Package ‘bigstatsr’

February 3, 2022

Encoding UTF-8

Type Package

Title Statistical Tools for Filebacked Big Matrices

Version 1.5.6

Date 2022-01-26

Description Easy-to-use, efficient, flexible and scalable statistical tools. Package bigstatsr provides and uses Filebacked Big Matrices via memory-mapping. It provides for instance matrix operations, Principal Component Analysis, sparse linear supervised models, utility functions and more <doi:10.1093/bioinformatics/bty185>.

License GPL-3

Language en-US

ByteCompile TRUE

Depends R (>= 3.3)

Imports bigassertr (>= 0.1.1), bigparallelr (>= 0.2.3), cowplot, foreach, ggplot2 (>= 3.0), graphics, methods, ps (>= 1.4), Rcpp, RSpectra, stats, tibble, utils

LinkingTo Rcpp, RcppArmadillo, rmio (>= 0.1.3)

Suggests bigmemory (>= 4.5.33), bigreadr (>= 0.2), covr, data.table, dplyr, glmnet, hexbin, memuse, ModelMetrics, ppcor, RhpcBLASctl, spelling (>= 1.2), testthat

RoxygenNote 7.1.1

URL https://privefl.github.io/bigstatsr/

BugReports https://github.com/privefl/bigstatsr/issues

NeedsCompilation: yes

Author: Florian Privé [aut, cre],
 Michael Blum [ths],
 Hugues Aschard [ths]

Maintainer: Florian Privé <florian.prive.21@gmail.com>

Repository: CRAN

Date/Publication: 2022-02-03 16:30:02 UTC

R topics documented:

- bigstatsr-package .. 3
- asPlotlyText ... 4
- as_scaling_fun ... 5
- AUC ... 6
- big_apply ... 7
- big_colstats ... 9
- big_copy ... 10
- big_cor ... 11
- big_counts ... 12
- big_cprodMat ... 14
- big_cprodVec ... 15
- big_crossprodSelf 17
- big_increment ... 18
- big_parallelize 19
- big_prodMat ... 21
- big_prodVec ... 22
- big_randomSVD ... 24
- big_read ... 26
- big_scale ... 27
- big_spLinReg .. 28
- big_spLogReg .. 32
- big_SVD ... 35
- big_tcrossprodSelf 38
- big_transpose ... 39
- big_univLinReg 40
- big_univLogReg 42
- big_write ... 44
- block_size .. 45
- covar_from_df .. 45
- FBM-class .. 46
- FBM-methods .. 48
- FBM.code256-class 49
- get_beta ... 51
- pasteLoc ... 51
- pcor .. 52
- plot.big_sp_list 53
Description

Arguments

X An object of class FBM.
X.code An object of class FBM.code256.
y.train Vector of responses, corresponding to ind.train.
y01.train Vector of responses, corresponding to ind.train. Must be only 0s and 1s.
ind.train An optional vector of the row indices that are used, for the training part. If not specified, all rows are used. Don’t use negative indices.
ind.row An optional vector of the row indices that are used. If not specified, all rows are used. Don’t use negative indices.
ind.col An optional vector of the column indices that are used. If not specified, all columns are used. Don’t use negative indices.
block.size Maximum number of columns read at once. Default uses block.size.
ncores Number of cores used. Default doesn’t use parallelism. You may use nb_cores.
fun.scaling A function with parameters X, ind.row and ind.col, and that returns a data.frame with $center and $scale for the columns corresponding to ind.col, to scale each of their elements such as followed:

\[X_{i,j} - center_j \]
\[scale_j \]

Default doesn’t use any scaling. You can also provide your own center and scale by using as_scaling_fun().
covar.train Matrix of covariables to be added in each model to correct for confounders (e.g. the scores of PCA), corresponding to ind.train. Default is NULL and corresponds to only adding an intercept to each model. You can use covar_from_df() to convert from a data frame.

covar.row Matrix of covariables to be added in each model to correct for confounders (e.g. the scores of PCA), corresponding to ind.row. Default is NULL and corresponds to only adding an intercept to each model. You can use covar_from_df() to convert from a data frame.

center Vector of same length of ind.col to subtract from columns of X.

scale Vector of same length of ind.col to divide from columns of X.

Matrix parallelization

Large matrix computations are made block-wise and won’t be parallelized in order to not have to reduce the size of these blocks. Instead, you may use Microsoft R Open or OpenBLAS in order to accelerate these block matrix computations. You can also control the number of cores used with bigparallelr::set_blas_ncores().

Author(s)

Maintainer: Florian Privé <florian.prive.21@gmail.com>

Other contributors:
- Michael Blum <michael.blum@univ-grenoble-alpes.fr> [thesis advisor]
- Hugues Aschard <hugues.aschard@pasteur.fr> [thesis advisor]

See Also

Useful links:
- https://privefl.github.io/bigstatsr/
- Report bugs at https://github.com/privefl/bigstatsr/issues

asPlotlyText | Plotly text

Description

Convert a data.frame to plotly text

Usage

asPlotlyText(df)

Arguments

df A data.frame
as_scaling_fun

Value

A character vector of the length of df’s number of rows.

Examples

```r
set.seed(1)

X <- big_attachExtdata()
svd <- big_SVD(X, big_scale(), k = 10)

p <- plot(svd, type = "scores")

pop <- rep(c("POP1", "POP2", "POP3"), c(143, 167, 207))
df <- data.frame(Population = pop, Index = 1:517)

plot(p2 <- p + ggplot2::aes(text = asPlotlyText(df)))
## Not run: plotly::ggplotly(p2, tooltip = "text")
```

as_scaling_fun

Scaling function creator

Description

Convenience function to create a function to be used as parameter fun.scaling when you want to use your own precomputed center and scale.

Usage

```r
as_scaling_fun(center.col, scale.col, ind.col = seq_along(center.col))
```

Arguments

- `center.col`: Vector of centers corresponding to `ind.col`.
- `scale.col`: Vector of scales corresponding to `ind.col`.
- `ind.col`: Column indices for which these are provided.

Value

A function to be used as parameter fun.scaling.

Examples

```r
fun.scaling <- as_scaling_fun(1:6, 2:7)
fun.scaling(NULL, NULL, 1:3) # first two parameters X and ind.row are not used here
fun.scaling2 <- as_scaling_fun(1:6, 2:7, ind.col = 6:1)
fun.scaling2(NULL, NULL, 1:3)
```
X <- big_attachExtdata()
scale <- big_scale()(X)
fun <- as_scaling_fun(center = scale$center, scale = scale$scale)
obj.svd <- big_randomSVD(X, fun.scaling = fun)
obj.svd2 <- big_randomSVD(X, fun.scaling = big_scale())
all.equal(obj.svd, obj.svd2)

Description

Compute the Area Under the ROC Curve (AUC) of a predictor and possibly its 95% confidence interval.

Usage

```r
AUC(pred, target, digits = NULL)
AUCBoot(pred, target, nboot = 10000, seed = NA, digits = NULL)
```

Arguments

- `pred`: Vector of predictions.
- `target`: Vector of true labels (must have exactly two levels, no missing values).
- `digits`: See `round`. Default doesn’t use rounding.
- `nboot`: Number of bootstrap samples used to evaluate the 95% CI. Default is `1e4`.
- `seed`: See `set.seed`. Use it for reproducibility. Default doesn’t set any seed.

Details

Other packages provide ways to compute the AUC (see this [answer](#)). I chose to compute the AUC through its statistical definition as a probability:

\[P(score(x_{case}) > score(x_{control})) \]

Note that I consider equality between scores as a 50%-probability of one being greater than the other.

Value

The AUC, a probability, and possibly its 2.5% and 97.5% quantiles (95% CI).

See Also

- `wilcox.test`
Examples

```r
set.seed(1)
AUC(c(0, 0), 0:1) # Equality of scores
AUC(c(0.2, 0.1, 1), c(0, 0, 1)) # Perfect AUC
x <- rnorm(100)
z <- rnorm(length(x), x, abs(x))
y <- as.numeric(z > 0)
print(AUC(x, y))
print(AUCBoot(x, y))

# Partial AUC
pAUC <- function(pred, target, p = 0.1) {
  val.min <- min(target)
  q <- quantile(pred[target == val.min], probs = 1 - p)
  ind <- (target != val.min) | (pred > q)
  bigstatsr::AUC(pred[ind], target[ind]) * p
}
pAUC(x, y)
pAUC(x, y, 0.2)
```

big_apply

Split-Apply-Combine

Description

A Split-Apply-Combine strategy to apply common R functions to a Filebacked Big Matrix.

Usage

```r
big_apply(
  X,
  a.FUN,
  a.combine = NULL,
  ind = cols_along(X),
  ncores = 1,
  block.size = block_size(nrow(X), ncores),
  ...
)
```

Arguments

- **X**: An object of class `FBM`.
- **a.FUN**: The function to be applied to each subset matrix. It must take a `Filebacked Big Matrix` as first argument and `ind`, a vector of indices, which are used to split the data. For example, if you want to apply a function to `X[ind.row, ind.col]`, you may use `X[ind.row, ind.col[ind]]` in `a.FUN`.
Function to combine the results with `do.call`. This function should accept multiple arguments (\dots). For example, you can use `c`, `cbind`, `rbind`. This package also provides function `plus` to add multiple arguments together. The default is `NULL`, in which case the results are not combined and are returned as a list, each element being the result of a block.

Initial vector of subsetting indices. Default is the vector of all column indices.

Number of cores used. Default doesn’t use parallelism. You may use `nb_cores`.

Maximum number of columns (or rows, depending on how you use `ind` for subsetting) read at once. Default uses `block_size`.

Extra arguments to be passed to `a.FUN`.

This function splits indices in parts, then apply a given function to each subset matrix and finally combine the results. If parallelization is used, this function splits indices in parts for parallelization, then split again them on each core, apply a given function to each part and finally combine the results (on each cluster and then from each cluster). See also the corresponding vignette.

The corresponding vignette.

`big_parallelize` **bigparallelr::split_parapply**

Examples

```r
X <- big_attachExtdata()

# get the means of each column
colMeans_sub <- function(X, ind) colMeans(X[, ind])
str(colmeans <- big_apply(X, a.FUN = colMeans_sub, a.combine = 'c'))

# get the norms of each column
colNorms_sub <- function(X, ind) sqrt(colSums(X[, ind]^2))
str(colnorms <- big_apply(X, colNorms_sub, a.combine = 'c'))

# get the sums of each row
# split along rows: need to change the "complete" `ind` parameter
str(rowsums <- big_apply(X, a.FUN = function(X, ind) rowSums(X[ind, ]),
                         ind = rows_along(X), a.combine = 'c',
                         block.size = 100))
# it is usually preferred to split along columns
# because matrices are stored by column.
str(rowsums2 <- big_apply(X, a.FUN = function(X, ind) rowSums(X[, ind]),
                          a.combine = 'plus'))
```
big_colstats

Standard univariate statistics

Description

Standard **univariate statistics** for columns of a Filebacked Big Matrix. For now, the **sum** and **var** are implemented (the **mean** and **sd** can easily be deduced, see examples).

Usage

```r
big_colstats(X, ind.row = rows_along(X), ind.col = cols_along(X), ncores = 1)
```

Arguments

- `X`
 An object of class `FBM`.
- `ind.row`
 An optional vector of the row indices that are used. If not specified, all rows are used. **Don’t use negative indices.**
- `ind.col`
 An optional vector of the column indices that are used. If not specified, all columns are used. **Don’t use negative indices.**
- `ncores`
 Number of cores used. Default doesn’t use parallelism. You may use `nb_cores`.

