Package ‘bcf’

January 18, 2022

Type Package

Title Causal Inference for a Binary Treatment and Continuous Outcome using Bayesian Causal Forests

Version 1.3.1

Date 2022-01-14

Author P. Richard Hahn, Jared S. Murray, and Carlos Carvalho

Maintainer Jared S. Murray <jared.murray@mccombs.utexas.edu>

License GPL-3

Depends Rcpp (>= 0.10.4)

LinkingTo Rcpp, RcppArmadillo

NeedsCompilation yes

RoxygenNote 6.0.1

Repository CRAN

Date/Publication 2022-01-18 17:12:45 UTC

R topics documented:

bcf ... 2

Index 5
Description

Fit Bayesian Causal Forests

Usage

```r
bcf(y, z, x_control, x_moderate = x_control, pihat, nburn, nsim, nthin = 1,
    update_interval = 100, ntree_control = 200, sd_control = 2 * sd(y),
    base_control = 0.95, power_control = 2, ntree_moderate = 50,
    sd_moderate = sd(y), base_moderate = 0.25, power_moderate = 3, nu = 3,
    lambda = NULL, sigq = 0.9, sighat = NULL, include_pi = "control",
    use_muscale = TRUE, use_tauscale = TRUE)
```

Arguments

- `y` Response variable
- `z` Treatment variable
- `x_control` Design matrix for the "prognostic" function mu(x)
- `x_moderate` Design matrix for the covariate-dependent treatment effects tau(x)
- `pihat` Length n estimates of
- `nburn` Number of burn-in MCMC iterations
- `nsim` Number of MCMC iterations to save after burn-in
- `nthin` Save every nthin’th MCMC iterate. The total number of MCMC iterations will be nsim*nthin + nburn.
- `update_interval` Print status every update_interval MCMC iterations
- `ntree_control` Number of trees in mu(x)
- `sd_control` SD(mu(x)) marginally at any covariate value (or its prior median if use_muscale=TRUE)
- `base_control` Base for tree prior on mu(x) trees (see details)
- `power_control` Power for the tree prior on mu(x) trees
- `ntree_moderate` Number of trees in tau(x)
- `sd_moderate` SD(tau(x)) marginally at any covariate value (or its prior median if use_tauscale=TRUE)
- `base_moderate` Base for tree prior on tau(x) trees (see details)
- `power_moderate` Power for the tree prior on tau(x) trees (see details)
- `nu` Degrees of freedom in the chisq prior on sigma^2
- `lambda` Scale parameter in the chisq prior on sigma^2
- `sigq` Calibration quantile for the chisq prior on sigma^2
- `sighat` Calibration estimate for the chisq prior on sigma^2
include_pi Takes values "control", "moderate", "both" or "none". Whether to include pihat in mu(x) ("control"), tau(x) ("moderate"), both or none. Values of "control" or "both" are HIGHLY recommended with observational data.

use_muscale Use a half-Cauchy hyperprior on the scale of mu.

use_tauscale Use a half-Normal prior on the scale of tau.

Details

Fits the Bayesian Causal Forest model (Hahn et. al. 2018): For a response variable y, binary treatment z, and covariates x,

\[y_i = \mu(x_i, \pi_i) + \tau(x_i, \pi_i)z_i + \epsilon_i \]

where \(\pi_i \) is an (optional) estimate of the propensity score \(\Pr(Z_i = 1 | X_i = x_i) \) and \(\epsilon_i \sim N(0, \sigma^2) \).

Some notes:

• x_control and x_moderate must be numeric matrices. See e.g. the makeModelMatrix function in the dbarts package for appropriately constructing a design matrix from a data.frame

• sd_control and sd_moderate are the prior SD(mu(x)) and SD(tau(x)) at a given value of x (respectively). If use_muscale = FALSE, then this is the parameter \(\sigma_\mu \) from the original BART paper, where the leaf parameters have prior distribution \(N(0, \sigma_\mu/m) \), where m is the number of trees. If use_muscale=TRUE then sd_control is the prior median of a half Cauchy prior for SD(mu(x)). If use_tauscale = TRUE, then sd_moderate is the prior median of a half Normal prior for SD(tau(x)).

• By default the prior on \(\sigma^2 \) is calibrated as in Chipman, George and McCulloch (2008).

Value

A list with elements

- tau n xim by n matrix of posterior samples of individual treatment effects
- mu n xim by n matrix of posterior samples of individual treatment effects
- sigma Length n xim vector of posterior samples of sigma

References

Hahn, Murray, and Carvalho(2017). Bayesian regression tree models for causal inference: regularization, confounding, and heterogeneous effects. https://arxiv.org/abs/1706.09523. (Call citation("bcf") from the command line for citation information in Bibtex format.)

Examples

```r
# data generating process
p = 3 #two control variables and one moderator
n = 250
#
set.seed(1)
```
x = matrix(rnorm(n*p), nrow=n)

create targeted selection
q = -(1*(x[,1]>x[,2])) + 1*(x[,1]<x[,2])

generate treatment variable
pi = pnorm(q)
z = rbinom(n,1,pi)

tau is the true (homogeneous) treatment effect
tau = (0.5*(x[,3] > -3/4) + 0.25*(x[,3] > 0) + 0.25*(x[,3]>3/4))

generate the response using q, tau and z
mu = (q + tau*z)

set the noise level relative to the expected mean function of Y
sigma = diff(range(q + tau*pi))/8

draw the response variable with additive error
y = mu + sigma*rnorm(n)

If you didn't know pi, you would estimate it here
pihat = pnorm(q)

bcf_fit = bcf(y, z, x, x, pihat, nburn=2000, nsim=2000)

Get posterior of treatment effects
tau_post = bcf_fit$tau
tauhat = colMeans(tau_post)
plot(tau, tauhat); abline(0,1)
Index

bcf, 2