bca limits in black, Standard limits in green (dashed.). If vl$lims includes the column “jacksd” of jackknife internal standard deviations then these are indicated by vertical red bars centered at the bca limit points.

diabetes

Blood and other measurements in diabetics

Description

The diabetes data frame has 442 rows and 3 columns. These are the data used in the Efron et al "Least Angle Regression" paper.

Format

This data frame contains the following columns:

- \(x\) a matrix with 10 columns
- \(y\) a numeric vector
- \(x2\) a matrix with 64 columns

Details

The \(x\) matrix has been standardized to have unit L2 norm in each column and zero mean. The matrix \(x2\) consists of \(x\) plus certain interactions.

Source

References

Index

* datasets
 diabetes, 9

bcaboot, 2
bcajack, 2
bcajack2, 4
bcapar, 6
bcaplot, 8

diabetes, 9