Value

Data.frame of two numeric vectors **sum** and **var** with the corresponding column statistics.

See Also

- `colSums`
- `apply`

Examples

```r
set.seed(1)
X <- big_attachExtdata()

# Check the results
str(test <- big_colstats(X))

# Only with the first 100 rows
ind <- 1:100
str(test2 <- big_colstats(X, ind.row = ind))
plot(test$sum, test2$sum)
abline(lm(test2$sum ~ test$sum), col = “red”, lwd = 2)

X.ind <- X[ind,]
all.equal(test$sum, colSums(X.ind))
all.equal(test$var, apply(X.ind, 2, var))
```
deduce mean and sd
note that the are also implemented in big_scale()
means <- test2$sum / length(ind) # if using all rows,
divide by nrow(X) instead
all.equal(means, colMeans(X.ind))
sds <- sqrt(test2$var)
all.equal(sds, apply(X.ind, 2, sd))

big_copy

Copy as a Filebacked Big Matrix

Description

Deep copy of a Filebacked Big Matrix with possible subsetting. This should also work for any matrix-like object.

Usage

```r
big_copy(
  X,
  ind.row = rows_along(X),
  ind.col = cols_along(X),
  type = typeof(X),
  backingfile = tempfile(),
  block.size = block_size(length(ind.row)),
  is_read_only = FALSE
)
```

Arguments

- **X**
 Could be any matrix-like object.

- **ind.row**
 An optional vector of the row indices that are used. If not specified, all rows are used. **Don’t use negative indices.**

- **ind.col**
 An optional vector of the column indices that are used. If not specified, all columns are used. **Don’t use negative indices.**

- **type**
 Type of the Filebacked Big Matrix (default is double). Either
 - "double" (double precision – 64 bits)
 - "float" (single precision – 32 bits)
 - "integer"
 - "unsigned short": can store integer values from 0 to 65535. It has vocation to become the basis for a FBM.code65536.
 - "raw" or "unsigned char": can store integer values from 0 to 255. It is the basis for class FBM.code256 in order to access 256 arbitrary different numeric values. It is used in package bigsnpr.

- **backingfile**
 Path to the file storing the Big Matrix on disk. **An extension ".bk" will be automatically added.** Default stores in the temporary directory.
big_cor

```r
correlation
```

Description

Compute the (Pearson) correlation matrix of a Filebacked Big Matrix.

Usage

```r
big_cor(
  x, 
  ind.row = rows_along(x), 
  ind.col = cols_along(x), 
  block.size = block_size(nrow(x)) 
)
```

Arguments

- **x**: An object of class FBM.
- **ind.row**: An optional vector of the row indices that are used. If not specified, all rows are used. **Don’t use negative indices.**
- **ind.col**: An optional vector of the column indices that are used. If not specified, all columns are used. **Don’t use negative indices.**
- **block.size**: Maximum number of columns read at once. Default uses block_size.
Value
A temporary FBM, with the following two attributes:

• a numeric vector center of column scaling,
• a numeric vector scale of column scaling.

Matrix parallelization
Large matrix computations are made block-wise and won’t be parallelized in order to not have to reduce the size of these blocks. Instead, you may use Microsoft R Open or OpenBLAS in order to accelerate these block matrix computations. You can also control the number of cores used with bigparallelr::set_blas_ncores().

See Also
cor big_crossprodSelf

Examples
X <- FBM(13, 17, init = rnorm(221))

Comparing with cor
K <- big_cor(X)
class(K)
dim(K)
K$backingfile

ture <- cor(X[])
all.equal(K[], true)

Using only half of the data
n <- nrow(X)
ind <- sort(sample(n, n/2))
K2 <- big_cor(X, ind.row = ind)

ture2 <- cor(X[ind,])
all.equal(K2[], true2)
Usage

big_counts(
 X.code,
 ind.row = rows_along(X.code),
 ind.col = cols_along(X.code),
 byrow = FALSE
)

Arguments

X.code An object of class FBM.code256.
ind.row An optional vector of the row indices that are used. If not specified, all rows are
 used. Don’t use negative indices.
ind.col An optional vector of the column indices that are used. If not specified, all
 columns are used. Don’t use negative indices.
byrow Count by rows rather than by columns? Default is FALSE (count by columns).

Value

A matrix of counts of K x m (or n) elements, where

• K is the number of unique elements of the BM.code,
• n is its number of rows,
• m is its number of columns.

Beware that K is up to 256. So, if you apply this on a Filebacked Big Matrix of one million
 columns, you will create a matrix of nearly 1GB!

Examples

X <- big_attachExtdata()
class(X) # big_counts() is available for class FBM.code256 only
X[1:5, 1:8]

by columns
big_counts(X, ind.row = 1:5, ind.col = 1:8)

by rows
big_counts(X, ind.row = 1:5, ind.col = 1:8, byrow = TRUE)
big_cprodMat

Cross-product with a matrix

Description

Cross-product between a Filebacked Big Matrix and a matrix.

Usage

big_cprodMat(
 X,
 A.row,
 ind.row = rows_along(X),
 ind.col = cols_along(X),
 ncores = 1,
 block.size = block_size(nrow(X), ncores),
 center = NULL,
 scale = NULL
)

S4 method for signature 'FBM,matrix'
crossprod(x, y)

S4 method for signature 'FBM,matrix'
tcrossprod(x, y)

S4 method for signature 'matrix,FBM'
crossprod(x, y)

S4 method for signature 'matrix,FBM'
tcrossprod(x, y)

Arguments

X An object of class FBM.
A.row A matrix with length(ind.row) rows.
ind.row An optional vector of the row indices that are used. If not specified, all rows are used. Don’t use negative indices.
ind.col An optional vector of the column indices that are used. If not specified, all columns are used. Don’t use negative indices.
ncores Number of cores used. Default doesn’t use parallelism. You may use nb_cores.
block.size Maximum number of columns read at once. Default uses block_size.
center Vector of same length of ind.col to subtract from columns of X.
scale Vector of same length of ind.col to divide from columns of X.
x A 'double' FBM or a matrix.
y A 'double' FBM or a matrix.
Value

\[X^T \cdot A. \]

Matrix parallelization

Large matrix computations are made block-wise and won’t be parallelized in order to not have to reduce the size of these blocks. Instead, you may use Microsoft R Open or OpenBLAS in order to accelerate these block matrix computations. You can also control the number of cores used with `bigparallelr::set_blas_ncores()`.

Examples

```r
X <- big_attachExtdata()
n <- nrow(X)
m <- ncol(X)
A <- matrix(0, n, 10); A[] <- rnorm(length(A))

test <- big_cprodMat(X, A)
true <- crossprod(X[,], A)
all.equal(test, true)

X2 <- big_copy(X, type = "double")
all.equal(crossprod(X2, A), true)

# subsetting
ind.row <- sample(n, n/2)
ind.col <- sample(m, m/2)

tryCatch(test2 <- big_cprodMat(X, A, ind.row, ind.col),
  error = function(e) print(e))
# returns an error. You need to use the subset of A:
test2 <- big_cprodMat(X, A[ind.row, ], ind.row, ind.col)
true2 <- crossprod(X[ind.row, ind.col], A[ind.row, ])
all.equal(test2, true2)
```

big_cprodVec

Cross-product with a vector

Description

Cross-product between a Filebacked Big Matrix and a vector.

Usage

```r
big_cprodVec(
  X,
  y.row,
  ind.row = rows_along(X),
```
big_cprodVec

\[
\text{ind.col} = \text{cols_along}(X), \\
\text{center} = \text{NULL}, \\
\text{scale} = \text{NULL}, \\
\text{ncores} = 1
\]

Arguments

- **X**: An object of class FBM.
- **y.row**: A vector of same size as **ind.row**.
- **ind.row**: An optional vector of the row indices that are used. If not specified, all rows are used. **Don't use negative indices.**
- **ind.col**: An optional vector of the column indices that are used. If not specified, all columns are used. **Don't use negative indices.**
- **center**: Vector of same length of **ind.col** to subtract from columns of \(X\).
- **scale**: Vector of same length of **ind.col** to divide from columns of \(X\).
- **ncores**: Number of cores used. Default doesn't use parallelism. You may use \text{nb_cores}.

Value

\[X^T \cdot y.\]

Examples

```r
X <- big_attachExtdata()

n <- nrow(X)
m <- ncol(X)
y <- rnorm(n)

test <- big_cprodVec(X, y) # vector
true <- crossprod(X[,], y) # one-column matrix
all.equal(test, as.numeric(true))

# subsetting
ind.row <- sample(n, n/2)
ind.col <- sample(m, m/2)

tryCatch(test2 <- big_cprodVec(X, y, ind.row, ind.col),
          error = function(e) print(e))
# returns an error. You need to use the subset of y:
test2 <- big_cprodVec(X, y[ind.row], ind.row, ind.col)
true2 <- crossprod(X[ind.row, ind.col], y[ind.row])
all.equal(test2, as.numeric(true2))
```
Description

Compute $X.row^T X.row$ for a Filebacked Big Matrix X after applying a particular scaling to it.

Usage

```r
big_crossprodSelf(
  X,
  fun.scaling = big_scale(center = FALSE, scale = FALSE),
  ind.row = rows_along(X),
  ind.col = cols_along(X),
  block.size = block_size(nrow(X))
)
```

```r
## S4 method for signature 'FBM,missing'
crossprod(x, y)
```

Arguments

- **X** An object of class `FBM`.
- **fun.scaling** A function with parameters `X`, `ind.row` and `ind.col`, and that returns a `data.frame` with `$center` and `$scale` for the columns corresponding to `ind.col`, to scale each of their elements such as followed:

 $$X_{i,j} - \text{center}_j \quad \frac{\text{scale}_j}{\text{scale}_j}.$$

 Default doesn’t use any scaling. You can also provide your own `center` and `scale` by using `as_scaling_fun()`.
- **ind.row** An optional vector of the row indices that are used. If not specified, all rows are used. **Don’t use negative indices.**
- **ind.col** An optional vector of the column indices that are used. If not specified, all columns are used. **Don’t use negative indices.**
- **block.size** Maximum number of columns read at once. Default uses `block_size`.
- **x** A 'double' `FBM`.
- **y** Missing.

Value

A temporary `FBM`, with the following two attributes:

- a numeric vector `center` of column scaling,
- a numeric vector `scale` of column scaling.
Matrix parallelization

Large matrix computations are made block-wise and won’t be parallelized in order to not have to reduce the size of these blocks. Instead, you may use Microsoft R Open or OpenBLAS in order to accelerate these block matrix computations. You can also control the number of cores used with `bigparallelr::set_blas_ncores()`.

See Also

crossprod

Examples

```r
X <- FBM(13, 17, init = rnorm(221))
true <- crossprod(X[])

# No scaling
K1 <- crossprod(X)
class(K1)
all.equal(K1, true)

K2 <- big_crossprodSelf(X)
class(K2)
K2$backingfile
all.equal(K2[], true)

# big_crossprodSelf() provides some scaling and subsetting
# Example using only half of the data:
n <- nrow(X)
ind <- sort(sample(n, n/2))
K3 <- big_crossprodSelf(X, fun.scaling = big_scale(), ind.row = ind)
true2 <- crossprod(scale(X[ind, ]))
all.equal(K3[], true2)
```

`big_increment`
Increment an FBM

Description

Increment an FBM

Usage

`big_increment(X, add, use_lock = FALSE)`

Arguments

- **X**: An FBM (of type double) to increment.
- **add**: A matrix of same dimensions as `X`. Or a vector of same size.
- **use_lock**: Whether to use locks when incrementing. Default is `FALSE`. This is useful when incrementing in parallel.
Value

Returns nothing (NULL, invisibly).

