Package ‘binaryGP’

September 19, 2017

Type Package

Title Fit and Predict a Gaussian Process Model with (Time-Series) Binary Response

Version 0.2

Date 2017-09-17

Author Chih-Li Sung

Maintainer Chih-Li Sung <i.amdfchile@gmail.com>

Description Allows the estimation and prediction for binary Gaussian process model. The mean function can be assumed to have time-series structure. The estimation methods for the unknown parameters are based on penalized quasi-likelihood/penalized quasi-partial likelihood and restricted maximum likelihood. The predicted probability and its confidence interval are computed by Metropolis-Hastings algorithm. More details can be seen in Sung et al (2017) <arXiv:1705.02511>.

License GPL-2 | GPL-3

LazyData TRUE

Imports Rcpp (>= 0.12.0), lhs (>= 0.10), logitnorm (>= 0.8.29), nloptr (>= 1.0.4), GPfit (>= 1.0-0), stats, graphics, utils, methods

LinkingTo Rcpp, RcppArmadillo

RoxygenNote 5.0.1

Depends R (>= 2.14.1)

NeedsCompilation yes

Repository CRAN

Date/Publication 2017-09-19 08:34:21 UTC

R topics documented:

binaryGP_fit .. 2
predict.binaryGP ... 5
print.binaryGP ... 7
summary.binaryGP ... 9

Index 12
binaryGP_fit

Description

The function fits Gaussian process models with binary response. The models can also include time-series term if a time-series binary response is observed. The estimation methods are based on PQL/PQPL and REML (for mean function and correlation parameter, respectively).

Usage

```r
binaryGP_fit(x, y, R = 0, L = 0, corr = list(type = "exponential", power = 2), nugget = 1e-10, constantMean = FALSE, orthogonalGP = FALSE, converge.tol = 1e-10, maxit = 15, maxit.PQPL = 20, maxit.REML = 100, xtol_rel = 1e-10, standardize = FALSE, verbose = TRUE)
```

Arguments

- `x`: a design matrix with dimension \(n \) by \(d \).
- `y`: a response matrix with dimension \(n \) by \(T \). The values in the matrix are 0 or 1. If no time-series, \(T = 1 \). If time-series is included, i.e., \(T > 1 \), the first column is the response vector of time 1, and second column is the response vector of time 2, and so on.
- `R`: a positive integer specifying the order of autoregression only if time-series is included. The default is 1.
- `L`: a positive integer specifying the order of interaction between \(x \) and previous \(y \) only if time-series is included. The value couldn’t be larger than \(R \). The default is 1.
- `corr`: a list of parameters for the specifying the correlation to be used. Either exponential correlation function or Matern correlation function can be used. See `corr_matrix` for details.
- `nugget`: a positive value to use for the nugget. If NULL, a nugget will be estimated. The default is 1e-10.
- `constantMean`: logical. TRUE indicates that the Gaussian process will have a constant mean, plus time-series structure if \(R \) or \(T \) is greater than one; otherwise the mean function will be a linear regression in \(X \), plus an intercept term and time-series structure.
- `orthogonalGP`: logical. TRUE indicates that the orthogonal Gaussian process will be used. Only available when `corr` is list(type = "exponential", power = 2).
- `converge.tol`: convergence tolerance. It converges when relative difference with respect to \(\eta \) is smaller than the tolerance. The default is 1e-10.
- `maxit`: a positive integer specifying the maximum number of iterations for estimation to be performed before the estimates are convergent. The default is 15.
- `maxit.PQPL`: a positive integer specifying the maximum number of iterations for PQL/PQPL estimation to be performed before the estimates are convergent. The default is 20.
maxit.REML a positive integer specifying the maximum number of iterations in lbfgs for REML estimation to be performed before the estimates are convergent. The default is 100.

xtol_rel a positive value specifying the convergence tolerance for lbfgs. The default is 1e-10.

standardize logical. If TRUE, each column of X will be standardized into [0, 1]. The default is FALSE.

verbose logical. If TRUE, additional diagnostics are printed. The default is TRUE.

