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AMS Alpha Shape-Parameter Given Location-Parameters, Mean, Variance,
Skewness, Kurtosis and Beta Shape-Parameter of a Four-Parameter
Beta PDD.
Description

Calculates the Beta value required to produce a Beta probability density distribution with defined

moments and parameters. Be advised that not all combinations of moments and parameters can be

satisfied (e.g., specifying mean, variance, skewness and kurtosis uniquely determines both location-

parameters, meaning that the value of the lower-location parameter will take on which ever value it

must, and cannot be specified).

Usage

AMS (

mean = NULL,

va

riance = NULL,

skewness = NULL,



AMS

kurtosis

1 =o0,
u-=1,
beta =

sd = NULL

Arguments

mean

variance

skewness

kurtosis

beta

sd

Value

NULL,

The mean (first raw moment) of the target Standard Beta probability density
distribution.

The variance (second central moment) of the target Standard Beta probability
density distribution.

The skewness (third standardized moment) of the target Beta probability density
distribution.

The kurtosis (fourth standardized moment) of the target Beta probability density
distribution.

The lower-bound of the Beta distribution. Default is O (i.e., the lower-bound of
the Standard, two-parameter Beta distribution).

The upper-bound of the Beta distribution. Default is 1 (i.e., the upper-bound of
the Standard, two-parameter Beta distribution).

Optional specification of the Beta shape-parameter of the target Beta distribu-
tion. Finds then the Alpha parameter necessary to produce a distribution with
the specified mean, given specified Beta, 1, and u parameters.

Optional alternative to specifying var. The standard deviation of the target Stan-
dard Beta probability density distribution.

A numeric value representing the required value for the Alpha shape-parameter in order to produce
a Beta probability density distribution with the target mean and variance, given specified lower- and
upper bounds of the Beta distribution.

Examples

# Generate some fictional data. Say, 100 individuals take a test with a
# maximum score of 100 and a minimum score of @, rescaled to proportion

# of maximum.
set.seed(1234)

testdata <- rbinom(100, 100, rBeta.4P(100, .25, .75, 5, 3)) / 100
hist(testdata, xlim = c(0, 1))

# To find the alpha shape-parameter of a Standard (two-parameter) Beta
# distribution with the same mean and variance as the observed-score
# distribution using AMS():

AMS(mean(testdata), var(testdata))
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AUC Area Under the ROC Curve.

Description
Given a vector of false-positive rates and a vector of true-positive rates, calculate the area under the
Receiver Operator Characteristic (ROC) curve.

Usage

AUC(FPR, TPR)

Arguments
FPR Vector of False-Positive Rates.
TPR Vector of True-Positive Rates.
Value

A value representing the area under the ROC curve.

Note

Script originally retrieved and modified from https://blog.revolutionanalytics.com/2016/11/calculating-
auc.html.

Examples

# Generate some fictional data. Say, 100 individuals take a test with a
# maximum score of 100 and a minimum score of 0.

set.seed(1234)

testdata <- rbinom(100, 100, rBeta.4P(100, .25, .75, 5, 3))
hist(testdata, xlim = c(@, 100))

Suppose the cutoff value for attaining a pass is 50 items correct, and
that the reliability of this test was estimated to ©.7. To calculate the
necessary (x, y) coordinates to compute the area under the curve statistic
one can use the LL.ROC() function with the argument

raw.out = TRUE.

coords <- LL.ROC(x = testdata, reliability = .7, truecut = 50, min = 0,

max = 100, raw.out = TRUE)

* % o

# To calculate and retrieve the Area Under the Curve (AUC) with the AUC()
# function, feed it the raw coordinates calculated above.
AUC(coords[, "FPR"], coords[, "TPR"])
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Beta.2p.fit Method of Moment Estimates of Shape-Parameters of the Two-
Parameter (Standard) Beta Distribution.

Description

An implementation of the method of moments estimation of two-parameter beta distribution param-
eters. Given a vector of values, calculates the shape parameters required to produce a two-parameter
beta distribution with the same mean and variance (i.e., the first two moments) as the observed-score
distribution.

Usage

Beta.2p.fit(scores, mean = NULL, variance = NULL, 1 =@, u = 1)

Arguments
scores A vector of values to which the two-parameter beta distribution is to be fitted.
The values ought to fall within the [0, 1] interval.
mean The mean of the target Beta distribution. Alternative to feeding the function raw
scores.
variance The variance of the target Beta distribution. Alternative to feeding the function
raw scores.
1 Optional specification of a lower-bound parameter of the Beta distribution. De-
faultis O (i.e., the lower-bound of the Standard two-parameter Beta distribution).
u Optional specification of an upper-bound parameter of the Beta distribution. De-
faultis 1 (i.e., the lower-bound of the Standard two-parameter Beta distribution).
Value

A list of parameter-values required to produce a Standard two-parameter beta distribution with the
same first two moments as the observed distribution.

Examples

# Generate some fictional data. Say, 100 individuals take a test with a
# maximum score of 100 and a minimum score of 0.

set.seed(1234)

testdata <- rbinom(100, 100, rBeta.4P(100, .25, .75, 5, 3)) / 100
hist(testdata, xlim = c(@, 1), freq = FALSE)

# To fit and retrieve the parameters for a two-parameter beta distribution
# to the observed-score distribution using Beta.2p.fit():

(params.2p <- Beta.2p.fit(testdata))

curve(dbeta(x, params.2p$alpha, params.2p$beta), add = TRUE)



6 Beta.4p.fit

Beta.4p.fit Method of Moment Estimates of Shape- and Location Parameters of
the Four-Parameter Beta Distribution.

Description

An implementation of the method of moments estimation of four-parameter beta distribution pa-
rameters presented by Hanson (1991). Given a vector of values, calculates the shape- and location
parameters required to produce a four-parameter beta distribution with the same mean, variance,
skewness and kurtosis (i.e., the first four moments) as the observed-score distribution.

Usage
Beta.4p.fit(
scores,
mean = NULL,
variance = NULL,
skewness = NULL,
kurtosis = NULL
)
Arguments
scores A vector of values to which the four-parameter beta distribution is to be fitted.
mean If scores are not supplied: specification of the mean for the target four-parameter
Beta distribution.
variance If scores are not supplied: specification of the variance for the target four-
parameter Beta distribution.
skewness If scores are not supplied: specification of the skewness for the target four-
parameter Beta distribution.
kurtosis If scores are not supplied: specification of the kurtosis for the target four-parameter
Beta distribution.
Value

A list of parameter-values required to produce a four-parameter beta distribution with the same first
four moments as the observed distribution.

References

Hanson, Bradley A. (1991). Method of Moments Estimates for the Four-Parameter Beta Compound
Binomial Model and the Calculation of Classification Consistency Indexes.American College Test-
ing Research Report Series.

Lord, Frederic M. (1965). A Strong True-Score Theory, With Applications. Psychometrika, 30(3).
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Examples

# Generate some fictional data. Say, 100 individuals take a test with a
# maximum score of 100 and a minimum score of 0.

set.seed(1234)

testdata <- rbinom(100, 100, rBeta.4P(100, .25, .75, 5, 3))
hist(testdata, xlim = c(@, 100), freq = FALSE)

# To fit and retrieve the parameters for a four-parameter beta distribution

# to the observed-score distribution using Beta.4p.fit():

(params.4p <- Beta.4p.fit(testdata))

curve(dBeta.4P(x, params.4p$l, params.4p$u, params.4p$alpha, params.4p$beta), add = TRUE)

Beta.gfx.poly.cdf Coordinate Generation for Marking an Area Under the Curve for the
Beta Cumulative Probability Density Distribution.