Examples

X <- FBM(10, 10, init = 0)
mat <- matrix(rnorm(100), 10, 10)

big_increment(X, mat)
all.equal(X[], mat)

big_increment(X, mat)
all.equal(X[], 2 * mat)

Description

A Split-Apply-Combine strategy to parallelize the evaluation of a function.

Usage

big_parallelize(
 X,
 p.FUN,
 p.combine = NULL,
 ind = cols_along(X),
 ncores = nb_cores(),
 ...
)

Arguments

X An object of class FBM.
p.FUN The function to be applied to each subset matrix. It must take a Filebacked Big Matrix as first argument and ind, a vector of indices, which are used to split the data. For example, if you want to apply a function to X[ind.row, ind.col], you may use X[ind.row, ind.col[ind]] in a.FUN.
p.combine Function to combine the results with do.call. This function should accept multiple arguments (...). For example, you can use c, cbind, rbind. This package also provides function plus to add multiple arguments together. The default is NULL, in which case the results are not combined and are returned as a list, each element being the result of a block.
ind Initial vector of subsetting indices. Default is the vector of all column indices.
ncores Number of cores used. Default doesn’t use parallelism. You may use nb_cores.
... Extra arguments to be passed to p.FUN.
Details

This function splits indices in parts, then apply a given function to each part and finally combine the results.

Value

Return a list of `ncores` elements, each element being the result of one of the cores, computed on a block. The elements of this list are then combined with `do.call(p.combine, .)` if `p.combined` is given.

See Also

`big_apply` `bigparallelr::split_parapply`

Examples

```r
## Not run: # CRAN is super slow when parallelism.
X <- big_attachExtdata()

### Computation on all the matrix
t <- big_colstats(X)

big_colstats_sub <- function(X, ind) {
  big_colstats(X, ind.col = ind)
}
# 1. the computation is split along all the columns
# 2. for each part the computation is done, using 'big_colstats'
# 3. the results (data.frames) are combined via 'rbind'.
test <- big_parallelize(X, p.FUN = big_colstats_sub,
  p.combine = 'rbind', ncores = 2)
all.equal(test, t)

### Computation on a part of the matrix
n <- nrow(X)
m <- ncol(X)
rows <- sort(sample(n, n/2)) # sort to provide some locality in accesses
cols <- sort(sample(m, m/2)) # idem

t <- big_colstats(X, ind.row = rows, ind.col = cols)

big_colstats_sub2 <- function(X, ind, rows, cols) {
  big_colstats(X, ind.row = rows, ind.col = cols[ind])
}
# This doesn't work because, by default, the computation is spread
# along all columns. We must explicitly specify the 'ind' parameter.
tryCatch(big_parallelize(X, p.FUN = big_colstats_sub2,
  p.combine = 'rbind', ncores = 2,
  rows = rows, cols = cols),
  error = function(e) message(e))
# This now works, using 'ind = seq_along(cols)'.
t2 <- big_parallelize(X, p.FUN = big_colstats_sub2,
`````
big_prodMat

p.combined = 'rbind', ncores = 2,
ind = seq_along(cols),
rows = rows, cols = cols)

all.equal(test2, true2)

End(Not run)

big_prodMat

Product with a matrix

Description

Product between a Filebacked Big Matrix and a matrix.

Usage

big_prodMat(
 X,
 A.col,
 ind.row = rows_along(X),
 ind.col = cols_along(X),
 ncores = 1,
 block.size = block_size(nrow(X), ncores),
 center = NULL,
 scale = NULL
)

S4 method for signature 'FBM,matrix'
 x %*% y

S4 method for signature 'matrix,FBM'
 x %*% y

Arguments

 X An object of class FBM.
 A.col A matrix with length(ind.col) rows.
 ind.row An optional vector of the row indices that are used. If not specified, all rows are
 used. Don't use negative indices.
 ind.col An optional vector of the column indices that are used. If not specified, all
 columns are used. Don't use negative indices.
 ncores Number of cores used. Default doesn't use parallelism. You may use nb_cores.
 block.size Maximum number of columns read at once. Default uses block_size.
 center Vector of same length of ind.col to subtract from columns of X.
 scale Vector of same length of ind.col to divide from columns of X.
 x A 'double' FBM or a matrix.
 y A 'double' FBM or a matrix.
Value

\[X \cdot A. \]

Matrix parallelization

Large matrix computations are made block-wise and won’t be parallelized in order to not have to reduce the size of these blocks. Instead, you may use Microsoft R Open or OpenBLAS in order to accelerate these block matrix computations. You can also control the number of cores used with `bigparallelr::set_blas_ncores()`.

Examples

```r
X <- big_attachExtdata()
n <- nrow(X)
m <- ncol(X)
A <- matrix(0, m, 10); A[] <- rnorm(length(A))

test <- big_prodMat(X, A)
true <- X[] %*% A
all.equal(test, true)

X2 <- big_copy(X, type = "double")
all.equal(X2 %*% A, true)

# subsetting
ind.row <- sample(n, n/2)
ind.col <- sample(m, m/2)

tryCatch(test2 <- big_prodMat(X, A, ind.row, ind.col),
error = function(e) print(e))
# returns an error. You need to use the subset of A:
test2 <- big_prodMat(X, A[ind.col, ], ind.row, ind.col)
all.equal(test2, true2)
```

big_prodVec

Product with a vector

Description

Product between a Filebacked Big Matrix and a vector.

Usage

```r
big_prodVec(
  X,
  y.col,
  ind.row = rows_along(X),
)```
big_prodVec

\[
\text{ind.col} = \text{cols\_along}(X),
\]
\[
\text{center} = \text{NULL},
\]
\[
\text{scale} = \text{NULL},
\]
\[
n\text{cores} = 1
\]

Arguments

\text{X} \quad \text{An object of class FBM.}

\text{y.col} \quad \text{A vector of same size as ind.col.}

\text{ind.row} \quad \text{An optional vector of the row indices that are used. If not specified, all rows are used. Don't use negative indices.}

\text{ind.col} \quad \text{An optional vector of the column indices that are used. If not specified, all columns are used. Don't use negative indices.}

\text{center} \quad \text{Vector of same length of ind.col to subtract from columns of X.}

\text{scale} \quad \text{Vector of same length of ind.col to divide from columns of X.}

\text{ncores} \quad \text{Number of cores used. Default doesn’t use parallelism. You may use nb\_cores.}

Value

\[X \cdot y.\]

Examples

\begin{verbatim}
X <- big_attachExtdata()
n <- nrow(X)
m <- ncol(X)
y <- rnorm(m)

test <- big_prodVec(X, y)  # vector
ture <- X[] %*% y  # one-column matrix
all.equal(test, as.numeric(true))

# subsetting
ind.row <- sample(n, n/2)
ind.col <- sample(m, m/2)

tryCatch(test2 <- big_prodVec(X, y, ind.row, ind.col),
  error = function(e) print(e))
# returns an error. You need to use the subset of y:
test2 <- big_prodVec(X, y[ind.col], ind.row, ind.col)
true2 <- X[ind.row, ind.col] %*% y[ind.col]
all.equal(test2, as.numeric(true2))
\end{verbatim}
**big_randomSVD**

**Randomized partial SVD**

**Description**

An algorithm for partial SVD (or PCA) of a Filebacked Big Matrix based on the algorithm in RSpectra (by Yixuan Qiu and Jiali Mei).

This algorithm is linear in time in all dimensions and is very memory-efficient. Thus, it can be used on very large big matrices.

**Usage**

