Package ‘bst’

November 9, 2020

Type Package
Title Gradient Boosting
Version 0.3-23
Date 2020-10-20
Author Zhu Wang [aut, cre] (<https://orcid.org/0000-0002-0773-0052>),
Torsten Hothorn [ctb]
Maintainer Zhu Wang <wangz1@uthscsa.edu>
Imports rpart, methods, foreach, doParallel, gbm
Suggests hdi, pROC, R.rsp, knitr, gdata
VignetteBuilder R.rsp, knitr
License GPL (>= 2)
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2020-11-09 22:10:07 UTC

R topics documented:

bst ... 2
bst.sel ... 4
bst.control ... 5
cv.bst ... 7
cv.mada .. 9
cv.mbst ... 10
cv.mhingebst .. 11
cv.mhingeova .. 12
Description

Gradient boosting for optimizing loss functions with componentwise linear, smoothing splines, tree models as base learners.

Usage

bst(x, y, cost = 0.5, family = c("gaussian", "hinge", "hinge2", "binom", "expo", "poisson", "tgaussianDC", "t hingeDC", "sbinomDC", "bsinomdDC", "texpoDC", "texpoDC", "tpoissonDC", "huber", "thuberDC", "clossR", "clossRMM", "closs", "gloss", "qloss", "clossMM", "glossMM", "qlossMM", "lar"), ctrl = bst_control(), control.tree = list(maxdepth = 1), learner = c("ls", "sm", "tree"))

Arguments

x a data frame containing the variables in the model.
y vector of responses. y must be in \{1,-1\} for family = "hinge".
cost price to pay for false positive, 0 < cost < 1; price of false negative is 1-cost.
family A variety of loss functions. family = "hinge" for hinge loss and family = "gaussian" for squared error loss. Implementing the negative gradient corresponding to the loss function to be minimized. For hinge loss, +1/-1 binary responses is used.

ctrl an object of class bst_control.

type type of prediction or plot, see predict, plot

control.tree control parameters of rpart.

learner a character specifying the component-wise base learner to be used: ls linear models, sm smoothing splines, tree regression trees.

object class of bst.

newdata new data for prediction with the same number of columns as x.

new new response.

mstop boosting iteration for prediction.

which at which boosting mstop to extract coefficients.

... additional arguments.

Details

Boosting algorithms for classification and regression problems. In a classification problem, suppose \(f \) is a classifier for a response \(y \). A cost-sensitive or weighted loss function is

\[
L(y, f, cost) = \text{l}(y, f, cost) \max(0, (1 - yf))
\]

For family = "hinge",

\[
l(y, f, cost) = 1 - cost, \text{ if } y = +1; \quad cost, \text{ if } y = -1
\]

For family = "hinge2", \(l(y,f,cost)= 1, \text{ if } y = +1 \text{ and } f > 0 ; = 1-cost, \text{ if } y = +1 \text{ and } f < 0; = cost, \text{ if } y = -1 \text{ and } f > 0; = 1, \text{ if } y = -1 \text{ and } f < 0. \)

For twin boosting if twinboost=TRUE, there are two types of adaptive boosting if learner= "ls": for twintype=1, weights are based on coefficients in the first round of boosting; for twintype=2, weights are based on predictions in the first round of boosting. See Buehlmann and Hothorn (2010).

Value

An object of class bst with print, coef, plot and predict methods are available for linear models. For nonlinear models, methods print and predict are available.

\(x, y, \text{cost, family, learner, control.tree, maxdepth} \)

These are input variables and parameters

ctrl the input ctrl with possible updated \(f_k \) if family = "thingeDC", "tbinomDC", "binomDC"

yhat predicted function estimates

ens a list of length mstop. Each element is a fitted model to the pseudo residuals, defined as negative gradient of loss function at the current estimated function

ml.fit the last element of ens

ensemble a vector of length mstop. Each element is the variable selected in each boosting step when applicable

xselect selected variables in mstop

coef estimated coefficients in each iteration. Used internally only
Author(s)