Description

Plotting tool, producing a two-column matrix with values of y corresponding to locations on x.
Useful for shading areas under the curve when tracing the line for the Standard Beta cumulative
probability function.

Usage

Beta.gfx.poly.cdf(from, to, by, alpha, beta, 1 =0, u=1)

Arguments
from The point of the x-axis from where to start producing y-density values.
to The point of the x-axis to where y-density values are to be produced.
by The resolution (or spacing) at which to produce y-density values.
alpha The Alpha shape-parameter value for the Standard Beta cumulative probability
distribution.
beta The Beta shape-parameter for the Standard Beta cumulative probability distri-
bution.
1 The lower-bound location parameter of the Beta distribution.
u The upper-bound location parameter of the Beta distribution.
Value

A two-column matrix with cumulative probability-values of y to plot against corresponding location
values of x.
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Examples

# To box in an area under a four-parameter Beta cumulative distribution with
# location parameters 1 = .25 and u = 75, and shape parameters

# alpha = 5 and beta = 3, from .4 to .6:

plot(NULL, x1lim = c(@, 1), ylim = c(0, 1))

coords <- Beta.gfx.poly.cdf(from = .4, to = .6, by = .001, alpha =5,

beta = 3, 1 = .25, u = .75)

polygon(coords)
Beta.gfx.poly.pdf Coordinate Generation for Marking an Area Under the Curve for the
Beta Probability Density Distribution.
Description

Plotting tool, producing a two-column matrix with values of y corresponding to locations on x.
Useful for shading areas under the curve when tracing the line for the Standard Beta probability
density function.

Usage
Beta.gfx.poly.pdf(from, to, by, alpha, beta, 1 =0, u=1)

Arguments
from The point of the x-axis from where to start producing y-density values.
to The point of the x-axis to where y-density values are to be produced.
by The resolution (or spacing) at which to produce y-density values.
alpha The Alpha shape-parameter value for the Standard Beta probability density dis-
tribution.
beta The Beta shape-parameter for the Standard Beta probability density distribution.
1 The lower-bound location parameter of the Beta distribution.
u The upper-bound location parameter of the Beta distribution.
Value

A two-column matrix with density-values of y to plot against corresponding location values of x.

Examples

# To box in an area under a four-parameter beta distribution with location
# parameters 1 = .25 and u = .75, and shape parameters

# alpha = 5 and beta = 3, from .4 to .6:

plot(NULL, xlim = c(@, 1), ylim = c(0, 7))

coords <- Beta.gfx.poly.pdf(from = .4, to = .6, by = .001, alpha = 5,

beta = 3, 1 = .25, u = .75)

polygon(coords)
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Beta.gfx.poly.qdf Coordinate Generation for Marking an Area Under the Curve for the
Beta Quantile Density Distribution.

Description

Plotting tool, producing a two-column matrix with values of y corresponding to locations on x.
Useful for shading areas under the curve when tracing the line for the Standard Beta probability
quantile function.

Usage

Beta.gfx.poly.qdf(from, to, by, alpha, beta, 1 =0, u=1)

Arguments
from The point of the x-axis from where to start producing y-quantile values.
to The point of the x-axis to where y-quantile values are to be produced.
by The resolution (or spacing) at which to produce y-density values.
alpha The Alpha shape-parameter value for the Standard Beta probability distribution.
beta The Beta shape-parameter for the Standard Beta probability distribution.
1 The lower-bound location parameter of the Beta distribution.
u The upper-bound location parameter of the Beta distribution.
Value

A two-column matrix with quantile-values of y to plot against corresponding location values of x.

Examples

# To box in an area under a four-parameter beta quantile distribution with
# location parameters 1 = .25 and u = 75, and shape parameters

# alpha = 5 and beta = 3, from .4 to .6:

plot(NULL, x1lim = c(@, 1), ylim = c(@, 1))

coords <- Beta.gfx.poly.qdf(from = .4, to = .6, by = .001, alpha = 5,

beta = 3, 1 = .25, u = .75)

polygon(coords)



10 Beta.tp.fit

Beta.tp.fit Estimate Beta true-score distribution based on observed-score raw-
moments and the effective test length.

Description

Estimator for the Beta true-score distribution shape-parameters from the observed-score distribu-
tion and Livingston and Lewis’ effective test length. Returns a list with entries representing the
lower- and upper shape parameters (1 and u), and the shape parameters (alpha and beta) of the
four-parameters beta distribution.

Usage

Beta.tp.fit(
X,
min,
max,
etl,
reliability = NULL,
true.model = "4P",
failsafe = FALSE,

1=o0,
u-=1,
alpha = NA,
beta = NA,
output = "parameters”
)
Arguments
X Vector of observed-scores.
min The minimum possible score to attain on the test.
max The maximum possible score to attain on the test.
etl The value of Livingston and Lewis’ effective test length. See 7ETL().
reliability Optional specification of the test-score reliability coefficient. If specified, over-
rides the input of the etl argument.
true.model The type of Beta distribution which is to be fit to the moments of the true-
score distribution. Options are "4P" and "2P", where "4P" refers to the four-
parameter (with the same mean, variance, skewness, and kurtosis) and "2P" the
two-parameter solution (with the same mean and variance).
failsafe Logical. Whether to revert to a failsafe two-parameter solution should the four-
parameter solution contain invalid parameter estimates.
1 If failsafe = TRUE or true.model = "2P": The lower-bound of the Beta distri-

bution. Default is O (i.e., the lower-bound of the Standard, two-parameter Beta
distribution).
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u If failsafe = TRUE or true.model = "2P": The upper-bound of the Beta distri-
bution. Default is 1 (i.e., the upper-bound of the Standard, two-parameter Beta
distribution).

alpha If failsafe = TRUE or true.model = "2P": The Alpha shape-parameter of the

Beta distribution. Default is NA (i.e., estimate).

beta If failsafe = TRUE or true.model = "2P": The Beta shape-parameter of the
Beta distribution. Default is NA (i.e., estimate).

output Option to specify true-score distribution moments as output if the value of the
output argument does not equal "parameters”.

Value

A list with the parameter values of a four-parameter Beta distribution. "1" is the lower location-
parameter, "u" the upper location-parameter, "alpha" the first shape-parameter, and "beta" the sec-

ond shape-parameter.

Note

This estimator is based on the S-Plus code provided by Rogosa and Finkelman (2004). It includes
an option for implementing a failsafe should the four-parameter solution be invalid (e.g., 1 <0 or u
> 1, alpha < 1 or beta < 1).