```r
big_randomSVD(
 X,
 fun.scaling = big_scale(center = FALSE, scale = FALSE),
 ind.row = rows_along(X),
 ind.col = cols_along(X),
 k = 10,
 tol = 1e-04,
 verbose = FALSE,
 ncores = 1,
 fun.prod = big_prodVec,
 fun.cprod = big_cprodVec
)
```

**Arguments**

- `X`: An object of class FBM.
- `fun.scaling`: A function with parameters `X`, `ind.row` and `ind.col`, and that returns a data frame with `$center` and `$scale` for the columns corresponding to `ind.col`, to scale each of their elements such as followed:
  
  \[
  X_{i,j} - \frac{center_j}{scale_j}
  \]

  Default doesn’t use any scaling. You can also provide your own `center` and `scale` by using `as_scaling_fun()`.

- `ind.row`: An optional vector of the row indices that are used. If not specified, all rows are used. **Don’t use negative indices.**

- `ind.col`: An optional vector of the column indices that are used. If not specified, all columns are used. **Don’t use negative indices.**

- `k`: Number of singular vectors/values to compute. Default is 10. **This algorithm should be used to compute only a few singular vectors/values.**

- `tol`: Precision parameter of `svds`. Default is `1e-4`.

- `verbose`: Should some progress be printed? Default is `FALSE`.

- `ncores`: Number of cores used. Default doesn’t use parallelism. You may use `nb_cores`. 
fun.prod Function that takes 6 arguments (in this order):
- a matrix-like object \( X \),
- a vector \( x \),
- a vector of row indices \( \text{ind.row} \) of \( X \),
- a vector of column indices \( \text{ind.col} \) of \( X \),
- a vector of column centers (corresponding to \( \text{ind.col} \)),
- a vector of column scales (corresponding to \( \text{ind.col} \)), and compute the product of \( X \) (subsetted and scaled) with \( x \).

fun.cprod Same as fun.prod, but for the transpose of \( X \).

Value
A named list (an S3 class "big_SVD") of
- \( d \), the singular values,
- \( u \), the left singular vectors,
- \( v \), the right singular vectors,
- \( \text{niter} \), the number of the iteration of the algorithm,
- \( \text{nops} \), number of Matrix-Vector multiplications used,
- \( \text{center} \), the centering vector,
- \( \text{scale} \), the scaling vector.

Note that to obtain the Principal Components, you must use predict on the result. See examples.

Note

See Also
svds

Examples
set.seed(1)

\[
X <- \text{big_attachExtdata}()
K <- 10
\]

# Using only half of the data for "training"
\[
n <- \text{nrow}(X)
\text{ind} <- \text{sort}(\text{sample}(n, n/2))
\]

\[
\text{test} <- \text{big_randomSVD}(X, \text{fun.scaling} = \text{big_scale()}, \text{ind.row} = \text{ind}, k = K)
\]
str(test)

pca <- prcomp(X[ind, ], center = TRUE, scale. = TRUE)

# same scaling
all.equal(test$center, pca$center)
all.equal(test$scale, pca$scale)

# use this function to predict scores
class(test)
scores <- predict(test)
# scores and loadings are the same or opposite
plot(scores, pca$x[, 1:K])
plot(test$v, pca$rotation[, 1:K])
plot(test$u)
plot(test, type = "scores")

# projecting on new data
ind2 <- setdiff(rows_along(X), ind)
scores.test2 <- predict(test, X, ind.row = ind2)
scores.test3 <- predict(pca, X[-ind, ])
plot(scores.test2, scores.test3[, 1:K])

big_read Read a file as FBM

Description

Read a file as a Filebacked Big Matrix by using package bigreadr. For a mini-tutorial, please see this vignette.

Usage

big_read(
  file,
  select,
  filter = NULL,
  type = c("double", "float", "integer", "unsigned short", "unsigned char", "raw"),
  backingfile = drop_ext(file),
  ...
)

Arguments

file
  File to read.
select
  Indices of columns to read (sorted). The length of select will be the number of columns of the resulting FBM.
filter

Vector used to subset the rows of each data frame.

type

Type of the Filebacked Big Matrix (default is double). Either

- "double" (double precision – 64 bits)
- "float" (single precision – 32 bits)
- "integer"
- "unsigned short": can store integer values from 0 to 65535. It has voca-
tion to become the basis for a FBM.code65536.
- "raw" or "unsigned char": can store integer values from 0 to 255. It is
the basis for class FBM.code256 in order to access 256 arbitrary different
numeric values. It is used in package bigsnpr.

backingfile

Path to the file storing the FBM data on disk. An extension ".bk" will be auto-
matically added. Default uses file without its extension.

... Arguments passed on to bigreadr::big_fread2

nb_parts Number of parts in which to split reading (and transforming). Parts
are referring to blocks of selected columns. Default uses part_size to set
a good value.

skip Number of lines to skip at the beginning of file.

progress Show progress? Default is FALSE.

part_size Size of the parts if nb_parts is not supplied. Default is 500 *
1024^2 (500 MB).

Value

A Filebacked Big Matrix of type type with length(select) columns.

big_scale

Some scaling functions

description

Some scaling functions for a Filebacked Big Matrix to be used as the fun.scaling
parameter of some functions of this package.

Usage

big_scale(center = TRUE, scale = TRUE)

Arguments

center

A logical value: whether to return means or 0s.

scale

A logical value: whether to return standard deviations or 1s. You can’t use scale
without using center.
Details

One could think about less common scalings, such as for example the "y-aware" scaling which uses the inverse of betas of column-wise linear regression as scaling. See this post for details. It would be easy to implement it using big_colstats to get column means and big_univLinReg to get betas (and then inverse them).

Value

A new function that returns a data.frame of two vectors "center" and "scale" which are of the length of ind.col.

See Also

as_scaling_fun

Examples

X <- big_attachExtdata()

# No scaling
big_noscale <- big_scale(center = FALSE, scale = FALSE)
class(big_noscale) # big_scale returns a new function
str(big_noscale(X))
big_noscale2 <- big_scale(center = FALSE)
str(big_noscale2(X)) # you can't scale without centering

# Centering
big_center <- big_scale(scale = FALSE)
str(big_center(X))
# + scaling
str(big_scale()(X))

---

big_spLinReg Sparse linear regression

Description

Fit lasso (or elastic-net) penalized linear regression for a Filebacked Big Matrix. Covariables can be added (ﾉノノ penalized by default ﾏﾝ｡)

Usage

big_spLinReg(
  X,
  y.train,
  ind.train = rows_along(X),
  ind.col = cols_along(X),
  covar.train = NULL,
```r
base.train = NULL,
pf.X = NULL,
 pf.covar = NULL,
 alphas = 1,
 power_scale = 1,
 power_adaptive = 0,
 K = 10,
 ind.sets = NULL,
 nlambda = 200,
 nlam.min = 50,
 n.abort = 10,
 dfmax = 50000,
 warn = TRUE,
 ncores = 1,
 ...
)
```

**Arguments**

- **X**
  - An object of class `FBM`.

- **y.train**
  - Vector of responses, corresponding to `ind.train`.

- **ind.train**
  - An optional vector of the row indices that are used, for the training part. If not specified, all rows are used. **Don't use negative indices.**

- **ind.col**
  - An optional vector of the column indices that are used. If not specified, all columns are used. **Don't use negative indices.**

- **covar.train**
  - Matrix of covariables to be added in each model to correct for confounders (e.g., the scores of PCA), corresponding to `ind.train`. Default is `NULL` and corresponds to only adding an intercept to each model. You can use `covar_from_df()` to convert from a data frame.

- **base.train**
  - Vector of base predictions. Model will be learned starting from these predictions. This can be useful if you want to previously fit a model with large-effect variables that you don’t want to penalize.

- **pf.X**
  - A multiplicative factor for the penalty applied to each coefficient. If supplied, `pf.X` must be a numeric vector of the same length as `ind.col`. Default is all 1. The purpose of `pf.X` is to apply differential penalization if some coefficients are thought to be more likely than others to be in the model. Setting SOME to 0 allows to have unpenalized coefficients.

- **pf.covar**
  - Same as `pf.X`, but for `covar.train`. You might want to set some to 0 as variables with large effects can mask small effects in penalized regression.

- **alphas**
  - The elastic-net mixing parameter that controls the relative contribution from the lasso (l1) and the ridge (l2) penalty. The penalty is defined as

  \[ \alpha ||\beta||_1 + (1 - \alpha)/2 ||\beta||_2^2. \]

  \( \alpha = 1 \) is the lasso penalty and \( \alpha \) in between 0 (1e-4) and 1 is the elastic-net penalty. Default is 1. **You can pass multiple values, and only one will be used (optimized by grid-search).**
power_scale

When using lasso (alpha = 1), penalization to apply that is equivalent to scaling genotypes dividing by (standard deviation)^power_scale. Default is 1 and corresponding to standard scaling. Using 0 would correspond to using unscaled variables and using 0.5 is Pareto scaling. If you e.g. use power_scale = c(0, 0.5, 1), the best value in CMSA will be used (just like with alphas).

power_adaptive

Multiplicative penalty factor to apply to variables in the form of 1 / m_j^power_adaptive, where m_j is the marginal statistic for variable j. Default is 0, which effectively disables this option. If you e.g. use power_adaptive = c(0, 0.5, 1.5), the best value in CMSA will be used (just like with alphas).

K

Number of sets used in the Cross-Model Selection and Averaging (CMSA) procedure. Default is 10.

ind.sets

Integer vectors of values between 1 and K specifying which set each index of the training set is in. Default randomly assigns these values but it can be useful to set this vector for reproducibility, or if you want to refine the grid-search over alphas using the same sets.

nlambda

The number of lambda values. Default is 200.

nlam.min

Minimum number of lambda values to investigate. Default is 50.

n.abort

Number of lambda values for which prediction on the validation set must decrease before stopping. Default is 10.

dfmax

Upper bound for the number of nonzero coefficients. Default is 50e3 because, for large data sets, computational burden may be heavy for models with a large number of nonzero coefficients.

warn

Whether to warn if some models may not have reached a minimum. Default is TRUE.

ncores

Number of cores used. Default doesn’t use parallelism. You may use nb_cores.

... Arguments passed on to COPY_biglasso_main

lambda.min.ratio

The smallest value for lambda, as a fraction of lambda.max. Default is .0001 if the number of observations is larger than the number of variables and .001 otherwise.

eps

Convergence threshold for inner coordinate descent. The algorithm iterates until the maximum change in the objective after any coefficient update is less than eps times the null deviance. Default value is 1e-5.

max.iter

Maximum number of iterations. Default is 1000.

return.all

Deprecated. Now always return all models.

Details

This is a modified version of one function of package biglasso. It adds the possibility to train models with covariables and use many types of FBM (not only double ones). Yet, it only corresponds to screen = “SSR” (Sequential Strong Rules).

Also, to remove the choice of the lambda parameter, we introduce the Cross-Model Selection and Averaging (CMSA) procedure:

1. This function separates the training set in K folds (e.g. 10).
2. In turn,
• each fold is considered as an inner validation set and the others (K - 1) folds form an inner training set,
• the model is trained on the inner training set and the corresponding predictions (scores) for the inner validation set are computed,
• the vector of scores which maximizes log-likelihood is determined,
• the vector of coefficients corresponding to the previous vector of scores is chosen.

3. The K resulting vectors of coefficients are then averaged into one final vector of coefficients.

Value

Return an object of class big_sp_list (a list of length(alphas) x K) that has 3 methods predict, summary and plot.

References


See Also

glmnet

Examples

set.seed(1)

# simulating some data
N <- 230
M <- 730
X <- FBM(N, M, init = rnorm(N * M, sd = 5))
y <- rowSums(X[, 1:10]) + rnorm(N)
covar <- matrix(rnorm(N * 3), N)
ind.train <- sort(sample(nrow(X), 150))
ind.test <- setdiff(rows_along(X), ind.train)

# fitting model for multiple lambdas and alphas
test <- big_spLinReg(X, y[ind.train], ind.train = ind.train,
                      covar.train = covar[ind.train, ],
                      alphas = c(1, 0.1), K = 3, warn = FALSE)

# peek at the models
plot(test)
summary(test, sort = TRUE)
summary(test, sort = TRUE)$message
# prediction for other data -> only the best alpha is used
summary(test, best.only = TRUE)
pred <- predict(test, X, ind.row = ind.test, covar.row = covar[ind.test, ])
plot(pred, y[ind.test], pch = 20); abline(0, 1, col = "red")

---

**big_spLogReg**

**Sparse logistic regression**

**Description**

Fit lasso (or elastic-net) penalized logistic regression for a Filebacked Big Matrix. Covariables can be added (//! penalized by default /!).

**Usage**