Zhu Wang

References

See Also

cv.bst for cross-validated stopping iteration. Furthermore see bst_control

Examples

```r
x <- matrix(rnorm(100*5),ncol=5)
c <- 2*x[,1]
p <- exp(c)/(exp(c)+exp(-c))
y <- rbinom(100,1,p)
y[y != 1] <- -1
x <- as.data.frame(x)
dat.m <- bst(x, y, ctrl = bst_control(mstop=50), family = "hinge", learner = "ls")
predict(dat.m)
dat.m1 <- bst(x, y, ctrl = bst_control(twinboost=TRUE,
coefir=coef(dat.m), xselect.init = dat.m$xselect, mstop=50))
dat.m2 <- rbst(x, y, ctrl = bst_control(mstop=50, s=0, trace=TRUE),
rfamily = "thinge", learner = "ls")
predict(dat.m2)
```

bst.sel

Function to select number of predictors

Description

Function to determine the first q predictors in the boosting path, or perform (10-fold) cross-validation and determine the optimal set of parameters

Usage

```r
bst.sel(x, y, q, type=c("firstq", "cv"), ...)
```

Arguments

- `x` Design matrix (without intercept).
- `y` Continuous response vector for linear regression
- `q` Maximum number of predictors that should be selected if type="firstq".
bst_control

Control Parameters for Boosting

Description

Specification of the number of boosting iterations, step size and other parameters for boosting algorithms.

Usage

```r
bst_control(mstop = 50, nu = 0.1, twinboost = FALSE, twintype=1, threshold=c("standard", "adaptive"), f.init = NULL, coefir = NULL, xselect.init = NULL, center = FALSE, trace = FALSE, numsample = 50, df = 4, s = NULL, sh = NULL, q = NULL, qh = NULL, fk = NULL, start=FALSE, iter = 10, intercept = FALSE, trun=FALSE)
```
Arguments

mstop an integer giving the number of boosting iterations.

nu a small number (between 0 and 1) defining the step size or shrinkage parameter.

twinboost a logical value: TRUE for twin boosting.

twintype for twinboost=TRUE only. For learner="ls", if twintype=1, twin boosting
with weights from magnitude of coefficients in the first round of boosting. If
twintype=2, weights are correlations between predicted values in the first round
of boosting and current predicted values. For learners not componentwise least
squares, twintype=2.

threshold if threshold="adaptive", the estimated function ctrl$fk is updated in every
boosting step. Otherwise, no update for ctrl$fk in boosting steps. Only used
in robust nonconvex loss function.

f.init the estimate from the first round of twin boosting. Only useful when twinboost=TRUE
and learner="sm" or "tree".

coefir the estimated coefficients from the first round of twin boosting. Only useful
when twinboost=TRUE and learner="ls".

xselect.init the variable selected from the first round of twin boosting. Only useful when

twinboost=TRUE.

center a logical value: TRUE to center covariates with mean.

trace a logical value for printout of more details of information during the fitting pro-

nmsample number of random sample variable selected in the first round of twin boosting.
This is potentially useful in the future implementation.

df degree of freedom used in smoothing splines.

s,q nonconvex loss tuning parameter s or frequency q of outliers for robust regres-
sion and classification. If s is missing but q is available, s may be computed as
the 1-q quantile of robust loss values using conventional software.

sh, qh threshold value or frequency qh of outliers for Huber regression family="huber"
or family="rhuberDC". For family="huber", if sh is not provided, sh is then
updated adaptively with the median of y-yhat where yhat is the estimated y
in the last boosting iteration. For family="rhuberDC", if sh is missing but qh is
available, sh may be computed as the 1-qh quantile of robust loss values using
conventional software.

fk predicted values at an iteration in the MM algorithm

start a logical value, if start=TRUE and fk is a vector of values, then bst iterations
begin with fk. Otherwise, bst iterations begin with the default values. This can
be useful, for instance, in rbst for the MM boosting algorithm.

iter number of iteration in the MM algorithm

intercept logical value, if TRUE, estimation of intercept with linear predictor model

trun logical value, if TRUE, predicted value in each boosting iteration is truncated at
-1,1, for family="closs" in bst and rfamily="closs" in rbst
Details

Objects to specify parameters of the boosting algorithms implemented in \texttt{bst}, via the \texttt{ctrl} argument. The \textit{s} value is for robust nonconvex loss where smaller \textit{s} value is more robust to outliers with \texttt{family}="closs", "tbinom", "thinge", "tbinomd", and larger \textit{s} value more robust with \texttt{family}="clossR", "gloss", "qloss".