References

Hanson, B. A. (1991). Method of Moments Estimates for the Four-Parameter Beta Compound Bi-
nomial Model and the Calculation of Classification Consistency Indexes. American College Testing
Research Report Series. Retrieved from https://files.eric.ed.gov/fulltext/ED344945 .pdf

Lord, F. M. (1965). A strong true-score theory, with applications. Psychometrika. 30(3). pp.
239-270. doi: 10.1007/BF02289490

Rogosa, D. & Finkelman, M. (2004). How Accurate Are the STAR Scores for Individual Students?
— An Interpretive Guide. Retrieved from http://statweb.stanford.edu/~rag/accguide/guide04.pdf

Examples

# Generate some fictional data. Say 1000 individuals take a 100-item test
# where all items are equally difficult, and the true-score distribution
# is a four-parameter Beta distribution with location parameters 1 = .25,
# u = .75, alpha = 5, and beta = 3:

set.seed(12)

testdata <- rbinom(1000, 100, rBeta.4P(1000, .25, .75, 5, 3))

# Since this test contains items which are all equally difficult, the true
# effective test length (etl) is the actual test length. I.e., etl = 100.
# To estimate the four-parameter Beta distribution parameters underlying
# the draws from the binomial distribution:

Beta.tp.fit(testdata, @, 100, 100)

# Imagine a case where the fitting procedure produces an impermissible
# estimate (e.g., 1 <@ or u>1).
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set.seed(1234)
testdata <- rbinom(1000, 50, rBeta.4P(1000, .25, .75, 5, 3))
Beta.tp.fit(testdata, @, 50, 50)

# This example produced an l-value estimate less than @. One way of
# dealing with such an occurance is to revert to a two-parameter

# model, specifying the 1 and u parameters and estimating the

# alpha and beta parameters necessary to produce a Beta distribution
# with the same mean and variance as the observed-score distribution.

# Suppose you have good theoretical reasons to fix the 1 parameter at a

# value of 0.25 (e.g., the test is composed of multiple-choice questions

# with four response-options, resulting in a 25% chance of guessing the

# correct answer). The l-parameter could be specified to this theoretically
# justified value, and the u-parameter could be specified to be equal to the
# estimate above (u = 0.7256552) as such:

Beta.tp.fit(testdata, @, 50, 50, true.model = "2P", 1 = 0.25, u = 0.7256552)

betamoments Compute Moments of Two-to-Four Parameter Beta Probability Den-
sity Distributions.

Description

Computes Raw, Central, or Standardized moment properties of defined Standard Beta probability
density distributions.

Usage
betamoments(
alpha,
beta,
1=o0,
u=1,
types = c("raw”, "central”, "standardized"),
orders = 4
)
Arguments
alpha The Alpha shape parameter of the PDD.
beta The Beta shape parameter of the PDD.
1 The first (lower) location parameter of a four-parameter distribution.
u The second (upper) location parameter of a four-parameter distribution.
types A character vector determining which moment-types are to be calculated. Per-

missible values are "raw", "central", and "standardized".

orders The number of moment-orders to be calculated for each of the moment-types.
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Value

A list of moment types, each a list of moment orders.

References

Hanson, B. A (1991). Method of Moments Estimates for the Four-Parameter Beta Compound Bino-
mial Model and the Calculation of Classification Consistency Indexes. American College Testing
Research Report Series.

Examples

# Assume some variable follows a four-parameter beta distribution with
# location parameters 1 = 0.25 and u = .75, and shape

# parameters a = 5 and b = 3. To compute the first four

# raw, central, and standardized moments of this distrubution using

# betamoments():

betamoments(a =5, b =3, 1 = .25, u = .75,

types = c("raw”, "central”, "standardized"), orders = 4)
BMS Beta Shape-Parameter Given Location-Parameters, Mean, Variance,
Skewness, Kurtosis and Alpha Shape-Parameter of a Four-Parameter
Beta PDD.
Description

Calculates the Beta value required to produce a Beta probability density distribution with defined
moments and parameters. Be advised that not all combinations of moments and parameters can be
satisfied (e.g., specifying mean, variance, skewness and kurtosis uniquely determines both location-
parameters, meaning that the value of the lower-location parameter will take on which ever value it
must, and cannot be specified).

Usage
BMS (

mean = NULL,
variance = NULL,
skewness = NULL,
kurtosis = NULL,
1=0,
u=1,
alpha = NULL,
sd = NULL
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Arguments
mean The mean (first raw moment) of the target Standard Beta probability density
distribution.
variance The variance (second central moment) of the target Standard Beta probability
density distribution.
skewness The skewness (third standardized moment) of the target Beta probability density
distribution.
kurtosis The kurtosis (fourth standardized moment) of the target Beta probability density
distribution.
1 The lower-bound of the Beta distribution. Default is O (i.e., the lower-bound of
the Standard, two-parameter Beta distribution).
u The upper-bound of the Beta distribution. Default is 1 (i.e., the upper-bound of
the Standard, two-parameter Beta distribution).
alpha Optional specification of the Alpha shape-parameter of the target Beta distribu-
tion. Finds then the Beta parameter necessary to produce a distribution with the
specified mean, given specified Alpha, 1, and u parameters.
sd Optional alternative to specifying var. The standard deviation of the target Stan-
dard Beta probability density distribution.
Value

A numeric value representing the required value for the Beta shape-parameter in order to produce
a Standard Beta probability density distribution with the target mean and variance, given specified
lower- and upper bounds of the Beta distribution.

Examples

# Generate some fictional data. Say, 100 individuals take a test with a
# maximum score of 100 and a minimum score of @, rescaled to proportion
# of maximum.

set.seed(1234)

testdata <- rbinom(100, 100, rBeta.4P(100, .25, .75, 5, 3)) / 100
hist(testdata, xlim = c(@, 1))

# To find the beta shape-parameter of a Standard (two-parameter) Beta
# distribution with the same mean and variance as the observed-score
# distribution using BMS():

BMS(mean(testdata), var(testdata))

# To find the beta shape-parameter of a four-parameter Beta

# distribution with specified lower- and upper-bounds of 1 = 0.25 and
# u = 0.75 using BMS:

BMS(mean(testdata), var(testdata), .25, .75)
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caStats Classification Accuracy Statistics.

Description
Provides a set of statistics often used for conveying information regarding the certainty of classifi-
cations based on tests.

Usage

caStats(tp, tn, fp, fn)

Arguments
tp The frequency or rate of true-positive classifications.
tn The frequency or rate of true-negative classifications.
fp The frequency or rate of false-positive classifications.
fn The frequency or rate of false-negative classifications.
Value

A list of diagnostic performance statistics based on true/false positive/negative statistics. Specifi-
cally, the sensitivity, specificity, positive likelihood ratio (LR.pos), negative likelihood ratio (LR.neg),
positive predictive value (PPV), negative predictive value (NPV), Youden’s J. (Youden.J), and Ac-
curacy.

References

Glas et al. (2003). The Diagnostic Odds Ratio: A Single Indicator of Test Performance, Journal of
Clinical Epidemiology, 1129-1135, 56(11). doi: 10.1016/S0895-4356(03)00177-X

Examples

# Generate some fictional data. Say, 100 individuals take a test with a
# maximum score of 100 and a minimum score of 0.

set.seed(1234)

testdata <- rbinom(100, 100, rBeta.4P(100, .25, .75, 5, 3))
hist(testdata, xlim = c(@, 100))

# Suppose the cutoff value for attaining a pass is 50 items correct, and

# that the reliability of this test was estimated to ©.7. First, compute the
# estimated confusion matrix using LL.CA(Q):

cmat <- LL.CA(x = testdata, reliability = .7, cut = 50, min = @,

max = 100)$confusionmatrix

# To estimate and retrieve diagnostic performance statistics using caStats(),
# feed it the appropriate entries of the confusion matrix.

caStats(tp = cmat["True”, "Fail"], tn = cmat["True", "Pass"],

fp = cmat["False”, "Fail”], fn = cmat["False”, "Pass"])



16 cba

cba Calculate Cronbach’s Alpha from supplied variables.