Details
Consider the model

$$\text{logit}(p_t(x)) = \eta_t(x) = \sum_{r=1}^{R} \varphi_r y_{t-r}(x) + \alpha_0 + x' \alpha + \sum_{l=1}^{L} \gamma_l y_{t-l}(x) + Z_t(x),$$

where $$p_t(x) = \Pr(y_t(x) = 1)$$ and $$Z_t(\cdot)$$ is a Gaussian process with zero mean, variance $$\sigma^2$$, and correlation function $$R_\theta(\cdot, \cdot)$$ with unknown correlation parameters $$\theta$$. The power exponential correlation function is used and defined by

$$R_\theta(x_i, x_j) = \exp\left\{-\sum_{l=1}^{d} \frac{(x_{il} - x_{jl})^p}{\theta_l}\right\},$$

where $$p$$ is given by power. The parameters in the mean functions including $$\varphi_r$$, $$\alpha_0$$, $$\alpha$$, $$\gamma_l$$ are estimated by PQL/PQPL, depending on whether the mean function has the time-series structure. The parameters in the Gaussian process including $$\theta$$ and $$\sigma^2$$ are estimated by REML. If orthogonalGP is TRUE, then orthogonal covariance function (Plumlee and Joseph, 2016) is employed. More details can be seen in Sung et al. (unpublished).

Value

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha_hat</td>
<td>a vector of coefficient estimates for the linear relationship with X.</td>
</tr>
<tr>
<td>varphi_hat</td>
<td>a vector of autoregression coefficient estimates.</td>
</tr>
<tr>
<td>gamma_hat</td>
<td>a vector of the interaction effect estimates.</td>
</tr>
<tr>
<td>theta_hat</td>
<td>a vector of correlation parameters.</td>
</tr>
<tr>
<td>sigma_hat</td>
<td>a value of sigma estimate (standard deviation).</td>
</tr>
<tr>
<td>nugget_hat</td>
<td>if nugget is NULL, then return a nugget estimate, otherwise return nugget.</td>
</tr>
<tr>
<td>orthogonalGP</td>
<td>orthogonalGP.</td>
</tr>
<tr>
<td>X</td>
<td>data X.</td>
</tr>
<tr>
<td>Y</td>
<td>data Y.</td>
</tr>
<tr>
<td>R</td>
<td>order of autoregression.</td>
</tr>
<tr>
<td>L</td>
<td>order of interaction between X and previous Y.</td>
</tr>
<tr>
<td>corr</td>
<td>a list of parameters for the specifying the correlation to be used.</td>
</tr>
<tr>
<td>Model.mat</td>
<td>model matrix.</td>
</tr>
</tbody>
</table>
eta_hat eta_hat.
standardize standardize.
mean.x mean of each column of \(X\). Only available when `standardize=TRUE`, otherwise `mean.x=NULL`.
scale.x \(\max(x) - \min(x)\) of each column of \(X\). Only available when `standardize=TRUE`, otherwise `scale.x=NULL`.

Author(s)
Chih-Li Sung <iamdfchile@gmail.com>

See Also
- `predict.binaryGP` for prediction of the binary Gaussian process,
- `print.binaryGP` for the list of estimation results, and
- `summary.binaryGP` for summary of significance results.

Examples

```r
library(binaryGP)

##### testing function: \(\cos(x_1 + x_2) \times \exp(x_1 \times x_2)\) with TT sequences #####
##### Thanks to Sonja Surjanovic and Derek Bingham, Simon Fraser University #####
test_function <- function(x, TT)
{
  x1 <- x[,1]
x2 <- x[,2]

  eta_1 <- cos(x1 + x2) * exp(x1*x2)
  p_1 <- exp(eta_1)/(1+exp(eta_1))
  y_1 <- rep(NA, length(p_1))
  for(i in 1:length(p_1)) y_1[i] <- rbinom(1,1,p_1[i])
  Y <- y_1
  P <- p_1
  if(TT > 1){
    for(tt in 2:TT){
      eta_2 <- 0.3 * y_1 + eta_1
      p_2 <- exp(eta_2)/(1+exp(eta_2))
      y_2 <- rep(NA, length(p_2))
      for(i in 1:length(p_2)) y_2[i] <- rbinom(1,1,p_2[i])
      Y <- cbind(Y, y_2)
      P <- cbind(P, p_2)
      y_1 <- y_2
    }
  }

  return(list(Y = Y, P = P))
}

set.seed(1)
n <- 30
```
predict.binaryGP

Predictions of Binary Gaussian Process

Description

The function computes the predicted response and its variance as well as its confidence interval.