```r
big_spLogReg(
 X,
 y01.train,
 ind.train = rows_along(X),
 ind.col = cols_along(X),
 covar.train = NULL,
 base.train = NULL,
 pf.X = NULL,
 pf.covar = NULL,
 alphas = 1,
 power_scale = 1,
 power_adaptive = 0,
 K = 10,
 ind.sets = NULL,
 nlambda = 200,
 nlam.min = 50,
 n.abort = 10,
 dfmax = 50000,
 warn = TRUE,
 ncores = 1,
 ...
)
```

**Arguments**

- **X** An object of class `FBM`.
- **y01.train** Vector of responses, corresponding to `ind.train`. **Must be only 0s and 1s.**
- **ind.train** An optional vector of the row indices that are used, for the training part. If not specified, all rows are used. **Don't use negative indices.**
- **ind.col** An optional vector of the column indices that are used. If not specified, all columns are used. **Don't use negative indices.**
covar.train  Matrix of covariables to be added in each model to correct for confounders (e.g. the scores of PCA), corresponding to ind.train. Default is NULL and corresponds to only adding an intercept to each model. You can use covar_from_df() to convert from a data frame.

base.train  Vector of base predictions. Model will be learned starting from these predictions. This can be useful if you want to previously fit a model with large-effect variables that you don’t want to penalize.

pf.X  A multiplicative factor for the penalty applied to each coefficient. If supplied, pf.X must be a numeric vector of the same length as ind.col. Default is all 1. The purpose of pf.X is to apply differential penalization if some coefficients are thought to be more likely than others to be in the model. Setting SOME to 0 allows to have unpenalized coefficients.

pf.covar  Same as pf.X, but for covar.train. You might want to set some to 0 as variables with large effects can mask small effects in penalized regression.

alphas  The elastic-net mixing parameter that controls the relative contribution from the lasso (l1) and the ridge (l2) penalty. The penalty is defined as 

\[ \alpha ||\beta||_1 + (1 - \alpha)/2 ||\beta||^2. \]

alpha = 1 is the lasso penalty and alpha in between 0 (1e-4) and 1 is the elastic-net penalty. Default is 1. **You can pass multiple values, and only one will be used (optimized by grid-search).**

power_scale  When using lasso (alpha = 1), penalization to apply that is equivalent to scaling genotypes dividing by (standard deviation)^power_scale. Default is 1 and corresponding to standard scaling. Using 0 would correspond to using unscaled variables and using 0.5 is Pareto scaling. If you e.g. use power_scale = c(0,0.5,1), the best value in CMSA will be used (just like with alphas).

power_adaptive  Multiplicative penalty factor to apply to variables in the form of 1 / m_j^power_adaptive, where m_j is the marginal statistic for variable j. Default is 0, which effectively disables this option. If you e.g. use power_adaptive = c(0,0.5,1.5), the best value in CMSA will be used (just like with alphas).

K  Number of sets used in the Cross-Model Selection and Averaging (CMSA) procedure. Default is 10.

ind.sets  Integer vectors of values between 1 and K specifying which set each index of the training set is in. Default randomly assigns these values but it can be useful to set this vector for reproducibility, or if you want to refine the grid-search over alphas using the same sets.

nlambda  The number of lambda values. Default is 200.

nlam.min  Minimum number of lambda values to investigate. Default is 50.

n.abort  Number of lambda values for which prediction on the validation set must decrease before stopping. Default is 10.

dfmax  Upper bound for the number of nonzero coefficients. Default is 50e3 because, for large data sets, computational burden may be heavy for models with a large number of nonzero coefficients.

warn  Whether to warn if some models may not have reached a minimum. Default is TRUE.
ncores  Number of cores used. Default doesn’t use parallelism. You may use nb_cores.
...  Arguments passed on to COPY_biglasso_main

lambda.min.ratio  The smallest value for lambda, as a fraction of lambda.max. Default is 0.001 if the number of observations is larger than the number of variables and 0.001 otherwise.

eps  Convergence threshold for inner coordinate descent. The algorithm iterates until the maximum change in the objective after any coefficient update is less than eps times the null deviance. Default value is 1e-5.

max.iter  Maximum number of iterations. Default is 1000.

return.all  Deprecated. Now always return all models.

Details

This is a modified version of one function of package biglasso. It adds the possibility to train models with covariables and use many types of FBM (not only double ones). Yet, it only corresponds to screen = "SSR" (Sequential Strong Rules).

Also, to remove the choice of the lambda parameter, we introduce the Cross-Model Selection and Averaging (CMSA) procedure:

1. This function separates the training set in K folds (e.g. 10).
2. In turn,
   • each fold is considered as an inner validation set and the others (K - 1) folds form an inner training set,
   • the model is trained on the inner training set and the corresponding predictions (scores) for the inner validation set are computed,
   • the vector of scores which maximizes log-likelihood is determined,
   • the vector of coefficients corresponding to the previous vector of scores is chosen.
3. The K resulting vectors of coefficients are then averaged into one final vector of coefficients.

Value

Return an object of class big_sp_list (a list of length(alphas) x K) that has 3 methods predict, summary and plot.

References


See Also

glmnet
Examples

```r
set.seed(2)

simulating some data
N <- 230
M <- 730
X <- FBM(N, M, init = rnorm(N * M, sd = 5))
y01 <- as.numeric((rowSums(X[, 1:10]) + 2 * rnorm(N)) > 0)
covar <- matrix(rnorm(N * 3), N)

ind.train <- sort(sample(nrow(X), 150))
ind.test <- setdiff(rows_along(X), ind.train)

fitting model for multiple lambdas and alphas
test <- big_spLogReg(X, y01[ind.train], ind.train = ind.train,
covar.train = covar[ind.train,],
alphas = c(1, 0.1), K = 3, warn = FALSE)

peek at the models
plot(test)
summary(test, sort = TRUE)
summary(test, sort = TRUE)$message

prediction for other data -> only the best alpha is used
summary(test, best.only = TRUE)
pred <- predict(test, X, ind.row = ind.test, covar.row = covar[ind.test,])
AUC(pred, y01[ind.test])
library(ggplot2)
qplot(pred, fill = as.logical(y01[ind.test]),
geom = "density", alpha = I(0.4)) +
labs(fill = "Case?") +
theme_bigstatsr() +
theme(legend.position = c(0.52, 0.8))
```

big_SVD

Partial SVD

Description

An algorithm for partial SVD (or PCA) of a Filebacked Big Matrix through the eigen decomposition of the covariance between variables (primal) or observations (dual). **Use this algorithm only if there is one dimension that is much smaller than the other. Otherwise use big_randomSVD.**

Usage

```r
big_SVD(
 X,
 fun.scaling = big_scale(center = FALSE, scale = FALSE),
 ind.row = rows_along(X),
```
\begin{verbatim}
ind.col = cols_along(X),
k = 10,
block.size = block_size(nrow(X))
)

Arguments
X An object of class FBM.
fun.scaling A function with parameters \(X, \text{ind.row} \) and \(\text{ind.col}\), and that returns a data.frame with \$\text{center}\$ and \$\text{scale}\$ for the columns corresponding to \(\text{ind.col}\), to scale each of their elements such as followed:
\[
\frac{X_{i,j} - \text{center}_j}{\text{scale}_j}.
\]
Default doesn’t use any scaling. You can also provide your own \text{center} and \text{scale} by using \text{as\_scaling\_fun()}.

ind.row An optional vector of the row indices that are used. If not specified, all rows are used. \textbf{Don’t use negative indices}.

ind.col An optional vector of the column indices that are used. If not specified, all columns are used. \textbf{Don’t use negative indices}.

k Number of singular vectors/values to compute. Default is 10. \textbf{This algorithm should be used to compute only a few singular vectors/values}. If more is needed, have a look at https://stackoverflow.com/a/46380540/6103040.

block.size Maximum number of columns read at once. Default uses \text{block.size}.

Details
To get \(X = U \cdot D \cdot V^T\),
\begin{itemize}
  \item if the number of observations is small, this function computes \(K(2) = X \cdot X^T \approx U \cdot D^2 \cdot U^T\) and then \(V = X^T \cdot U \cdot D^{-1}\),
  \item if the number of variable is small, this function computes \(K(1) = X^T \cdot X \approx V \cdot D^2 \cdot V^T\) and then \(U = X \cdot V \cdot D^{-1}\),
  \item if both dimensions are large, use \text{big\_randomSVD} instead.
\end{itemize}

Value
A named list (an S3 class “big\_SVD”) of
\begin{itemize}
  \item \(d\), the singular values,
  \item \(u\), the left singular vectors,
  \item \(v\), the right singular vectors,
  \item \text{center}, the centering vector,
  \item \text{scale}, the scaling vector.
\end{itemize}

Note that to obtain the Principal Components, you must use \text{predict} on the result. See examples.
\end{verbatim}
Matrix parallelization

Large matrix computations are made block-wise and won’t be parallelized in order to not have to reduce the size of these blocks. Instead, you may use Microsoft R Open or OpenBLAS in order to accelerate these block matrix computations. You can also control the number of cores used with bigparallelr::set_blas_ncores().

See Also

prcomp

Examples

```r
set.seed(1)

X <- big_attachExtdata()
n <- nrow(X)

Using only half of the data
ind <- sort(sample(n, n/2))

test <- big_SVD(X, fun.scaling = big_scale(), ind.row = ind)
str(test)
plot(test$u)

pca <- prcomp(X[ind,], center = TRUE, scale. = TRUE)

same scaling
all.equal(test$center, pca$center)
all.equal(test$scale, pca$scale)

scores and loadings are the same or opposite
except for last eigenvalue which is equal to 0
due to centering of columns
scores <- test$u %*% diag(test$d)
class(test)
scores2 <- predict(test) # use this function to predict scores
all.equal(scores, scores2)
dim(scores)
dim(pca$x)
tail(pca$sdev)
plot(scores2, pca$x[, 1:ncol(scores2)])
plot(test$v[1:100,], pca$rotation[1:100, 1:ncol(scores2)])

projecting on new data
X2 <- sweep(sweep(X[-ind,], 2, test$center, '-'), 2, test$scale, '/')
scores.test <- X2 %*% test$v
ind2 <- setdiff(rows_along(X), ind)
scores.test2 <- predict(test, X, ind.row = ind2) # use this
all.equal(scores.test, scores.test2)
scores.test3 <- predict(pca, X[-ind,])
plot(scores.test2, scores.test3[, 1:ncol(scores.test2)])
```
Description

Compute $X.rowX.row^T$ for a Filebacked Big Matrix $X$ after applying a particular scaling to it.

Usage

```r
big_tcrossprodSelf(
 x,
 fun.scaling = big_scale(center = FALSE, scale = FALSE),
 ind.row = rows_along(X),
 ind.col = cols_along(X),
 block.size = block_size(nrow(X))
)
```

## S4 method for signature 'FBM,missing'
tcrossprod(x, y)

Arguments

- `X`: An object of class FBM.
- `fun.scaling`: A function with parameters `X`, `ind.row` and `ind.col`, and that returns a data.frame with `$center` and `$scale` for the columns corresponding to `ind.col`, to scale each of their elements such as followed:
  \[
  \frac{X_{i,j} - center_j}{scale_j}.
  \]
  Default doesn’t use any scaling. You can also provide your own `center` and `scale` by using `as_scaling_fun()`.
- `ind.row`: An optional vector of the row indices that are used. If not specified, all rows are used. **Don’t use negative indices.**
- `ind.col`: An optional vector of the column indices that are used. If not specified, all columns are used. **Don’t use negative indices.**
- `block.size`: Maximum number of columns read at once. Default uses `block.size`.
- `x`: A 'double' FBM.
- `y`: Missing.

Value

A temporary FBM, with the following two attributes:
- a numeric vector `center` of column scaling,
- a numeric vector `scale` of column scaling.
Matrix parallelization

Large matrix computations are made block-wise and won't be parallelized in order to not have to reduce the size of these blocks. Instead, you may use Microsoft R Open or OpenBLAS in order to accelerate these block matrix computations. You can also control the number of cores used with bigparallelr::set_blas_ncores().

See Also
tcrossprod

Examples

\[
X \leftarrow \text{FBM}(13, 17, \text{init} = \text{rnorm}(221))
\]

true \leftarrow \text{tcrossprod}(X)[]

# No scaling
K1 \leftarrow \text{tcrossprod}(X)
class(K1)
all.equal(K1, true)

K2 \leftarrow \text{big_tcrossprodSelf}(X)
class(K2)
K2$backingfile
all.equal(K2[], true)

# big_tcrossprodSelf() provides some scaling and subsetting
# Example using only half of the data:
\[
n \leftarrow \text{nrow}(X)
\]

ind \leftarrow \text{sort}(\text{sample}(n, n/2))
K3 \leftarrow \text{big_tcrossprodSelf}(X, \text{fun.scaling} = \text{big_scale()}, \text{ind.row} = \text{ind})
true2 \leftarrow \text{tcrossprod}(\text{scale}(X[\text{ind}, ]))
all.equal(K3[], true2)

big_transpose

Transpose an FBM

Description

This function implements a simple cache-oblivious algorithm for the transposition of a Filebacked Big Matrix.

Usage

\[
\text{big_transpose}(X, \text{backingfile} = \text{tempfile()})
\]

Arguments

- **X**: An object of class FBM.
- **backingfile**: Path to the file storing the Big Matrix on disk. An extension ".bk" will be automatically added. Default stores in the temporary directory.
Value

The new transposed FBM. Dimensions and type are automatically determined from the input FBM.

Examples