Description

Calculates Cronbach’s Alpha, a very commonly used index for assessing the reliability / internal
consistency of a sum-score. Often interpreted as the mean correlation across all possible split-half
alternate forms of the test.

Usage
cba(x)
Arguments
X A data-frame or matrix of numerical values where rows are across-items within-
respondent observation vectors, and columns are within-item across-respondents
observation vectors.
Value

Cronbach’s Alpha for the sum-score of supplied variables.

Note

Missing values are treated by passing na.rm = TRUE to the var function call.

Be aware that this function does not issue a warning if there are negative correlations between
variables in the supplied data-set.

References

Cronbach, L.J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika 16,
297-334. doi: 10.1007/BF02310555

Examples

# Generate some fictional data. Say 100 students take a 50-item long test
# where all items are equally difficult.

set.seed(1234)

p.success <- rBeta.4P(100, .25, .75, 5, 3)

for (i in 1:50) {

if (1 ==1){

rawdata <- matrix(nrow = 100, ncol = 50)
}
rawdatal, i] <- rbinom(100, 1, p.success)

3
# To calculate Cronbach's Alpha for this test:
cba(rawdata)
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ccStats Classification Consistency Statistics.

Description
Provides a set of statistics often used for conveying information regarding the consistency of clas-
sifications based on tests.

Usage

ccStats(ii, ij, ji, jj)

Arguments
ii The frequency or rate of consistent classifications into category "i".
ij The frequency or rate of inconsistent classifications into categories "i" and "j".
ji The frequency or rate of inconsistent classifications into categories "j" and "i".
jj The frequency or rate of consistent classifications into category "j".

Value

A list of classification consistency statistics. Specifically, the coefficient of consistent classification
(p), the coefficient of consistent classification by chance (p_c), and Cohen’s Kappa coefficient.

References

Hanson, Bradley A. (1991). Method of Moments Estimates for the Four-Parameter Beta Compound
Binomial Model and the Calculation of Classification Consistency Indexes. American College Test-
ing.

Examples

# Generate some fictional data. Say, 100 individuals take a test with a
# maximum score of 100 and a minimum score of 0.

set.seed(1234)

testdata <- rbinom(100, 100, rBeta.4P(100, .25, .75, 5, 3))
hist(testdata, xlim = c(0@, 100))

# Suppose the cutoff value for attaining a pass is 50 items correct, and

# that the reliability of this test was estimated to ©.7. First, compute the
# estimated consistency matrix using LL.CA():

cmat <- LL.CA(x = testdata, reliability = .7, cut = 50, min = 0,

max = 10@)$consistencymatrix

# To estimate and retrieve consistency statistics using ccStats(),
# feed it the appropriate entries of the consistency matrix.
ccStats(ii = cmat["i", "i"], ij = cmat["i", "j"1,

ji = cmatl”j", "i"]1, jj = cmat["j", "j"1)
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dBeta. 4P Probability Density under the Four-Parameter Beta PDD.

Description

Gives the density at desired values of x under the Four-Parameter Beta PDD.

Usage

dBeta.4P(x, 1, u, alpha, beta)

Arguments
X Value of x.
The first (lower) location parameter.
u The second (upper) location parameter.
alpha The first shape parameter.
beta The second shape parameter.
Value

The value for the probability density at specified values of x.

Examples

# Assume some variable follows a four-parameter beta distribution with
# location parameters 1 = 0.25 and u = .75, and shape

# parameters alpha = 5 and beta = 3. To compute the

# probability density at a specific point of the distribution (e.g., .5)
# using dBeta.4P():

dBeta.4P(x = .5, 1 = .25, u = .75, alpha = 5, beta = 3)

dBeta.pBeta An implementation of the Beta-density Compound Cumulative-Beta
Distribution.

Description

The Beta Compound Beta distribution: The product of the four-parameter Beta probability density
function and the beta cumulative probability function. Used in the Livingston and Lewis approach
to classification accuracy and consistency, the output can be interpreted as the population density of
passing scores produced at "x" (a value of true-score).

Usage

dBeta.pBeta(x, 1, u, alpha, beta, n, c, lower.tail = FALSE)
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Arguments
X x-axis input for which p (proportion or probability) is to be computed.
1 The lower-bound of the four-parameter Beta distribution.
u The upper-bound of the four-parameter Beta distribution.
alpha The alpha shape-parameter of the Beta density distribution.
beta The beta shape-parameter of the Beta density distribution.
n The number of trials for the Beta cumulative probability distribution.
c The "true-cut" (proportion) of on the Beta cumulative probability distribution.
lower. tail Logical. Whether to compute the lower or upper tail of the Beta cumulative
probability distribution. Default is FALSE (i.e., upper tail).
References

Hanson, Bradley A. (1991). Method of Moments Estimates for the Four-Parameter Beta Compound
Binomial Model and the Calculation of Classification Consistency Indexes.American College Test-
ing Research Report Series.

Livingston, Samuel A. and Lewis, Charles. (1995). Estimating the Consistency and Accuracy of
Classifications Based on Test Scores. Journal of Educational Measurement, 32(2).

Lord, Frederic M. (1965). A Strong True-Score Theory, With Applications. Psychometrika, 30(3).

Examples

# Given a four-parameter Beta distribution with parameters 1 = 0.25, u = 0.75,

# alpha = 5, and beta = 3, and a Beta error distribution with number of

# trials (n) = 10 and a cutoff-point (c) at 50% correct (i.e., proportion correct
# of 0.5), the population density of passing scores produced at true-score

# (x) = 0.5 can be calculated as:

dBeta.pBeta(x = 0.5, 1 = 0.25, u=0.75, a=5, b=3, n=10, c = 0.5)

# Conversely, the density of failing scores produced at x can be calculated

# by passing the additional argument "lower.tail = TRUE"” to the function.

# That is:

dBeta.pBeta(x = 0.5, 1 =0.25, u=0.75, a=5, b=3, n=10, c = 0.5, lower.tail = TRUE)

# By integration, the population proportion of (e.g.) passing scores in some

# region of the true-score distribution (e.g. between 0.25 and ©.5) can be

# calculated as:

integrate(function(x) { dBeta.pBeta(x, 0.25, .75, 5, 3, 10, 0.5) }, lower = @.25, upper =0.5)

dBeta.pBinom An implementation of the Beta-density Compound Cumulative-
Binomial Distribution.
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Description

The Beta Compound Binomial distribution: The product of the four-parameter Beta probability
density function and the binomial cumulative probability mass function. Used in the Livingston
and Lewis approach to classification accuracy and consistency, the output can be interpreted as the
population density of passing scores produced at "x" (a value of true-score).