For \texttt{family}="closs", if \textit{s}=2, the loss is similar to the square loss; if \textit{s}=1, the loss function is an approximation of the hinge loss; for smaller values, the loss function approaches the 0-1 loss function if \textit{s}<1, the loss function is a nonconvex function of the margin.

The default value of \textit{s} is -1 if \texttt{family}="thinge", -log(3) if \texttt{family}="tbinom", and 4 if \texttt{family}="binomd".

Value

An object of class \texttt{bst_control}, a list. Note \texttt{fk} may be updated for robust boosting.

See Also

\texttt{bst}

\textbf{cv.bst} \hspace{2cm} \textit{Cross-Validation for Boosting}

Description

Cross-validated estimation of the empirical risk/error for boosting parameter selection.

Usage

\begin{verbatim}
cv.bst(x, y, K=10, cost=0.5, family=c("gaussian", "hinge", "hinge2", "binom", "expo", "poisson", "tgaussianDC", "thingeDC", "tbinomDC", "binomdDC", "texpoDC", "tpoissonDC", "clossR", "closs", "gloss", "qloss", "lar"), learner = c("ls", "sm", "tree"),
ctrl = bst_control(), type = c("loss", "error"), plot.it = TRUE, main = NULL, se = TRUE, n.cores=2, ...)
\end{verbatim}

Arguments

\begin{itemize}
\item \texttt{x} \hspace{1cm} a data frame containing the variables in the model.
\item \texttt{y} \hspace{1cm} vector of responses. \texttt{y} must be in \{1, -1\} for binary classifications.
\item \texttt{K} \hspace{1cm} K-fold cross-validation
\item \texttt{cost} \hspace{1cm} price to pay for false positive, \(0 < \text{cost} < 1\); price of false negative is \(1-\text{cost}\).
\item \texttt{family} \hspace{1cm} \texttt{family} = "hinge" for hinge loss and \texttt{family} = "gaussian" for squared error loss.
\end{itemize}
learner a character specifying the component-wise base learner to be used: ls linear models, sm smoothing splines, tree regression trees.

ctrl an object of class bst_control.

type cross-validation criteria. For type="loss", loss function values and type="error" is misclassification error.

plot.it a logical value, to plot the estimated loss or error with cross validation if TRUE.

main title of plot

se a logical value, to plot with standard errors.

n.cores The number of CPU cores to use. The cross-validation loop will attempt to send different CV folds off to different cores.

... additional arguments.

Value

object with

residmat empirical risks in each cross-validation at boosting iterations

mstop boosting iteration steps at which CV curve should be computed.

cv The CV curve at each value of mstop

cv.error The standard error of the CV curve

family loss function types

...

See Also

bst

Examples

Not run:
x <- matrix(rnorm(100*5),ncol=5)
c <- 2*x[,1]
p <- exp(c)/(exp(c)+exp(-c))
y <- rbinom(100,1,p)
y[y != 1] <- -1
x <- as.data.frame(x)
cv.bst(x, y, ctrl = bst_control(mstop=50), family = "hinge", learner = "ls", type="loss")
cv.bst(x, y, ctrl = bst_control(mstop=50), family = "hinge", learner = "ls", type="error")
dat.m <- bst(x, y, ctrl = bst_control(mstop=50), family = "hinge", learner = "ls")
dat.ml <- cv.bst(x, y, ctrl = bst_control(twinboost=TRUE, coefir=coef(dat.m),
xselect.init = dat.m$xselect, mstop=50), family = "hinge", learner="ls")

End(Not run)
Cross-Validation for one-vs-all AdaBoost with multi-class problem

Description

Cross-validated estimation of the empirical misclassification error for boosting parameter selection.

Usage

cv.mada(x, y, balance=FALSE, K=10, nu=0.1, mstop=200, interaction.depth=1,
trace=FALSE, plot.it = TRUE, se = TRUE, ...)

Arguments

x a data matrix containing the variables in the model.
y vector of multi class responses. y must be an integer vector from 1 to C for C
class problem.
balance logical value. If TRUE, The K parts were roughly balanced, ensuring that the
classes were distributed proportionally among each of the K parts.
K K-fold cross-validation
nu a small number (between 0 and 1) defining the step size or shrinkage parameter.
mstop number of boosting iteration.
interaction.depth used in gbm to specify the depth of trees.
trace if TRUE, iteration results printed out.
plot.it a logical value, to plot the cross-validation error if TRUE.
se a logical value, to plot with 1 standard deviation curves.
... additional arguments.