Usage

```r
## S3 method for class 'binaryGP'
predict(object, xnew, conf.level = 0.95, sim.number = 101, ...)
```

Arguments

- **object**: a class binaryGP object estimated by binaryGP_fit.
- **xnew**: a testing matrix with dimension n_new by d in which each row corresponds to a predictive location.
- **conf.level**: a value from 0 to 1 specifying the level of confidence interval. The default is 0.95.
- **sim.number**: a positive integer specifying the simulation number for Monte-Carlo method. The default is 101.
- **...**: for compatibility with generic method predict.
Value

- **mean**: a matrix with dimension `n_new` by `T` displaying predicted responses at locations `xnew`.
- **var**: a matrix with dimension `n_new` by `T` displaying predictive variances at locations `xnew`.
- **upper.factor**: a matrix with dimension `n_new` by `T` displaying upper bounds with `conf.level` confidence level.
- **lower.factor**: a matrix with dimension `n_new` by `T` displaying lower bounds with `conf.level` confidence level.
- **y_pred**: a matrix with dimension `n_new` by `T` displaying predicted binary responses at locations `xnew`.

Author(s)

Chih-Li Sung <iamdfchile@gmail.com>

See Also

- `binaryGP_fit` for estimation of the binary Gaussian process.

Examples

```r
library(binaryGP)

##### Testing function: cos(x1 + x2) * exp(x1*x2) with TT sequences #####
##### Thanks to Sonja Surjanovic and Derek Bingham, Simon Fraser University #####

test_function <- function(X, TT)
{
  x1 <- X[,1]
  x2 <- X[,2]

  eta_0 <- cos(x1 + x2) * exp(x1*x2)
  p_0 <- exp(eta_0)/(1+exp(eta_0))
  y_0 <- rep(NA, length(p_0))
  for(i in 1:length(p_0)) y_0[i] <- rbinom(1,1,p_0[i])

  Y <- y_0
  P <- p_0
  if(TT > 1){
    for(tt in 2:TT){
      eta_0 <- 0.3 * y_0 + eta_0
      p_0 <- exp(eta_0)/(1+exp(eta_0))
      y_0 <- rep(NA, length(p_0))
      for(i in 1:length(p_0)) y_0[i] <- rbinom(1,1,p_0[i])
      Y <- cbind(Y, y_0)
      P <- cbind(P, p_0)
      y_0 <- y_0
    }
  }
}
```

return(list(Y = Y, P = P))
}

set.seed(1)
n <- 30
n.test <- 10
d <- 2
X <- matrix(runif(d * n), ncol = d)
X.test <- matrix(runif(d * n.test), ncol = d)

without time-series
Y <- test_function(X)$Y ## Y is a vector
test.out <- test_function(X.test, 1)
Y.test <- test.out$Y
P.true <- test.out$P

fitting
binaryGP.model <- binaryGP_fit(X = X, Y = Y)

prediction
binaryGP.prediction <- predict(binaryGP.model, xnew = X.test)
print(binaryGP.prediction$mean)
print(binaryGP.prediction$var)
print(binaryGP.prediction$upper.bound)
print(binaryGP.prediction$lower.bound)

with time-series
Y <- test_function(X, 10)$Y ## Y is a matrix with 10 columns
test.out <- test_function(X.test, 10)
Y.test <- test.out$Y
P.true <- test.out$P

fitting
binaryGP.model <- binaryGP_fit(X = X, Y = Y, R = 1)

prediction
binaryGP.prediction <- predict(binaryGP.model, xnew = X.test)
print(binaryGP.prediction$mean)
print(binaryGP.prediction$var)
print(binaryGP.prediction$upper.bound)
print(binaryGP.prediction$lower.bound)

print.binaryGP
Print Fitted results of Binary Gaussian Process

Description

The function shows the estimation results by `binaryGP_fit`.
Usage

```r
## S3 method for class 'binaryGP'
print(x, ...)
```

Arguments

- `x`: a class binaryGP object estimated by binaryGP_fit.
- `...`: for compatibility with generic method print.

Value

A list of estimates by binaryGP_fit.

Author(s)

Chih-Li Sung <iamdfchile@gmail.com>

See Also

- `binaryGP_fit` for estimation of the binary Gaussian process.