Usage

dBeta.pBinom(x, 1, u, alpha, beta, n, c, lower.tail = FALSE)

Arguments
X x-axis input for which p (proportion or probability) is to be computed.
The lower-bound of the four-parameter Beta distribution.
u The upper-bound of the four-parameter Beta distribution.
alpha The alpha shape-parameter of the Beta distribution.
beta The beta shape-parameter of the Beta distribution.
n The number of trials for the Binomial distribution.
c The "true-cut" (proportion) of on the Binomial distribution.
lower.tail Logical. Whether to compute the lower or upper tail of the Binomial distribu-
tion. Default is FALSE (i.e., upper tail).
References

Hanson, Bradley A. (1991). Method of Moments Estimates for the Four-Parameter Beta Compound
Binomial Model and the Calculation of Classification Consistency Indexes.American College Test-
ing Research Report Series.

Livingston, Samuel A. and Lewis, Charles. (1995). Estimating the Consistency and Accuracy of
Classifications Based on Test Scores. Journal of Educational Measurement, 32(2).

Lord, Frederic M. (1965). A Strong True-Score Theory, With Applications. Psychometrika, 30(3).

Examples

# Given a four-parameter Beta distribution with parameters 1 = 0.25, u = 0.75,

# alpha = 5, and beta = 3, and a Binomial error distribution with number of

# trials (n) = 10 and a cutoff-point (c) at 50% correct (i.e., proportion correct
# of 0.5), the population density of passing scores produced at true-score

# (x) = @ can be calculated as:

dBeta.pBinom(x = 0.5, 1 = 0.25, u=0.75, a=5, b=3, n=10, c = 0.5)

# Conversely, the density of failing scores produced at x can be calculated

# by passing the additional argument "lower.tail = TRUE" to the function.

# That is:

dBeta.pBinom(x = 0.5, 1 =0.25, u=0.75, a=5, b=3, n=10, c = 0.5, lower.tail = TRUE)

#By integration, the population proportion of (e.g.) passing scores in some
#region of the true-score distribution (e.g. between ©.25 and 0.5) can be
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#calculated as:
integrate(function(x) { dBeta.pBinom(x, ©.25, .75, 5, 3, 10, 0.5) }, lower = @.25, upper = 0.5)

dBetaMs Density Under a Specific Point of the Standard Beta PDD with Specific
Mean and Variance or Standard Deviation.

Description

Calculates the density under specific points of the Standard Beta probability density distribution
with defined mean and variance or standard deviation.

Usage

dBetaMS(x, mean, variance = NULL, sd = NULL)

Arguments
X A specific point on the x-axis of the Standard Beta PDD.
mean The mean of the target Standard Beta probability density distribution.
variance The variance of the target Standard Beta probability density distribution.
sd The standard deviation of the target Standard Beta probability density distribu-
tion.
Value

A numeric value representing the required value for the Beta Shape-parameter in order to produce
a Standard Beta probability density distribution with the target mean and variance.

Examples

# To compute the density at a specific point (e.g., .5) along the Standard
# (two-parameter) PDD with mean of .6 and variance of .04:
dBetaMS(x = .5, mean =.6, variance = .04)
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ETL Livingston and Lewis’ "Effective Test Length".

Description

According to Livingston and Lewis (1995), "The effective test length corresponding to a test score is
the number of discrete, dichotomously scored, locally independent, equally difficult items required
to produce a total score of the same reliability."

Usage

ETL(mean, variance, 1 = @, u = 1, reliability)

Arguments
mean The mean of the observed-score distribution.
variance The variance of the observed-score distribution.
1 The lower-bound of the observed-score distribution. Default is 0 (assuming ob-
served scores represent proportions).
u The upper-bound of the observed-score distribution. Default is 1 (assuming
observed scores represent proportions).
reliability The reliability of the observed scores (proportion of observed-score distribution
variance shared with true-score distribution).
Value

An estimate of the effective length of a test, given the stability of the observations it produces.

References

Livingston, Samuel A. and Lewis, Charles. (1995). Estimating the Consistency and Accuracy of
Classifications Based on Test Scores. Journal of Educational Measurement, 32(2).

Examples

# Generate some fictional data. Say, 100 individuals take a test with a
# maximum score of 100 and a minimum score of 0.

set.seed(1234)

testdata <- rbinom(100, 100, rBeta.4P(100, .25, .75, 5, 3))
hist(testdata, xlim = c(@, 100))

# Suppose the reliability of this test was estimated to ©0.7. To estimate and
# retrieve the effective test length using ETL():

ETL(mean = mean(testdata), variance = var(testdata), 1 = 0, u = 100,
reliability = .7)
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LABMSU Lower Location Parameter Given Shape Parameters, Mean, Variance,
and Upper Location Parameter of a Four-Parameter Beta PDD.

Description

Calculates the lower-bound value required to produce a Beta probability density distribution with
defined moments and parameters. Be advised that not all combinations of moments and parameters
can be satisfied (e.g., specifying mean, variance, skewness and kurtosis uniquely determines both
location-parameters, meaning that the value of the lower-location parameter will take on which ever
value it must, and cannot be specified).

Usage
LABMSU (
alpha = NULL,
beta = NULL,
u = NULL,
mean = NULL,

variance = NULL,
skewness = NULL,

kurtosis = NULL,
sd = NULL
)
Arguments
alpha The Alpha shape-parameter of the target Beta probability density distribution.
beta The Beta shape-parameter of the target Beta probability density distribution.
u The upper-bound of the Beta distribution. Default is NULL (i.e., does not take
a specified u-parameter into account).
mean The mean (first raw moment) of the target Standard Beta probability density
distribution.
variance The variance (second central moment) of the target Standard Beta probability
density distribution.
skewness The skewness (third standardized moment) of the target Beta probability density
distribution.
kurtosis The kurtosis (fourth standardized moment) of the target Beta probability density
distribution.
sd Optional alternative to specifying var. The standard deviation of the target Stan-
dard Beta probability density distribution.
Value

A numeric value representing the required value for the Beta shape-parameter in order to produce
a Standard Beta probability density distribution with the target mean and variance, given specified
lower- and upper bounds of the Beta distribution.
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Examples

# Generate some fictional data.
set.seed(1234)

testdata <- rBeta.4P(100000, .25, .75, 5, 3)
hist(testdata, xlim = c(@, 1), freq = FALSE)

# Suppose you know three of the four necessary parameters to fit a four-

# parameter Beta distribution (i. e., u = 0.75, alpha = 5, beta = 3) to this
# data. To find the value for the necessary 1 parameter, estimate the mean

# and variance of the distribution:

M <- mean(testdata)

S2 <- var(testdata)

# To find the 1 parameter necessary to produce a four-parameter Beta
# distribution with the target mean, variance, and u, alpha, and beta
# parameters using the LMSBAU() function:

(1 <- LABMSU(alpha = 5, beta = 3, mean = M, variance = S2, u = 0.75))
curve(dBeta.4P(x, 1, .75, 5, 3), add = TRUE, lwd = 2)

LL.CA An Implementation of the Livingston and Lewis (1995) Approach to
Estimate Classification Consistency and Accuracy based on Observed
Test Scores and Test Reliability.

