Package ‘bmabasket’

Type Package
Title Bayesian Model Averaging for Basket Trials
Version 0.1.2
Date 2022-02-24
Maintainer Matt Psioda <matt_psioda@unc.edu>
License GPL (>= 3)
Depends R (>= 3.5.0)
Imports Rcpp (>= 1.0.3), partitions
LinkingTo Rcpp, RcppArmadillo
Encoding UTF-8
URL https://github.com/ethan-alt/bmabasket
BugReports https://github.com/ethan-alt/bmabasket/issues
RoxygenNote 7.1.1
NeedsCompilation yes
Author Matt Psioda [cre],
Ethan Alt [aut]
Repository CRAN
Date/Publication 2022-02-24 17:50:13 UTC

R topics documented:

bma ... 2
bma_design ... 3
numModels .. 6

Index 7
bma

Compute posterior model probabilities

Description

Given data and hyperparameters, computes posterior model probabilities

Usage

```r
bma(pi0, y, n, P = NULL, mu0 = 0.5, phi0 = 1, priorModelProbs = NULL, pmp0 = 1)
```

Arguments

- `pi0`: scalar or vector whose elements are between 0 and 1 giving threshold for the hypothesis test. If a scalar is provided, assumes same threshold for each basket
- `y`: vector of responses
- `n`: vector of sample sizes
- `P`: integer giving maximum number of distinct parameters; default is all possible models
- `mu0`: prior mean for beta prior
- `phi0`: prior dispersion for beta prior
- `priorModelProbs`: (optional) vector giving prior for models. Default is proportional to \(\exp(pmp0 \times D) \), where \(D \) is the number of distinct parameters in the model
- `pmp0`: nonnegative scalar. Value of 0 corresponds to uniform prior across model space. Ignored if `priorModelProbs` is specified

Value

a list with the following structure:

- `bmaProbs`: model-averaged probabilities that each basket is larger than `pi0`
- `bmaMeans`: model-averaged posterior mean for each basket

Examples

```r
## Simulate data with 3 baskets
probs <- c(0.5, 0.25, 0.25)
n <- rep(100, length(probs))
y <- rbinom(length(probs), size = n, prob = probs)
bma(0.5, y, n)
```
Simulate a BMA design

Description
Simulates a BMA design given hyperparameters

Usage

bma_design(
 nSims,
 nBaskets,
 maxDistinct = nBaskets,
 eRates,
 rRates,
 meanTime,
 sdTime,
 ppEffCrit,
 ppFutCrit,
 futOnly = FALSE,
 rRatesNull,
 rRatesAlt,
 minSSFut,
 minSSEff,
 minSSEnr,
 maxSSEnr,
 targSSPer,
 I0,
 mu0 = 0.5,
 phi0 = 1,
 priorModelProbs = NULL,
 pmp0 = 1
)

Arguments

nSims number of simulation studies to be performed
nBaskets number of baskets
maxDistinct integer between 1 and nBaskets giving number of distinct model probabilities to use. Defaults to nBaskets. It is recommended to call numModels to ensure that computation is tractable.
eRates scalar or vector of Poisson process rates for each basket
rRates scalar or vector of true response rates for each basket
meanTime mean parameter for time to outcome ascertainment
sdTime standard deviation parameter for time to outcome ascertainment
ppEffCrit scalar or vector giving basket-specific posterior probability threshold for activity (i.e., efficacy).

ppFutCrit scalar or vector giving basket-specific posterior probability threshold for futility

futOnly logical giving whether design allows only for futility stopping (TRUE = futility only, FALSE = both futility and efficacy)

rRatesNull scalar or vector of basket-specific null hypothesis values (for efficacy determination)

rRatesAlt scalar or vector of basket-specific hypothesized alternative values (for futility determination)

minSSFut minimum number of subjects in basket to assess futility

minSSEff minimum number of subjects in basket to assess activity

minSSEnr matrix giving minimum number of new subjects per basket before next analysis (each row is an interim analysis, each column is a basket)

maxSSEnr matrix giving maximum number of new subjects per basket before next analysis (each row is an interim analysis, each column is a basket)

targSSPer scalar or vector giving target sample size increment for each basket

I0 maximum number of analyses

mu0 prior mean for the response probabilities

phi0 prior dispersion response probabilities

priorModelProbs vector giving prior probabilities for models. Default is prior of each model is proportional \(\exp(pmp0 \times D) \) where \(D \) is the number of distinct parameters in the model

pmp0 scalar giving power for priorModelProbs. If pmp0==0, a uniform prior is used for model probabilities. Defaults to 1. Ignored if priorModelProbs is not NULL