```r
X <- FBM(6, 5, init = rnorm(30))
Xt <- big_transpose(X)
identical(t(X[]), Xt[])
```

big_univLinReg  
Column-wise linear regression

Description

Slopes of column-wise linear regressions of each column of a Filebacked Big Matrix, with some other associated statistics. Covariates can be added to correct for confounders.

Usage

```r
big_univLinReg(
 X,
 y.train,
 ind.train = rows_along(X),
 ind.col = cols_along(X),
 covar.train = NULL,
 thr.eigval = 1e-04,
 ncores = 1
)
```

Arguments

- **X**  
  An object of class `FBM`.

- **y.train**  
  Vector of responses, corresponding to `ind.train`.

- **ind.train**  
  An optional vector of the row indices that are used, for the training part. If not specified, all rows are used. **Don't use negative indices.**

- **ind.col**  
  An optional vector of the column indices that are used. If not specified, all columns are used. **Don't use negative indices.**

- **covar.train**  
  Matrix of covariables to be added in each model to correct for confounders (e.g. the scores of PCA), corresponding to `ind.train`. Default is `NULL` and corresponds to only adding an intercept to each model. You can use `covar_from_df()` to convert from a data frame.

- **thr.eigval**  
  Threshold to remove "insignificant" singular vectors. Default is `1e-4`.

- **ncores**  
  Number of cores used. Default doesn’t use parallelism. You may use `nb_cores`. 
Value

A data.frame with 3 elements:

1. the slopes of each regression,
2. the standard errors of each slope,
3. the t-scores associated with each slope. This is also an object of class mhtest. See methods(class = "mhtest").

See Also

lm

Examples

set.seed(1)

X <- big_attachExtdata()
n <- nrow(X)
y <- rnorm(n)
covar <- matrix(rnorm(n * 3), n)

X1 <- X[, 1] # only first column of the Filebacked Big Matrix

# Without covar
test <- big_univLinReg(X, y)
## New class 'mhtest'
class(test)
attr(test, "transfo")
attr(test, "predict")
## plot results
plot(test)
plot(test, type = "Volcano")
## To get p-values associated with the test
test$p.value <- predict(test, log10 = FALSE)
str(test)
summary(lm(y ~ X1))$coefficients[2, ]

# With all data
str(big_univLinReg(X, y, covar = covar))
summary(lm(y ~ X1 + covar)$coefficients[2, ]

# With only half of the data
ind.train <- sort(sample(n, n/2))
str(big_univLinReg(X, y[ind.train],
  covar.train = covar[ind.train, ],
  ind.train = ind.train))
summary(lm(y ~ X1 + covar, subset = ind.train)$coefficients[2, ]
Column-wise logistic regression

Description
Slopes of column-wise logistic regressions of each column of a Filebacked Big Matrix, with some other associated statistics. Covariates can be added to correct for confounders.

Usage
big_univLogReg(
  X,
  y01.train,
  ind.train = rows_along(X),
  ind.col = cols_along(X),
  covar.train = NULL,
  tol = 1e-08,
  maxiter = 20,
  ncores = 1
)

Arguments
X An object of class FBM.
y01.train Vector of responses, corresponding to ind.train. Must be only 0s and 1s.
ind.train An optional vector of the row indices that are used, for the training part. If not specified, all rows are used. Don’t use negative indices.
ind.col An optional vector of the column indices that are used. If not specified, all columns are used. Don’t use negative indices.
covar.train Matrix of covariables to be added in each model to correct for confounders (e.g. the scores of PCA), corresponding to ind.train. Default is NULL and corresponds to only adding an intercept to each model. You can use covar_from_df() to convert from a data frame.
tol Relative tolerance to assess convergence of the coefficient. Default is 1e-8.
maxiter Maximum number of iterations before giving up. Default is 20. Usually, convergence is reached within 3 or 4 iterations. If there is not convergence, glm is used instead for the corresponding column.
ncores Number of cores used. Default doesn’t use parallelism. You may use nb_cores.

Details
If convergence is not reached by the main algorithm for some columns, the corresponding niter element is set to NA and a message is given. Then, glm is used instead for the corresponding column. If it can’t converge either, all corresponding estimations are set to NA.
Value

A data.frame with 4 elements:

1. the slopes of each regression,
2. the standard errors of each slope,
3. the number of iteration for each slope. If is NA, this means that the algorithm didn’t converge, and glm was used instead.
4. the z-scores associated with each slope. This is also an object of class mhtest. See methods(class = "mhtest").

See Also

glm

Examples

set.seed(1)

X <- big_attachExtdata()
n <- nrow(X)
y01 <- sample(0:1, size = n, replace = TRUE)
covar <- matrix(rnorm(n * 3), n)

X1 <- X[, 1] # only first column of the Filebacked Big Matrix

# Without covar

test <- big_univLogReg(X, y01)
## new class `mhtest`
class(test)
attr(test, "transfo")
attr(test, "predict")
## plot results
plot(test)
plot(test, type = "Volcano")
## To get p-values associated with the test

test$p.value <- predict(test, log10 = FALSE)
str(test)
summary(glm(y01 ~ X1, family = "binomial")[2, ]

# With all data

str(big_univLogReg(X, y01, covar.train = covar))
summary(glm(y01 ~ X1 + covar, family = "binomial")[2, ]

# With only half of the data

ind.train <- sort(sample(n, n/2))
str(big_univLogReg(X, y01[ind.train],
      covar.train = covar[ind.train, ],
      ind.train = ind.train))
summary(glm(y01 ~ X1 + covar, family = "binomial",
      subset = ind.train))[2, ]
big_write

Write an FBM to a file

Description
Write a file from a Filebacked Big Matrix (by parts).

Usage
big_write(
  X,
  file,
  every_nrow,
  ..., 
  ind.row = rows_along(X),
  ind.col = cols_along(X),
  progress = FALSE
)

Arguments
X
An object of class FBM.

file
File to write to.

every_nrow
Number of rows to write at once.

...
Other arguments to be passed to data.table::fwrite, except x, file, append,
row.names, col.names and showProgress.

ind.row
An optional vector of the row indices that are used. If not specified, all rows are
used. Don’t use negative indices.

ind.col
An optional vector of the column indices that are used. If not specified, all
columns are used. Don’t use negative indices.

progress
Show progress? Default is FALSE.

Value
Input parameter file, invisibly.

Examples
X <- big_attachExtdata()
csv <- big_write(X, tempfile(), every_nrow = 100, progress = interactive())
**block_size**

*Determine a correct value for the block.size parameter*

**Description**

It determines the value of block.size such that a matrix of doubles of size n x block.size takes less memory than getOption("bigstatsr.block.sizeGB") GigaBytes (default is 1GB).

**Usage**

\[
\text{block.size}(n, \text{ncores} = 1)
\]

**Arguments**

- \(n\) The number of rows.
- \(\text{ncores}\) The number of cores.

**Value**

An integer \(\geq 1\).

**Examples**

- \(\text{block.size}(1e3)\)
- \(\text{block.size}(1e6)\)
- \(\text{block.size}(1e6, 6)\)

**covar_from_df**

*Numeric matrix from data frame*

**Description**

Transform a data frame to a numeric matrix by one-hot encoding factors. The last factor value is always omitted to prevent having a singular matrix when adding a column of 1s (intercept) in models.

**Usage**

\[
\text{covar_from_df}(df)
\]

**Arguments**

- \(df\) A data frame.

**Value**

A numeric matrix.
Examples

```r
mat <- covar_from_df(iris)
head(mat)
```

**FBM-class**  
Class FBM

**Description**

A reference class for storing and accessing matrix-like data stored in files on disk. This is very similar to Filebacked Big Matrices provided by the `bigmemory` package (see the corresponding vignette).

Convert a matrix (or a data frame) to an FBM.

**Usage**

```r
FBM(
 nrow,
 ncol,
 type = c("double", "float", "integer", "unsigned short", "unsigned char", "raw"),
 init = NULL,
 backingfile = tempfile(),
 create_bk = TRUE,
 is_read_only = FALSE
)
```

```r
as_FBM(
 x,
 type = c("double", "float", "integer", "unsigned short", "unsigned char", "raw"),
 backingfile = tempfile(),
 is_read_only = FALSE
)
```

**Arguments**

- `nrow` Number of rows.
- `ncol` Number of columns.
- `type` Type of the Filebacked Big Matrix (default is `double`). Either
  - "double" (double precision – 64 bits)
  - "float" (single precision – 32 bits)
  - "integer"
  - "unsigned short": can store integer values from 0 to 65535. It has vocabulary to become the basis for a FBM code 65536.
  - "raw" or "unsigned char": can store integer values from 0 to 255. It is the basis for class FBM code 256 in order to access 256 arbitrary different numeric values. It is used in package `bigsnpr`.
FBM-class

init Either a single value (e.g. 0) or as many value as the number of elements of the FBM. Default doesn’t initialize the matrix.

backingfile Path to the file storing the Big Matrix on disk. An extension ".bk" will be automatically added. Default stores in the temporary directory.

create_bk Whether to create a backingfile (the default) or use an existing one (which should be named by the backingfile parameter and have an extension ",bk"). For example, this could be used to convert a filebacked big.matrix from package bigmemory to a FBM (see the corresponding vignette).

is_read_only Whether the FBM is read-only? Default is FALSE.

x A matrix or an data frame (2-dimensional data).

Details

An object of class FBM has many fields:

- $address: address of the external pointer containing the underlying C++ object for read-only mapping, to be used as a XPtr<FBM> in C++ code
- $extptr: (internal) use $address instead
- $address_rw: address of the external pointer containing the underlying C++ object for read/write mapping, to be used as a XPtr<FBM_RW> in C++ code
- $extptr_rw: (internal) use $address_rw instead
- $nrow: number of rows
- $ncol: number of columns
- $type: (internal) use type_size or type_chr instead
- $type_chr: FBM type as character, e.g. "double"
- $type_size: size of FBM type in bytes (e.g. "double" is 8 and "float" is 4)
- $backingfile or $bk: File with extension 'bk' that stores the numeric data of the FBM
- $rds: 'rds' file (that may not exist) corresponding to the 'bk' file
- $is_saved: whether this object is stored in $rds?
- $is_read_only: whether it is (not) allowed to modify data?

And some methods:

- $save(): Save the FBM object in $rds. Returns the FBM.
- add_columns(<ncol_add>): Add some columns to the FBM by appending the backingfile with some data. Returns the FBM invisibly.
- $bm(): Get this object as a filebacked.big.matrix to be used by package bigmemory.
- $bm.desc(): Get this object as a filebacked.big.matrix descriptor to be used by package bigmemory.
- $check_write_permissions(): Error if the FBM is read-only.

See Also

big_attach big_copy
Examples

```r
mat <- matrix(1:4, 2)
X_from_mat <- as_FBM(mat)

You can save this object in an .rds file to use it in another session
X_from_mat$is_saved
X_from_mat$save()
X_from_mat$is_saved
(rds <- X_from_mat$rds)
Use big_attach() to load the FBM object in another session
X_from_mat <- big_attach(rds)

Standard accessors
X <- FBM(10, 10)
typeof(X)
X[] <- rnorm(length(X))
X[, 1:6]
X[] <- 1:100
X[, 1]
X[, ,] # not recommended for large matrices
X[, -1]
X[, c(TRUE, FALSE)]
X[cbind(1:10, 1:10)] <- NA
X[] # access as standard R matrix