Description

An implementation of what has been come to be known as the "Livingston and Lewis approach" to
classification consistency and accuracy, which by employing a compound beta-binomial distribution
assumes that true-scores conform to the four-parameter beta distribution, and errors of measurement
to the binomial distribution. Under these assumptions, the expected classification consistency and
accuracy of tests can be estimated from observed outcomes and test reliability.

Usage

LL.CA(
x = NULL,
reliability,
cut,
min = 0,
max = 1,
true.model = "4P",
error.model = "binomial”,
truecut = NULL,
output = c("accuracy”, "consistency"),
failsafe = FALSE,
1 =09,
u=1,
override = NULL
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Arguments

X

reliability

cut

min

max

true.model

error.model

truecut

output

failsafe

override

Value

25

A vector of observed scores for which a beta-distribution is to be fitted, or a
list of pre-defined true-score distribution parameter values. If a list is provided,
the list entries must be named after the parameters: 1 and u for the location
parameters, and alpha and beta for the shape parameters.

The observed-score squared correlation (i.e., proportion of shared variance) with
the true-score.

The cutoff value for classifying observations into pass or fail categories.

The minimum value possible to attain on the test. Default is O (assuming x
represent proportions).

The maximum value possible to attain on the test. Default is 1 (assuming x
represent proportions).

The probability distribution to be fitted to the moments of the true-score distribu-
tion. Options are "4P" (default) and "2P", referring to four- and two-parameter
Beta distributions. The "4P" method produces a four-parameter Beta distribu-
tion with the same first four moments (mean, variance, skewness, and kurtosis)
as the estimated true-score distribution, while the "2P" method produces a two-
parameter Beta distribution with the first two moments (mean and variance) as
the estimated true-score distribution.

The probability distribution to be used for producing the sampling distributions
at different points of the true-score scale. Options are binomial and beta. The
binomial distribution is discrete, and is the distribution used originally by Liv-
ingston and Lewis. Use of the binomial distribution involves a rounding of the
effective test length to the nearest integer value. The Beta distribution is contin-
uous, and does not involve rounding of the effective test length.

Optional specification of a "true" cutoff. Useful for producing ROC curves (see
documentation for the LL.ROC() function).

Character vector indicating which types of statistics (i.e, accuracy and/or con-
sistency) are to be computed and included in the output. Permissible values are
"accuracy" and "consistency”.

Logical value indicating whether to engage the automatic failsafe defaulting to
the two-parameter Beta true-score distribution if the four-parameter fitting pro-
cedure produces impermissible parameter estimates. Default is FALSE (i.e., the
function will not engage failsafe, and will likely produce an error if impermissi-
ble parameter estimates were produced.

If true.model = "2P" or failsafe = TRUE, the lower-bound location parameter
to be used in the two-parameter fitting procedure. Default is O (i.e., the )

If true.model = "2P" or failsafe = TRUE, the upper-bound location parameter
to be used in the two-parameter fitting procedure.

Inert artifact from betafunctions version 1.3.1 (replaced by the failsafe argu-
ment). Will be removed completely in a later update.

A list containing the estimated parameters necessary for the approach (i.e., the effective test-length
and the beta distribution parameters), the confusion matrix containing estimated proportions of
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true/false pass/fail categorizations for a test, diagnostic performance statistics, and / or a classifica-
tion consistency matrix and indices. Accuracy output includes a confusion matrix and diagnostic
performance indices, and consistency output includes a consistency matrix and consistency indices
p (expected proportion of agreement between two independent test administrations), p_c (propor-
tion of agreement on two independent administrations expected by chance alone), and Kappa (Co-
hen’s Kappa).

Note

It should be noted that this implementation differs from the original articulation of Livingston and
Lewis (1995) in some respects. First, the procedure includes a number of diagnostic performance
(accuracy) indices which the original procedure enables but that were not included. Second, the
possibility of employing a two-parameter Beta error distribution in place of the binomial error dis-
tribution is not part of the original procedure. Third, the way consistency is calculated differs sub-
stantially from the original articulation of the procedure, which made use of a split-half approach.
Rather, this implementation uses the approach to calculating classification consistency outlined by
Hanson (1991).

References

Livingston, Samuel A. and Lewis, Charles. (1995). Estimating the Consistency and Accuracy of
Classifications Based on Test Scores. Journal of Educational Measurement, 32(2).

Hanson, Bradley A. (1991). Method of Moments Estimates for the Four-Parameter Beta Compound
Binomial Model and the Calculation of Classification Consistency Indexes. American College Test-
ing.

Examples

# Generate some fictional data. Say, 100 individuals take a test with a
# maximum score of 100 and a minimum score of 0.

set.seed(1234)

testdata <- rbinom(100, 100, rBeta.4P(100, 0.25, 0.75, 5, 3))
hist(testdata, xlim = c(@, 100))

# Suppose the cutoff value for attaining a pass is 50 items correct, and
# that the reliability of this test was estimated to ©0.7. To estimate and
# retrieve the estimated parameters, confusion matrix, consistency and

# accuracy statistics using LL.CA(Q):

LL.CA(x = testdata, reliability = .7, cut = 50, min = @, max = 100)

# Suppose the true-score parameter estimation procedure arrived at

# impermissible parameter estimates (i.e., 1 < @, u > 1, alpha < @, or
# beta < 0). For example:

set.seed(9)

testdata <- rbinom(100, 25, rBeta.4P(100, 0.25, 1, 5, 3))
Beta.tp.fit(testdata, @, 25, 25, failsafe = TRUE)

# Suppose further that you have good grounds for assuming that the lower-
# bound parameter is equal to ©0.25 (e.g., the test consists of multiple-
# choice questions with four response options, leading to a 25% probability
# of guessing the correct answer per question), and good reason to believe
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that the upper-bound parameter is equal to 1 (i.e., there is no reason to
believe that there are no members of the population who will attain a
perfect score across all possible test-forms.) To set these lower and
upper bounds for the fitting procedure in the LL.CA() function, set

the argument true.model = "2p", and specify the location parameters

1 =0.25and u=1:

LL.CA(testdata, ©0.6287713, 12, @, 25, true.model = "2p", 1 = 0.25, u = 1)

E T T S

Alternatively to supplying scores to which a true-score distribution is

to be fit, a list with true-score distribution parameter values can be
supplied manually along with the effective test length (see documentation
for the ETL() function), foregoing the need for actual data. The list
entries must be named. "1" is the lower-bound and "u" the upper-bound
location parameters of the true-score distribution, "alpha” and "beta" for
the shape parameters, and "etl" for the effective test-length..

trueparams <- list("1" = 0.25, "u"” = 0.75, "alpha” = 5, "beta” = 3, "etl"” = 50)
LL.CA(x = trueparams, cut = 50, min = @, max = 100)

T TR

LL.ROC ROC curves for the Livingston and Lewis approach.

Description

Generate a ROC curve plotting the false-positive rate against the true-positive rate at different cut-
off values across the observed proportion-score scale.