Examples

```r
g library(binaryGP)

##### Testing function: cos(x1 + x2) * exp(x1*x2) with TT sequences  #######
##### Thanks to Sonja Surjanovic and Derek Bingham, Simon Fraser University #######
test_function <- function(X, TT)
{
  x1 <- X[,1]
  x2 <- X[,2]

  eta_1 <- cos(x1 + x2) * exp(x1*x2)

  p_1 <- exp(eta_1)/(1+exp(eta_1))
  y_1 <- rep(NA, length(p_1))
  for(i in 1:length(p_1)) y_1[i] <- rbinom(1,1,p_1[i])
  Y <- y_1
  P <- p_1
  if(TT > 1){
    for(tt in 2:TT){
      eta_2 <- 0.3 * y_1 + eta_1
      p_2 <- exp(eta_2)/(1+exp(eta_2))
      y_2 <- rep(NA, length(p_2))
      for(i in 1:length(p_2)) y_2[i] <- rbinom(1,1,p_2[i])
      Y <- cbind(Y, y_2)
      P <- cbind(P, p_2)
      y_1 <- y_2
    }
  }
}
```
summary.binaryGP

> return(list(Y = Y, P = P))
>
> set.seed(1)
n <- 30
n.test <- 10
d <- 2
X <- matrix(runif(d * n), ncol = d)

without time-series
Y <- test_function(X, 1)$Y ## Y is a vector

binaryGP.model <- binaryGP_fit(X = X, Y = Y)
print(binaryGP.model) # print estimation results
summary(binaryGP.model) # significance results

with time-series, lag 1
Y <- test_function(X, 10)$Y ## Y is a matrix with 10 columns

binaryGP.model <- binaryGP_fit(X = X, Y = Y, R = 1)
print(binaryGP.model) # print estimation results
summary(binaryGP.model) # significance results

summary.binaryGP
Summary of Fitting a Binary Gaussian Process

Description

The function summarizes estimation and significance results by `binaryGP_fit`.

Usage

```r
## S3 method for class 'binaryGP'
summary(object, ...)
```

Arguments

- `object`
a class `binaryGP` object estimated by `binaryGP_fit`.
- `...`
for compatibility with generic method `summary`.

Value

A table including the estimates by `binaryGP_fit`, and the corresponding standard deviations, Z-values and p-values.

Author(s)

Chih-Li Sung <iamdfchile@gmail.com>
See Also

`binaryGP_fit` for estimation of the binary Gaussian process.

Examples

```r
library(binaryGP)

##### Testing function: cos(x1 + x2) * exp(x1*x2) with TT sequences

##### Thanks to Sonja Surjanovic and Derek Bingham, Simon Fraser University

test_function <- function(X, TT)
{
  x1 <- X[,1]
  x2 <- X[,2]

  eta_1 <- cos(x1 + x2) * exp(x1*x2)

  p_1 <- exp(eta_1)/(1+exp(eta_1))
  y_1 <- rep(NA, length(p_1))
  for(i in 1:length(p_1)) y_1[i] <- rbinom(1,1,p_1[i])
  Y <- y_1
  P <- p_1
  if(TT > 1){
    for(tt in 2:TT){
      eta_2 <- 0.3 * y_1 + eta_1
      p_2 <- exp(eta_2)/(1+exp(eta_2))
      y_2 <- rep(NA, length(p_2))
      for(i in 1:length(p_2)) y_2[i] <- rbinom(1,1,p_2[i])
      Y <- cbind(Y, y_2)
      P <- cbind(P, p_2)
      y_1 <- y_2
    }
  }
  return(list(Y = Y, P = P))
}

set.seed(1)
n <- 30
n.test <- 10
d <- 2
X <- matrix(runif(d * n), ncol = d)

#### without time-series ####
Y <- test_function(X, 1)$Y  ## Y is a vector

binaryGP.model <- binaryGP_fit(X = X, Y = Y)
predict(binaryGP.model)  # print estimation results
summary(binaryGP.model)  # significance results

#### with time-series, lag 1 ####
Y <- test_function(X, 10)$Y  ## Y is a matrix with 10 columns
```
summary.binaryGP

binaryGP.model <- binaryGP_fit(X = X, Y = Y, R = 1)
print(binaryGP.model) # print estimation results
summary(binaryGP.model) # significance results
Index

binaryGP_fit, 2, 6, 8, 10

corr_matrix, 2

predict.binaryGP, 4, 5
print.binaryGP, 4, 7

summary.binaryGP, 4, 9