Value

object with

residmat empirical risks in each cross-validation at boosting iterations
fraction abscissa values at which CV curve should be computed.
cv The CV curve at each value of fraction
CV.error The standard error of the CV curve

See Also

mada
cv.mbst
Cross-Validation for Multi-class Boosting

Description
Cross-validated estimation of the empirical multi-class loss for boosting parameter selection.

Usage
```r
cv.mbst(x, y, balance=FALSE, K = 10, cost = NULL,
family = c("hinge","hinge2","thingeDC", "closs", "clossMM"),
learner = c("tree", "ls", "sm"), ctrl = bst_control(),
type = c("loss","error"), plot.it = TRUE, se = TRUE, n.cores=2, ...)
```

Arguments
- `x`: a data frame containing the variables in the model.
- `y`: vector of responses. `y` must be integers from 1 to C for C class problem.
- `balance`: logical value. If TRUE, The K parts were roughly balanced, ensuring that the classes were distributed proportionally among each of the K parts.
- `K`: K-fold cross-validation
- `cost`: price to pay for false positive, 0 < cost < 1; price of false negative is 1-cost.
- `family`: family = "hinge" for hinge loss. "hinge2" is a different hinge loss
- `learner`: a character specifying the component-wise base learner to be used: ls linear models, sm smoothing splines, tree regression trees.
- `ctrl`: an object of class `bst_control`.
- `type`: for family="hinge", type="loss" is hinge risk. For family="thingeDC", type="loss"
- `plot.it`: a logical value, to plot the estimated risks if TRUE.
- `se`: a logical value, to plot with standard errors.
- `n.cores`: The number of CPU cores to use. The cross-validation loop will attempt to send different CV folds off to different cores.
- `...`: additional arguments.

Value
- object with
 - `residmat`: empirical risks in each cross-validation at boosting iterations
 - `fraction`: abscissa values at which CV curve should be computed.
 - `cv`: The CV curve at each value of fraction
 - `cv.error`: The standard error of the CV curve
 - `...`
Cross-Validation for Multi-class Hinge Boosting

Description

Cross-validated estimation of the empirical multi-class hinge loss for boosting parameter selection.

Usage

```r
cv.mhingebst(x, y, balance=FALSE, K = 10, cost = NULL, family = "hinge", learner = c("tree", "ls", "sm"), ctrl = bst_control(), type = c("loss","error"), plot.it = TRUE, main = NULL, se = TRUE, n.cores=2, ...)
```

Arguments

- `x`: a data frame containing the variables in the model.
- `y`: vector of responses. `y` must be integers from 1 to C for C class problem.
- `balance`: logical value. If TRUE, The K parts were roughly balanced, ensuring that the classes were distributed proportionally among each of the K parts.
- `K`: K-fold cross-validation
- `cost`: price to pay for false positive, 0 < cost < 1; price of false negative is 1-cost.
- `family`: family = "hinge" for hinge loss. Implementing the negative gradient corresponding to the loss function to be minimized.
- `learner`: a character specifying the component-wise base learner to be used: ls linear models, sm smoothing splines, tree regression trees.
- `ctrl`: an object of class `bst_control`.
- `type`: for family="hinge", type="loss" is hinge risk.
- `plot.it`: a logical value, to plot the estimated loss or error with cross validation if TRUE.
- `main`: title of plot
- `se`: a logical value, to plot with standard errors.
- `n.cores`: The number of CPU cores to use. The cross-validation loop will attempt to send different CV folds off to different cores.
- `...`: additional arguments.

Value

- `object with residmat`: empirical risks in each cross-validation at boosting iterations
- `fraction`: abscissa values at which CV curve should be computed.
- `cv`: The CV curve at each value of fraction
- `cv.error`: The standard error of the CV curve
- `...`
Cross-Validation for one-vs-all HingeBoost with multi-class problem

Description

Cross-validated estimation of the empirical misclassification error for boosting parameter selection.