Value

a nested list giving results of the simulation with the following structure:

- **hypothesis.testing** - hypothesis testing information
 - rr - basket-specific null hypothesis rejection rate
 - fw.fpr - family-wise false positive rate (across all inactive baskets)
 - nerr - average number of false null hypothesis rejections
 - fut - basket-specific probability of futility stopping

- **sample.size** - trial sample size information
 - basket.ave - basket-specific expected sample size
 - basket.med - basket-specific median sample size
 - basket.min - basket-specific minimum sample size
 - basket.max - basket-specific maximum sample size
 - overall.ave - expected overall sample size

- **point.estimation** - point estimation information
bma_design

- **PM.ave** - basket-specific average posterior mean
- **SP.ave** - basket-specific average sample proportion
- **PP.ave** - basket-specific average posterior probability
- **bias** - basket-specific bias of the posterior mean
- **mse** - basket-specific MSE of the posterior mean

- **early.stopping** - early stopping information
 - **interim.stop.prob** - probability of trial stoppage by interim
 - **baskets.continuing.ave** - average number of baskets continuing past interim

Examples

```r
## SIMULATE DATA AND SET SIMULATION PARAMS
nSims <- 100  # would be much more in practice
meanTime <- 0.01
sdTime <- 0.000000001
mu0 <- 0.45
phi0 <- 1.00
ppEffCrit <- 0.985
ppFutCrit <- 0.2750
pmp0 <- 2
n1 <- 7
n2 <- 16
targSSPer <- c(n1, n2)
nInterim <- 2
futOnly <- 1
K0 <- 5
row <- 0
mss <- 4
minSSFut <- mss  # minimum number of subjects in basket to assess futility using BMA
minSSEff <- mss  # minimum number of subjects in basket to assess activity using BMA
rTarg <- 0.45
rNull <- 0.15
rRatesMod <- matrix(rNull, (K0+1)+3, K0)
rRatesNull <- rep(rNull, K0)
rRatesMid <- rep(rTarg, K0)
eRatesMod <- rep(1, K0)

## min and max of new subjects per basket before next analysis (each row is interim)
minSSEnr <- matrix(rep(mss, K0), nrow=nInterim, ncol=K0)
maxSSEnr <- matrix(rep(100, K0), nrow=nInterim, ncol=K0)

## construct matrix of rates
for (i in 1:K0)
{
  rRatesMod[(i+1):(K0+1),i] <- rTarg
}
rRatesMod[(K0+2),] <- c(0.05, 0.15, 0.25, 0.35, 0.45)
rRatesMod[(K0+3),] <- c(0.15, 0.30, 0.30, 0.30, 0.45)
rRatesMod[(K0+4),] <- c(0.15, 0.15, 0.30, 0.30, 0.30)

## conduct simulation of trial data and analysis
```
x <- bma_design(
 nSims, K0, K0, eRatesMod, rRatesMod[i+1,], meanTime, sdTime,
 ppEffCrit, ppFutCrit, as.logical(futOnly), rRatesNull, rRatesMid,
 minSSFut, minSSEff, minSSEnr, maxSSEnr, targSSPer, nInterim, mu0,
 phi0, priorModelProbs = NULL, pmp0 = pmp0
)

numModels Compute number of models

Description
Given a basket size and maximal number of distinct response rates, compute the number of possible models

Usage
numModels(K, P)

Arguments
K positive integer giving number of baskets
P positive integer giving maximal number of distinct rates

Value
integer giving number of possible models

Examples
numModels(10, 10)
Index

bma, 2
bma_design, 3
numModels, 3, 6