Usage

LL.ROC(
x = NULL,
reliability,
min = 0,
max = 1,
truecut,
true.model = "4P",
error.model = "Binomial”,
AUC = FALSE,
maxJ = FALSE,
raw.out = FALSE,
grainsize = 100

Arguments

X A vector of observed results.
reliability The reliability coefficient of the test.

min The minimum possible value to attain on the observed-score scale. Default is 0
(assuming x represent proportions).
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max The maximum possible value to attain on the observed-score scale. Default is 1
(assuming x represent proportions).

truecut The true point along the x-scale that marks the categorization-threshold.

true.model The probability distribution to be fitted to the moments of the true-score distribu-

error.model

tion. Options are "4P" (default) and "2P", referring to four- and two-parameter
Beta distributions. The "4P" method produces a four-parameter Beta distribu-
tion with the same first four moments (mean, variance, skewness, and kurtosis)
as the estimated true-score distribution, while the "2P" method produces a two-
parameter Beta distribution with the first two moments (mean and variance) as
the estimated true-score distribution.

The probability distribution to be used for producing the sampling distributions
at different points of the true-score scale. Options are binomial and beta. The
binomial distribution is discrete, and is the distribution used originally by Liv-
ingston and Lewis. Use of the binomial distribution involves a rounding of the
effective test length to the nearest integer value. The Beta distribution is contin-
uous, and does not involve rounding of the effective test length.

AUC Calculate and include the area under the curve? Default is FALSE.
maxJ Mark the point along the curve where Youden’s J statistic is maximized? Default
is FALSE.
raw.out Give raw coordinates as output rather than plot? Default is FALSE.
grainsize Specify the number of cutoff-points for which the ROC curve is to be calculated.
The greater this number the greater the accuracy. Default is 100 points.
Value

A plot tracing the ROC curve for the test, or matrix of coordinates if raw.out is TRUE.

Examples

# Generate some fictional data. Say, 100 individuals take a test with a
# maximum score of 100 and a minimum score of 0.

set.seed(1234)

testdata <- rbinom(100, 100, rBeta.4P(100, .25, .75, 5, 3))
hist(testdata, xlim = c(@, 100))

# Suppose the cutoff value for attaining a pass is 50 items correct, and

# that the reliability of this test was estimated to ©@.7. To produce a plot
# with an ROC curve using LL.ROC(), along with the AUC statistics and the
# points at which Youden's J. is maximized:

LL.ROC(x = testdata, reliability = .7, truecut = 50, min = @, max = 100,
AUC = TRUE, maxJ = TRUE)
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MLA Most Likely True Alpha Value Given Observed Outcome.

Description
Given a fitted Standard (two-parameter) Beta Distribution, return the alpha shape-parameter value
where the observed mean becomes the mode.

Usage

MLA(alpha, beta, x = NULL, n = NULL)

Arguments
alpha Observed alpha-parameter value for fitted Standard Beta PDD.
beta Observed beta-parameter value for fitted Standard Beta PDD.
X Observed proportion-correct outcome.
n Test-length.

Value

The Alpha shape-parameter value for the Standard Beta probability density distribution where the
observed mean is the expected mode.

Examples

# Assuming a prior Standard (two-parameter) Beta distribution is fit, which
# yield an alpha parameter of 10 and a beta parameter of 8, calculate the
# true-alpha parameter most likely to have produced the observations:

MLA(a = 10, b = 8)

MLB Most Likely True Beta Value Given Observed Outcome.

Description
Assuming a prior standard (two-parameter) Beta Distribution, return the beta shape-parameter value
where the observed mean becomes the mode.

Usage

MLB(alpha, beta, x = NULL, n = NULL)
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Arguments
alpha Observed alpha-parameter value for fitted Standard Beta PDD.
beta Observed beta-parameter value for fitted Standard Beta PDD.
X Observed proportion-correct outcome.
n Test-length.

Value

The Beta shape-parameter value for the Standard Beta probability density distribution where the
observed mean is the expected mode.

Examples

# Assuming a prior Standard (two-parameter) Beta distribution is fit, which
# yield an alpha parameter of 10 and a beta parameter of 8, calculate the
# true-beta parameter most likely to have produced the observations:

MLB(a = 10, b = 8)

MLM Most Likely Mean of the Standard Beta PDD, Given that the Observa-
tion is Considered the Most Likely Observation of the Standard Beta
PDD (i.e., Mode).

Description

Assuming a prior Standard (two-parameter) Beta Distribution, returns the expected mean of the
distribution under the assumption that the observed value is the most likely value of the distribution.

Usage

MLM(alpha, beta, x = NULL, n = NULL)

Arguments
alpha Observed alpha value for fitted Standard Beta PDD.
beta Observed beta value for fitted Standard Beta PDD.
X Observed proportion-correct outcome.
n Test-length.

Value

The expected mean of the Standard Beta probability density distribution, for which the observed
mean is the most likely value.
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Examples

# Assuming a prior Standard (two-parameter) Beta distribution is fit, which
# yield an alpha parameter of 10 and a beta parameter of 8, calculate the
# true-mean most likely to have produced the observations:

MLM(a = 10, b = 8)

observedmoments Compute Moments of Observed Value Distribution.

Description

Computes Raw, Central, or Standardized moment properties of a vector of observed scores.

Usage
observedmoments (
X,
type = c("raw”, "central”, "standardized”),
orders = 4,
correct = TRUE
)
Arguments
X A vector of values, the distribution of which moments are to be calculated.
type A character vector determining which moment-types are to be calculated. Per-
missible values are "raw”, "central”, and "standardized".
orders The number of moment-orders to be calculated for each of the moment-types.
correct Logical. Whether to include bias correction in estimation of orders. Default is
TRUE.
Value

A list of moment types, each a list of moment orders.

Examples

# Generate some fictional data. Say, 100 individuals take a test with a
# maximum score of 100 and a minimum score of 0.

set.seed(1234)

testdata <- rbinom(100, 100, rBeta.4P(100, .25, .75, 5, 3))
hist(testdata, xlim = c(@, 100))

# To compute the first four raw, central, and standardized moments for this
# distribution of observed scores using observedmoments():
observedmoments(x = testdata, type = c("raw”, "central”, "standardized"),
orders = 4, correct = TRUE)
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pBeta. 4P Cumulative Probability Function under the Four-Parameter Beta
Probability Density Distribution.

Description

Function for calculating the proportion of observations up to a specifiable quantile under the Four-
Parameter Beta Distribution.

Usage

pBeta.4P(q, 1, u, alpha, beta, lower.tail = TRUE)

Arguments
q The quantile or a vector of quantiles for which the proportion is to be calculated.
1 The first (lower) location parameter.
u The second (upper) location parameter.
alpha The first shape parameter.
beta The second shape parameter.
lower. tail Whether the proportion to be calculated is to be under the lower or upper tail.
Default is TRUE (lower tail).
Value

A vector of proportions of observations falling under specified quantiles under the four-parameter
beta distribution.

Examples

# Assume some variable follows a four-parameter beta distribution with

# location parameters 1 = 0.25 and u = .75, and shape

# parameters alpha = 5 and beta = 3. To compute the

# cumulative probability at a specific point of the distribution (e.g., .5)
# using pBeta.4P():

pBeta.4P(q = .5, 1 = .25, u = .75, alpha = 5, beta = 3)
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pBetaMs Probability of Some Specific Observation under the Standard Beta
PDD with Specific Mean and Variance.

Description

Calculates the probability of some specific observation falling under a specified interval ([0, x] or
[x, 1]) under the Standard Beta probability density distribution with defined mean and variance or
standard deviation.