Usage

```r
cv.mhingeova(x, y, balance=FALSE, K=10, cost = NULL, nu=0.1, 
learner=c("tree", "ls", "sm"), maxdepth=1, m1=200, twinboost = FALSE, 
m2=200, trace=FALSE, plot.it = TRUE, se = TRUE, ...)
```

Arguments

- `x`: a data frame containing the variables in the model.
- `y`: vector of multi class responses. `y` must be an integer vector from 1 to C for C class problem.
- `balance`: logical value. If TRUE, The K parts were roughly balanced, ensuring that the classes were distributed proportionally among each of the K parts.
- `K`: K-fold cross-validation
- `cost`: price to pay for false positive, 0 < cost < 1; price of false negative is 1-cost.
- `nu`: a small number (between 0 and 1) defining the step size or shrinkage parameter.
- `learner`: a character specifying the component-wise base learner to be used: `ls` linear models, `sm` smoothing splines, `tree` regression trees.
- `maxdepth`: tree depth used in `learner=tree`
- `m1`: number of boosting iteration
- `twinboost`: logical: twin boosting?
- `m2`: number of twin boosting iteration
- `trace`: if TRUE, iteration results printed out
- `plot.it`: a logical value, to plot the estimated risks if TRUE.
- `se`: a logical value, to plot with standard errors.
- `...`: additional arguments.
cv.rbst

Value

object with
residmat empirical risks in each cross-validation at boosting iterations
fraction abscissa values at which CV curve should be computed.
cv The CV curve at each value of fraction
cv.error The standard error of the CV curve
...

Note

The functions for balanced cross validation were from R package pmar.

See Also

mhinova

cv.rbst Cross-Validation for Nonconvex Loss Boosting

Description

Cross-validated estimation of the empirical risk/error, can be used for tuning parameter selection.

Usage

cv.rbst(x, y, K = 10, cost = 0.5, rfamily = c("tgaussian", "thuber", "thinge",
"tbinom", "binomd", "texpo", "tpoisson", "clossR", "closs", "gloss", "qloss"),
learner = c("ls", "sm", "tree"), ctrl = bst_control(), type = c("loss", "error"),
plot.it = TRUE, main = NULL, se = TRUE, n.cores=2,...)

Arguments

x a data frame containing the variables in the model.
y vector of responses. y must be in \{1,-1\} for binary classification
K K-fold cross-validation
cost price to pay for false positive, 0 < cost < 1; price of false negative is 1-cost.
rfamily nonconvex loss function types.
learner a character specifying the component-wise base learner to be used: ls linear
models, sm smoothing splines, tree regression trees.
ctrl an object of class bst_control.
type cross-validation criteria. For type="loss", loss function values and type="error"
is misclassification error.
plot.it: a logical value, to plot the estimated loss or error with cross validation if TRUE.
main: title of plot
se: a logical value, to plot with standard errors.
n.cores: The number of CPU cores to use. The cross-validation loop will attempt to send different CV folds off to different cores.
... additional arguments.

Value

object with

residmat: empirical risks in each cross-validation at boosting iterations
mstop: boosting iteration steps at which CV curve should be computed.
... Additional arguments.

cv: The CV curve at each value of mstop
cv.error: The standard error of the CV curve
rfamily: nonconvex loss function types.
...

Author(s)
Zhu Wang

See Also

rbst

Examples

Not run:
x <- matrix(rnorm(100*5), ncol=5)
c <- 2*x[,1]
p <- exp(c)/(exp(c)+exp(-c))
y <- rbinom(100,1,p)
y[y != 1] <- -1
x <- as.data.frame(x)
cv.rbst(x, y, ctrl = bst_control(mstop=50), rfamily = "thinge", learner = "ls", type="lose")
cv.rbst(x, y, ctrl = bst_control(mstop=50), rfamily = "thinge", learner = "ls", type="error")
dat.m <- rbst(x, y, ctrl = bst_control(mstop=50), rfamily = "thinge", learner = "ls")
dat.m1 <- cv.rbst(x, y, ctrl = bst_control(twinboost=TRUE, coefir=coef(dat.m), xselect.init = dat.m$xselect, mstop=50), family = "thinge", learner="ls")

End(Not run)
Cross-Validation for Nonconvex Multi-class Loss Boosting

Description

Cross-validated estimation of the empirical multi-class loss, can be used for tuning parameter selection.