X <- FBM(150, 5)
X[] <- iris ## you can replace with a df (but factors -> integers)
X2 <- as_FBM(iris)
identical(X[], X2[])
```

FBM-methods

Methods for the FBM class

Description

Methods for the FBM class

Accessor methods for class FBM. You can use positive and negative indices, logical indices (that are recycled) and also a matrix of indices (but only positive ones).

Dimension and type methods for class FBM.

Usage

```r
S4 method for signature 'FBM,ANY,ANY,ANY'
x[i, j, ..., drop = TRUE]

S4 replacement method for signature 'FBM,ANY,ANY,ANY'
```
x[i, j, ...] <- value

## S4 method for signature 'FBM'

dim(x)

## S4 method for signature 'FBM'

length(x)

## S4 method for signature 'FBM'

typeof(x)

## S4 method for signature 'FBM'

diag(x)

**Arguments**

x  A FBM object.

i  A vector of indices (or nothing). You can use positive and negative indices, logical indices (that are recycled) and also a matrix of indices (but only positive ones).

j  A vector of indices (or nothing). You can use positive and negative indices, logical indices (that are recycled).

...  Not used. Just to make nargs works.

drop  Whether to delete the dimensions of a matrix which have one dimension equals to 1.

value  The values to replace. Should be of length 1 or of the same length of the subset to replace.

**Description**

A reference class for storing and accessing up to 256 arbitrary different values using a Filebacked Big Matrix of type unsigned char. Compared to a Filebacked Big Matrix, it adds a slot code which is used as a lookup table of size 256.

**Usage**

```r
FBM.code256(
 nrow,
 ncol,
 code = rep(NA_real_, 256),
 init = NULL,
 backingfile = tempfile(),
 create_bk = TRUE,
)```
FBM.code256-class

is_read_only = FALSE

add_code256(x, code)

Arguments

nrow Number of rows.

ncol Number of columns.

code A numeric vector (of length 256). You should construct it with rep(NA_real_, 256) and then replace the values which are of interest to you.

init Either a single value (e.g. 0) or as many value as the number of elements of the FBM. Default doesn't initialize the matrix.

backingfile Path to the file storing the Big Matrix on disk. An extension ".bk" will be automatically added. Default stores in the temporary directory.

create_bk Whether to create a backingfile (the default) or use an existing one (which should be named by the backingfile parameter and have an extension ".bk"). For example, this could be used to convert a filebacked big.matrix from package bigmemory to a FBM (see the corresponding vignette).

is_read_only Whether the FBM is read-only? Default is FALSE.

x A FBM.

Examples

X <- FBM(10, 10, type = "raw")
X[] <- sample(as.raw(0:3), size = length(X), replace = TRUE)
X[]

From an FBM of type 'raw' ('unsigned char')
code <- rep(NA_real_, 256)
code[1:3] <- c(1, 3, 5)

X.code <- add_code256(X, code)
X.code[]

Or directly
X.code2 <- FBM.code256(10, 10, code, init = sample(as.raw(0:3), 100, TRUE))
X.code2[]

Get a new FBM.code256 object with another code (but same underlying data)
X.code3 <- X.code$copy(code = rnorm(256))
all.equal(X.code$code256, code)
get_beta

Combining sets of coefficients

Usage

```r
get_beta(betas, method = c("geometric-median", "mean-wise", "median-wise"))
```

Arguments

- **betas**: Matrix of coefficient vectors to be combined.
- **method**: Method for combining vectors of coefficients. The default uses the geometric median.

Value

A vector of resulting coefficients.

pasteLoc

Get coordinates on plot

Description

Get coordinates on a plot by mouse-clicking.

Usage

```r
pasteLoc(nb, digits = c(3, 3))
```

Arguments

- **nb**: Number of positions.
- **digits**: 2 integer indicating the number of decimal places (respectively for x and y coordinates).

Value

A list of coordinates. Note that if you don’t put the result in a variable, it returns as the command text for generating the list. This can be useful to get coordinates by mouse-clicking once, but then using the code for convenience and reproducibility.
Examples

```r
## Not run:
plot(runif(20, max = 5000))
# note the negative number for the rounding of $y
coord <- pasteLoc(3, digits = c(2, -1))
text(coord, c("a", "b", "c"))

## End(Not run)
```

pcor Partial correlation

Description

Partial correlation between x and y, after having adjusted both for z.

Usage

```r
pcor(x, y, z, alpha = 0.05)
```

Arguments

- **x**: A numeric vector.
- **y**: A numeric vector.
- **z**: A data frame, which can contain characters or factors.
- **alpha**: Type-I error for the confidence interval (CI). Default is 0.05, corresponding to a 95% CI.

Value

The partial correlation, and the lower and upper bounds of its CI.

Examples

```r
pcor(iris[[1]], iris[[2]], iris[-(1:2)])
```
plot.big_sp_list

Plot method

Description
Plot method for class `big_sp_list`.

Usage
S3 method for class `big_sp_list`
plot(x, coeff = 1, ...)

Arguments
- `x`: An object of class `big_sp_list`.
- `coeff`: Relative size of text. Default is 1.
- `...`: Not used.

Value
A `ggplot2` object. You can plot it using the `print` method. You can modify it as you wish by adding layers. You might want to read this chapter to get more familiar with the package `ggplot2`.

plot.big_SVD

Plot method

Description
Plot method for class `big_SVD`.

Usage
S3 method for class `big_SVD`
plot(
 x,
 type = c("screeplot", "scores", "loadings"),
 nval = length(x$d),
 scores = c(1, 2),
 loadings = 1,
 ncol = NULL,
 coeff = 1,
 viridis = TRUE,
 cols = 2,
 ...)

Arguments

- **x**: An object of class `big_SVD`.
- **type**: Either
 - "screeplot": plot of decreasing singular values (the default).
 - "scores": plot of the scores associated with 2 Principal Components.
 - "loadings": plot of loadings associated with 1 Principal Component.
- **nval**: Number of singular values to plot. Default plots all computed.
- **scores**: Vector of indices of the two PCs to plot. Default plots the first two PCs. If providing more than two, it produces many plots.
- **loadings**: Indices of PC loadings to plot. Default plots the first vector of loadings.
- **ncol**: If multiple vector of loadings are to be plotted, this defines the number of columns of the resulting multiplot.
- **coeff**: Relative size of text. Default is 1.
- **viridis**: Deprecated argument.
- **cols**: Deprecated. Use `ncol` instead.
- **...**: Not used.

Value

A `ggplot2` object. You can plot it using the `print` method. You can modify it as you wish by adding layers. You might want to read this chapter to get more familiar with the package `ggplot2`.

See Also

`big_SVD`, `big_randomSVD` and `asPlotlyText`.

Examples

```r
set.seed(1)

X <- big_attachExtdata()
svd <- big_SVD(X, big_scale(), k = 10)

# screeplots
plot(svd) # 3 PCs seems "significant"
plot(svd, coeff = 1.5) # larger font for papers

# scores plot
plot(svd, type = "scores") # first 2 PCs
plot(svd, type = "scores", scores = c(1, 3))
plot(svd, type = "scores", scores = 1:4, ncol = 2, coeff = 0.7)
## add color (recall that this return a 'ggplot2' object)
class <- plot(svd, type = "scores")
pop <- rep(c("POP1", "POP2", "POP3"), c(143, 167, 207))
library(ggplot2)
print(obj2 <- obj + aes(color = pop) + labs(color = "Population"))
## change the place of the legend
```
print(obj3 <- obj2 + theme(legend.position = c(0.82, 0.17)))
change the title and the labels of the axes
obj3 + ggtitle("Yet another title") + xlab("with an other 'x' label")

loadings
plot(svd, type = "loadings", loadings = 2)
all loadings
plot(svd, type = "loadings", loadings = 1:2, coeff = 0.7, ncol = 1)

Percentage of variance explained by the PCs
See https://github.com/privefl/bigstatsr/issues/83

dynamic plots, require the package **plotly**
Not run: plotly::ggplotly(obj3)

plot.mhtest

Plot method

Description

Plot method for class mhtest.

Usage

```r
## S3 method for class 'mhtest'
plot(x, type = c("hist", "Manhattan", "Q-Q", "Volcano"), coeff = 1, ...)
```

Arguments

- `x`
 An object of class mhtest.

- `type`
 Either.

 - "hist": histogram of p-values (the default).
 - "Manhattan": plot of the negative logarithm (in base 10) of p-values.
 - "Q-Q": Q-Q plot.
 - "Volcano": plot of the negative logarithm of p-values against the estimation of coefficients (e.g. betas in linear regression)

- `coeff`
 Relative size of text. Default is 1.

- `...`
 Not used.

Value

A ggplot2 object. You can plot it using the `print` method. You can modify it as you wish by adding layers. You might want to read this chapter to get more familiar with the package ggplot2.

See Also

`big_univLinReg`, `big_univLogReg`, `plot.big_SVD` and `asPlotlyText`.
Examples

```r
set.seed(1)
X <- big_attachExtdata()
y <- rnorm(nrow(X))
test <- big_univLinReg(X, y)

plot(test)
plot(test, type = "Volcano")
plot(test, type = "Q-Q")
plot(test, type = "Manhattan")
plot(test, type = "Manhattan") + ggplot2::ggtitle(NULL)
```

predict.big_sp

Predict method

Description

Predict method for class `big_sp`.

Usage

```r
## S3 method for class 'big_sp'
predict(object, X, ind.row, ind.col, covar.row = NULL, ncores = 1, ...)
```

Arguments

- `object` Object of class `big_sp`.
- `X` An object of class `FBM`.
- `ind.row` An optional vector of the row indices that are used. If not specified, all rows are used. **Don't use negative indices.**
- `ind.col` An optional vector of the column indices that are used. If not specified, all columns are used. **Don't use negative indices.**
- `covar.row` Matrix of covariables to be added in each model to correct for confounders (e.g. the scores of PCA), corresponding to `ind.row`. Default is `NULL` and corresponds to only adding an intercept to each model. You can use `covar_from_df()` to convert from a data frame.
- `ncores` Number of cores used. Default doesn’t use parallelism. You may use `nb_cores`.
- `...` Not used.

Value

A vector of scores, corresponding to `ind.row`.

See Also

`big_spLinReg` and `big_spLogReg`.
predict.big_sp_list Predict method

Description

Predict method for class big_sp_list.

Usage

```r
## S3 method for class 'big_sp_list'
predict(
  object,
  X,
  ind.row = rows_along(X),
  ind.col = attr(object, "ind.col"),
  covar.row = NULL,
  proba = (attr(object, "family") == "binomial"),
  base.row = NULL,
  ncores = 1,
  ...
)
```

Arguments

- `object`: Object of class big_sp_list.
- `X`: An object of class FBM.
- `ind.row`: An optional vector of the row indices that are used. If not specified, all rows are used. **Don’t use negative indices.**
- `ind.col`: An optional vector of the column indices that are used. If not specified, all columns are used. **Don’t use negative indices.**
- `covar.row`: Matrix of covariables to be added in each model to correct for confounders (e.g. the scores of PCA), corresponding to `ind.row`. Default is `NULL` and corresponds to only adding an intercept to each model. You can use `covar_from_df()` to convert from a data frame.
- `proba`: Whether to return probabilities?
- `base.row`: Vector of base predictions, corresponding to `ind.row`.
- `ncores`: Number of cores used. Default doesn’t use parallelism. You may use `nb_cores`.
- `...`: Not used.

Value

A vector of scores, corresponding to `ind.row`.