Usage

pBetaMS(q, mean, variance = NULL, sd = NULL, lower.tail = TRUE)

Arguments
q A specific point on the x-axis of the Standard Beta probability density distribu-
tion with a defined mean and variance.
mean The mean of the target Standard Beta probability density distribution.
variance The variance of the target Standard Beta probability density distribution.
sd The standard deviation of the target Standard Beta probability density distribu-
tion.
lower.tail Whether the density that should be considered is between the lower-end (i.e., [0
-> x]) or the higher-end of the distribution (i.e., [x -> 1]).
Value

A value representing the probability of a random draw from the Standard Beta probability density
distribution with a defined mean and variance being from one of two defined intervals (i.e., [0 -> x]
or [x ->1]).

Examples

# To compute the proportion of the density under the lower-end tail of a
# point along the Standard (two-parameter) PDD (e.g., .5) with mean of .6
# and variance of .04:

pBetaMS(g = .5, mean = .6, variance = .04)
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gBeta.4P Quantile Given Probability Under the Four-Parameter Beta Distribu-
tion.

Description

Function for calculating the quantile (i.e., value of x) for a given proportion (i.e., the value of y)
under the Four-Parameter Beta Distribution.

Usage

gBeta.4P(p, 1, u, alpha, beta, lower.tail = TRUE)

Arguments
p A vector (or single value) of proportions or probabilities for which the corre-
sponding value of x (i.e., the quantiles) are to be calculated.
1 The first (lower) location parameter.
u The second (upper) location parameter.
alpha The first shape parameter.
beta The second shape parameter.
lower.tail Logical. Whether the quantile(s) to be calculated is to be under the lower or
upper tail. Default is TRUE (lower tail).
Value

A vector of quantiles for specified probabilities or proportions of observations under the four-
parameter beta distribution.

Examples

# Assume some variable follows a four-parameter beta distribution with
# location parameters 1 = 0.25 and u = .75, and shape

# parameters alpha = 5 and beta = 3. To compute the

# quantile at a specific point of the distribution (e.g., .5)

# using gBeta.4P():

gBeta.4P(p = .5, 1 = .25, u = .75, alpha = 5, beta = 3)
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gBetaMS Quantile Containing Specific Proportion of the Distribution, Given a
Specific Probability of the Standard Beta PDD with Specific Mean and
Variance or Standard Deviation.

Description

Calculates the quantile corresponding to a specific probability of some observation falling within
the [0, x] (1t =TRUE) or [x, 1] (1t = FALSE) interval under the Standard Beta probability density
distribution with defined mean and variance or standard deviation.

Usage

gBetaMS(p, mean, variance = NULL, sd = NULL, lower.tail = TRUE)

Arguments
p A value of probability marking the point of the Y-axis to correspond to the X-
axis.
mean The mean of the target Standard Beta probability density distribution.
variance The variance of the target Standard Beta probability density distribution.
sd The standard deviation of the target Standard Beta probability density distribu-
tion.
lower. tail Logical. Specifies which end of the tail for which to calculate quantile. Default
is TRUE (meaning, find q for lower tail.)
Value

A numeric value representing the quantile for which the specified proportion of observations fall
within.

Examples

# To compute the quantile at a specific point (e.g., .5) along the Standard
# (two-parameter) PDD with mean of .6 and variance of .04:
gBetaMS(p = .5, mean =.6, variance = .04)
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rBeta. 4P Random Number Generation under the Four-Parameter Beta Proba-
bility Density Distribution.

Description

Function for generating random numbers from a specified Four-Parameter Beta Distribution.

Usage

rBeta.4P(n, 1, u, alpha, beta)

Arguments
n Number of draws.
1 The first (lower) location parameter.
u The second (upper) location parameter.
alpha The first shape parameter.
beta The second shape parameter.
Value

A vector with length n of random values drawn from the Four-Parameter Beta Distribution.

Examples

# Assume some variable follows a four-parameter beta distribution with
# location parameters 1 = 0.25 and u = .75, and shape

# parameters alpha = 5 and beta = 3. To draw a random

# value from this distribution using rBeta.4P():

rBeta.4P(n =1, 1 = .25, u = .75, alpha = 5, beta = 3)

rBetaMs Random Draw from the Standard Beta PDD With Specific Mean and
Variance.

Description

Draws random samples of observations from the Standard Beta probability density distribution with
defined mean and variance.

Usage

rBetaMS(n, mean, variance = NULL, sd = NULL)
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Arguments
n Number of observations to be drawn from under the Standard Beta PDD.
mean The mean of the target Standard Beta probability density distribution.
variance The variance of the target Standard Beta probability density distribution.
sd The standard deviation of the target Standard probability density distribution.
Value

A vector of length n, each value representing a random draw from the Standard Beta probability
density distribution with defined mean and variance.

UABMSL Upper Location Parameter Given Shape Parameters, Mean, Variance,
and Lower Location Parameter of a Four-Parameter Beta PDD.

Description

Calculates the upper-bound value required to produce a Beta probability density distribution with
defined moments and parameters. Be advised that not all combinations of moments and parameters
can be satisfied (e.g., specifying mean, variance, skewness and kurtosis uniquely determines both
location-parameters, meaning that the value of the upper-location parameter will take on which ever
value it must, and cannot be specified).

Usage
UABMSL (
alpha = NULL,
beta = NULL,
mean = NULL,
variance = NULL,
skewness = NULL,
kurtosis = NULL,
1 = NULL,
sd = NULL
)
Arguments
alpha The Alpha shape-parameter of the target Beta probability density distribution.
beta The beta shape-parameter of the target Beta probability density distribution.
mean The mean (first raw moment) of the target Standard Beta probability density
distribution.
variance The variance (second central moment) of the target Standard Beta probability

density distribution.
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skewness

kurtosis

sd

Value

UABMSL

The skewness (third standardized moment) of the target Beta probability density
distribution.

The kurtosis (fourth standardized moment) of the target Beta probability density
distribution.

The lower-bound of the Beta distribution. Default is NULL (i.e., does not take
a specified l-parameter into account).

Optional alternative to specifying var. The standard deviation of the target Stan-
dard Beta probability density distribution.

A numeric value representing the required value for the Beta shape-parameter in order to produce
a Standard Beta probability density distribution with the target mean and variance, given specified
lower- and upper bounds of the Beta distribution.

Examples

# Generate some fictional data.

set.seed(1234)

testdata <- rBeta.4P(100000, .25, .75, 5, 3)
hist(testdata, xlim = c(@, 1), freq = FALSE)

# Suppose you know three of the four necessary parameters to fit a four-

# parameter Beta distribution (i. e., 1 = 0.25, alpha = 5, beta = 3) to this
# data. To find the value for the necessary u parameter, estimate the mean

# and variance of the distribution:

M <- mean(testdata)

S2 <- var(testdata)

# To find the 1 parameter necessary to produce a four-parameter Beta
# distribution with the target mean, variance, and u, alpha, and beta
# parameters using the LMSBAU() function:

(u <- UABMSL (alpha = 5, beta = 3, mean = M, variance = S2, 1 = 0.25))

curve(dBeta.4P(x,

.25, u, 5, 3), add = TRUE, lwd = 2)
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