Usage

```r
cv.rmbst(x, y, balance=FALSE, K = 10, cost = NULL, rfamily = c("thinge", "closs"), learner = c("tree", "ls", "sm"), ctrl = bst_control(), type = c("loss","error"), plot.it = TRUE, main = NULL, se = TRUE, n.cores=2, ...)
```

Arguments

- `x`: a data frame containing the variables in the model.
- `y`: vector of responses. `y` must be integers from 1 to C for C class problem.
- `balance`: logical value. If TRUE, The K parts were roughly balanced, ensuring that the classes were distributed proportionally among each of the K parts.
- `K`: K-fold cross-validation
- `cost`: price to pay for false positive, 0 < cost < 1; price of false negative is 1-cost.
- `rfamily`: `rfamily` = "thinge" for truncated multi-class hinge loss. Implementing the negative gradient corresponding to the loss function to be minimized.
- `learner`: a character specifying the component-wise base learner to be used: `ls` linear models, `sm` smoothing splines, `tree` regression trees.
- `ctrl`: an object of class `bst_control`.
- `type`: loss value or misclassification error.
- `plot.it`: a logical value, to plot the estimated loss or error with cross validation if TRUE.
- `main`: title of plot
- `se`: a logical value, to plot with standard errors.
- `n.cores`: The number of CPU cores to use. The cross-validation loop will attempt to send different CV folds off to different cores.
- `...`: additional arguments.

Value

- `object with residmat`: empirical risks in each cross-validation at boosting iterations
- `fraction`: abscissa values at which CV curve should be computed.
- `cv`: The CV curve at each value of fraction
- `cv.error`: The standard error of the CV curve
- `...`
Author(s)

Zhu Wang

See Also

rmbst

ex1data Generating Three-class Data with 50 Predictors

Description

Randomly generate data for a three-class model.

Usage

ex1data(n.data, p=50)

Arguments

n.data number of data samples.
p number of predictors.

Details

The data is generated based on Example 1 described in Wang (2012).

Value

A list with n.data by p predictor matrix x, three-class response y and conditional probabilities.

Author(s)

Zhu Wang

References

Examples

```r
## Not run:
dat <- ex1data(100, p=5)
mhingebst(x=dat$x, y=dat$y)
## End(Not run)```
**Description**

Internal Function

---

**mada**

*Multi-class AdaBoost*

---

**Description**

One-vs-all multi-class AdaBoost

**Usage**

```r
mada(xtr, ytr, xte=NULL, yte=NULL, mstop=50, nu=0.1, interaction.depth=1)
```

**Arguments**

- `xtr`: training data matrix containing the predictor variables in the model.
- `ytr`: training vector of responses. `ytr` must be integers from 1 to C, for C class problem.
- `xte`: test data matrix containing the predictor variables in the model.
- `yte`: test vector of responses. `yte` must be integers from 1 to C, for C class problem.
- `mstop`: number of boosting iteration.
- `nu`: a small number (between 0 and 1) defining the step size or shrinkage parameter.
- `interaction.depth`: used in gbm to specify the depth of trees.

**Details**

For a C-class problem (C > 2), each class is separately compared against all other classes with AdaBoost, and C functions are estimated to represent confidence for each class. The classification rule is to assign the class with the largest estimate.

**Value**

A list contains variable selected `xselect` and training and testing error `err.tr, err.te`.

**Author(s)**

Zhu Wang
**See Also**

`cv.mada` for cross-validated stopping iteration.

**Examples**

```r
data(iris)
mada(xtr=iris[, -5], ytr=iris[, 5])
```

---

**mbst**  
*Boosting for Multi-Classification*

**Description**

Gradient boosting for optimizing multi-class loss functions with componentwise linear, smoothing splines, tree models as base learners.

**Usage**