See Also

- `big_spLinReg` and `big_spLogReg`.
predict.big_SVD Scores of PCA

Description

Get the scores of PCA associated with an svd decomposition (class big_SVD).

Usage

```r
## S3 method for class 'big_SVD'
predict(
  object,
  X = NULL,
  ind.row = rows_along(X),
  ind.col = cols_along(X),
  block.size = block_size(nrow(X)),
  ...)
```

Arguments

- `object`: A list returned by big_SVD or big_randomSVD.
- `X`: An object of class FBM.
- `ind.row`: An optional vector of the row indices that are used. If not specified, all rows are used. **Don’t use negative indices.**
- `ind.col`: An optional vector of the column indices that are used. If not specified, all columns are used. **Don’t use negative indices.**
- `block.size`: Maximum number of columns read at once. Default uses block_size.
- `...`: Not used.

Value

A matrix of size \(n \times K \) where \(n \) is the number of samples corresponding to indices in `ind.row` and \(K \) the number of PCs computed in `object`. If `X` is not specified, this just returns the scores of the training set of `object`.

See Also

predict big_SVD big_randomSVD

Examples

```r
set.seed(1)
X <- big_attachExtdata()
n <- nrow(X)
```
Using only half of the data
ind <- sort(sample(n, n/2))

test <- big_SVD(X, fun.scaling = big_scale(), ind.row = ind)
str(test)
plot(test$u)

pca <- prcomp(X[ind,], center = TRUE, scale. = TRUE)

same scaling
all.equal(test$center, pca$center)
all.equal(test$scale, pca$scale)

scores and loadings are the same or opposite
except for last eigenvalue which is equal to 0
due to centering of columns
scores <- test$u %*% diag(test$d)
class(test)
scores2 <- predict(test) # use this function to predict scores
all.equal(scores, scores2)
dim(scores)
dim(pca$x)
tail(pca$sdev)
plot(scores2, pca$x[, 1:ncol(scores2)])
plot(test$v[, 1:100,], pca$rotation[, 1:100, 1:ncol(scores2)])

projecting on new data
X2 <- sweep(sweep(X[-ind,], 2, test$center, `-'), 2, test$scale, `/`
scores.test <- X2 %*% test$v
ind2 <- setdiff(rows_along(X), ind)
scores.test2 <- predict(test, X, ind.row = ind2) # use this
all.equal(scores.test, scores.test2)
scores.test3 <- predict(pca, X[-ind,])
plot(scores.test2, scores.test3[, 1:ncol(scores.test2)])
Arguments

- **object**
 An object of class `mhtest` from which you get the probability function with possibly pre-transformation of scores.

- **scores**
 Raw scores (before transformation) that you want to transform to p-values.

- **log10**
 Are p-values returned on the log10 scale? Default is TRUE.

- **...**
 Not used.

Value

Vector of log10(p-values) associated with scores and object.

See Also

`big_univLinReg` and `big_univLogReg`.

sub_bk

Replace extension `.bk`

Description

Replace extension `.bk`

Usage

```r
sub_bk(path, replacement = "", stop_if_not_ext = TRUE)
```

Arguments

- **path**
 String with extension `.bk`.

- **replacement**
 Replacement of `.bk`. Default replaces by nothing.

- **stop_if_not_ext**
 If replacement != "", whether to error if replacement is not an extension (i.e. starting with a dot).

Value

String with extension `.bk` replaced by replacement.

Examples

```r
path <- "toto.bk"
sub_bk(path)
sub_bk(path, ".rds")
```
summary.big_sp_list
Summary method

Description

Summary method for class `big_sp_list`.

Usage

```
## S3 method for class 'big_sp_list'
summary(object, best.only = FALSE, sort = FALSE, ...)
```

Arguments

- `object` An object of class `big_sp_list`.
- `best.only` Whether to return only one row corresponding to the best model? The best model is the one smallest `$validation_loss`.
- `sort` Whether to sort by `$validation_loss`. Default is `FALSE`.
- `...` Not used.

Value

A tibble with, for each `$alpha`, a mean `$validation_loss`, a mean vector of coefficients `$beta`, the corresponding number of non-zero coefficients `$nb_var`, and the reasons of method completion `$message`.

theme_bigstatsr
Theme ggplot2

Description

Theme ggplot2 used by this package.

Usage

```
theme_bigstatsr(size.rel = 1)
```

Arguments

- `size.rel` Relative size. Default is 1.

Examples

```
library(ggplot2)
qplot(y = 1:10)
qplot(y = 1:10) + theme_bw()
qplot(y = 1:10) + theme_bigstatsr()
```
without_downcast_warning

Temporarily disable downcast warning

Description
Temporarily disable downcast warning

Usage
without_downcast_warning(expr)

Arguments
expr The expression to evaluate without downcast warning.

Value
The result of the evaluated expression.

Examples
without_downcast_warning(FBM(10, 10, type = "integer", init = 1.5))
Index

<table>
<thead>
<tr>
<th>Package</th>
<th>Line Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>add_code256 (FBM.code256-class)</td>
<td>49</td>
</tr>
<tr>
<td>apply</td>
<td>9</td>
</tr>
<tr>
<td>as_FBM (FBM-class)</td>
<td>46</td>
</tr>
<tr>
<td>as_scaling_fun</td>
<td>5, 28</td>
</tr>
<tr>
<td>as_scaling_fun()</td>
<td>3, 17, 24, 36, 38</td>
</tr>
<tr>
<td>asPlotlyText</td>
<td>4, 54, 55</td>
</tr>
<tr>
<td>AUC</td>
<td>6</td>
</tr>
<tr>
<td>AUCBoot (AUC)</td>
<td>6</td>
</tr>
<tr>
<td>big_apply</td>
<td>7, 20</td>
</tr>
<tr>
<td>big_attach</td>
<td>47</td>
</tr>
<tr>
<td>big_colstats</td>
<td>9</td>
</tr>
<tr>
<td>big_copy</td>
<td>10, 47</td>
</tr>
<tr>
<td>big_cor</td>
<td>11</td>
</tr>
<tr>
<td>big_counts</td>
<td>12</td>
</tr>
<tr>
<td>big_cprodMat</td>
<td>14</td>
</tr>
<tr>
<td>big_cprodVec</td>
<td>15</td>
</tr>
<tr>
<td>big_crossprodSelf</td>
<td>12, 17</td>
</tr>
<tr>
<td>big_increment</td>
<td>18</td>
</tr>
<tr>
<td>big_parallelize</td>
<td>8, 19</td>
</tr>
<tr>
<td>big_proddMat</td>
<td>21</td>
</tr>
<tr>
<td>big_proddVec</td>
<td>22</td>
</tr>
<tr>
<td>big_randomSVD</td>
<td>24, 35, 36, 54, 58</td>
</tr>
<tr>
<td>big_read</td>
<td>26</td>
</tr>
<tr>
<td>big_scale</td>
<td>27</td>
</tr>
<tr>
<td>big_spLinReg</td>
<td>28, 56, 57</td>
</tr>
<tr>
<td>big_spLogReg</td>
<td>32, 56, 57</td>
</tr>
<tr>
<td>big_SVD</td>
<td>35, 54, 58</td>
</tr>
<tr>
<td>big_tcrossprodSelf</td>
<td>38</td>
</tr>
<tr>
<td>big_transpose</td>
<td>39</td>
</tr>
<tr>
<td>big_univLinReg</td>
<td>40, 55, 60</td>
</tr>
<tr>
<td>big_univLogReg</td>
<td>42, 55, 60</td>
</tr>
<tr>
<td>big_write</td>
<td>44</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Package</th>
<th>Line Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>bigparallelr::split_parapply</td>
<td>8, 20</td>
</tr>
<tr>
<td>bigreadr::big_fread2</td>
<td>27</td>
</tr>
<tr>
<td>bigstatsr (bigstatsr-package)</td>
<td>3</td>
</tr>
<tr>
<td>bigstatsr-package</td>
<td>3</td>
</tr>
<tr>
<td>block_size</td>
<td>3, 8, 11, 14, 17, 21, 36, 38, 45, 58</td>
</tr>
<tr>
<td>colSums</td>
<td>9</td>
</tr>
<tr>
<td>COPY_biglasso_main</td>
<td>30, 34</td>
</tr>
<tr>
<td>cor</td>
<td>12</td>
</tr>
<tr>
<td>covar_from_df</td>
<td>45</td>
</tr>
<tr>
<td>covar_from_df()</td>
<td>4, 29, 33, 40, 42, 56, 57</td>
</tr>
<tr>
<td>crossprod</td>
<td>18</td>
</tr>
<tr>
<td>crossprod,FBM,matrix-method</td>
<td>(big_cprodMat), 14</td>
</tr>
<tr>
<td>crossprod,FBM,missing-method</td>
<td>(big_crossprodSelf), 17</td>
</tr>
<tr>
<td>crossprod,FBM-method</td>
<td>(big_cprodMat), 14</td>
</tr>
<tr>
<td>data.table::fwrite</td>
<td>44</td>
</tr>
<tr>
<td>diag</td>
<td>48</td>
</tr>
<tr>
<td>dim,FBM-method</td>
<td>48</td>
</tr>
<tr>
<td>FBM, 7, 9, 11, 12, 14, 16, 17, 19, 21, 23, 24, 29, 32, 36, 38–40, 42, 44, 47, 49, 50, 56–58</td>
<td></td>
</tr>
<tr>
<td>FBM (FBM-class)</td>
<td>46</td>
</tr>
<tr>
<td>FBM-class</td>
<td>46</td>
</tr>
<tr>
<td>FBM-methods</td>
<td>48</td>
</tr>
<tr>
<td>FBM.code256, 3, 10, 13, 27, 46</td>
<td></td>
</tr>
<tr>
<td>FBM.code256 (FBM.code256-class)</td>
<td>49</td>
</tr>
<tr>
<td>FBM.code256-class</td>
<td>49</td>
</tr>
<tr>
<td>FBM.code256_RC (FBM.code256-class)</td>
<td>49</td>
</tr>
<tr>
<td>FBM_RC (FBM-class)</td>
<td>46</td>
</tr>
<tr>
<td>Filebacked Big Matrix</td>
<td>7, 19, 49</td>
</tr>
<tr>
<td>get_beta</td>
<td>51</td>
</tr>
<tr>
<td>glm</td>
<td>42, 43</td>
</tr>
<tr>
<td>glmnet</td>
<td>31, 34</td>
</tr>
<tr>
<td>length,FBM-method (FBM-methods)</td>
<td>48</td>
</tr>
</tbody>
</table>

63
lm, 41
nargs, 49
nb_cores, 3, 8, 9, 14, 16, 19, 21, 23, 24, 30, 34, 40, 42, 56, 57
pasteLoc, 51
pcor, 52
plot.big_sp_list, 53
plot.big_SVD, 53, 55
plot.mhtest, 55
prcomp, 37
predict, 25, 36, 58
predict.big_sp, 56
predict.big_sp_list, 57
predict.big_SVD, 58
predict.mhtest, 59
round, 6
set.seed, 6
sub_bk, 60
summary.big_sp_list, 61
svds, 24, 25
tcrossprod, 39
tcrossprod,FBM,matrix-method
 (big_cprodMat), 14
tcrossprod,FBM,missing-method
 (big_tcrossprodSelf), 38
tcrossprod,matrix,FBM-method
 (big_cprodMat), 14
theme_bigstatsr, 61
typeof,FBM-method (FBM-methods), 48
wilcox.test, 6
without_downcast_warning, 62