```r
mbst(x, y, cost = NULL, family = c("hinge", "hinge2", "thingeDC", "closs", "clossMM"),
 ctrl = bst_control(), control.tree=list(fixed.depth=TRUE,
 n.term.node=6, maxdepth = 1), learner = c("ls", "sm", "tree"))
```

## S3 method for class 'mbst'

- `print(x, ...)`
- `predict(object, newdata=NULL, newy=NULL, mstop=NULL,
  type=c("response", "class", "loss", "error"), ...)`
- `fpartial(object, mstop=NULL, newdata=NULL)`

**Arguments**

- `x`  
a data frame containing the variables in the model.
- `y`  
vector of responses. `y` must be 1, 2, ..., `k` for a `k` classification problem
- `cost`  
price to pay for false positive, `0 < cost < 1`; price of false negative is `1-cost`.
- `family`  
family = "hinge" for hinge loss, family="hinge2" for hinge loss but the response is not recoded (see details). family="thingeDC" for DCB loss function, see `rmbst`.
- `ctrl`  
an object of class `bst_control`.
- `control.tree`  
control parameters of `rpart`.
- `learner`  
a character specifying the component-wise base learner to be used: `ls` linear models, `sm` smoothing splines, `tree` regression trees.
- `type`  
in `predict` a character indicating whether the response, all responses across the boosting iterations, classes, loss or classification errors should be predicted in case of hinge problems. in `plot`, plot of boosting iteration or `L_1` norm.
object class of mbst.
newdata new data for prediction with the same number of columns as x.
newy new response.
mstop boosting iteration for prediction.
... additional arguments.

Details
A linear or nonlinear classifier is fitted using a boosting algorithm for multi-class responses. This function is different from mhingebst on how to deal with zero-to-sum constraint and loss functions. If family="hinge", the loss function is the same as in mhingebst but the boosting algorithm is different. If family="hinge2", the loss function is different from family="hinge": the response is not recoded as in Wang (2012). In this case, the loss function is

$$\sum I(y_i \neq j)(f_j + 1)_+.$$ 

family="thingeDC" for robust loss function used in the DCB algorithm.

Value
An object of class mbst with print, coef, plot and predict methods are available for linear models. For nonlinear models, methods print and predict are available.

x, y, cost, family, learner, control.tree, maxdepth
These are input variables and parameters
ctrl the input ctrl with possible updated fk if family="thingeDC"
yhat predicted function estimates
ens a list of length mstop. Each element is a fitted model to the pseudo residuals, defined as negative gradient of loss function at the current estimated function
ml.fit the last element of ens
ensemble a vector of length mstop. Each element is the variable selected in each boosting step when applicable
xselect selected variables in mstop
d coef estimated coefficients in each iteration. Used internally only

Author(s)
Zhu Wang

References
mhingebst

Boosting for Multi-class Classification

Description

Gradient boosting for optimizing multi-class hinge loss functions with componentwise linear least squares, smoothing splines and trees as base learners.

Usage

mhingebst(x, y, cost = NULL, family = c("hinge"), ctrl = bst_control(),
control.tree = list(fixed.depth=TRUE, n.term.node=6, maxdepth = 1),
learner = c("ls", "sm", "tree"))
## S3 method for class 'mhingebst'
print(x, ...)
## S3 method for class 'mhingebst'
predict(object, newdata=NULL, newy=NULL, mstop=NULL,
type=c("response", "class", "loss", "error"), ...)
## S3 method for class 'mhingebst'
fpartial(object, mstop=NULL, newdata=NULL)

Arguments

x a data frame containing the variables in the model.
y vector of responses. y must be in \{1,-1\} for family = "hinge".
cost equal costs for now and unequal costs will be implemented in the future.
family family = "hinge" for multi-class hinge loss.
ctrl an object of class bst_control.
control.tree  control parameters of rpart.
learner a character specifying the component-wise base learner to be used: ls linear
models, sm smoothing splines, tree regression trees.
type in predict a character indicating whether the response, classes, loss or classifi-
cation errors should be predicted in case of hinge
object class of mhingebst.
newdata new data for prediction with the same number of columns as x.
newy new response.
mstop boosting iteration for prediction.
... additional arguments.

Details
A linear or nonlinear classifier is fitted using a boosting algorithm based on component-wise base
learners for multi-class responses.

Value
An object of class mhingebst with print and predict methods being available for fitted models.

Author(s)
Zhu Wang

References
Zhu Wang (2011), HingeBoost: ROC-Based Boost for Classification and Variable Selection. The
Zhu Wang (2012), Multi-class HingeBoost: Method and Application to the Classification of Cancer

See Also
cv.mhingebst for cross-validated stopping iteration. Furthermore see bst_control

Examples
```r
Not run:
dat <- ex1data(100, p=5)
res <- mhingebst(x=dat$x, y=dat$y)
End(Not run)
```
**mhingeova**  

*Multi-class HingeBoost*

**Description**

Multi-class algorithm with one-vs-all binary HingeBoost which optimizes the hinge loss functions with componentwise linear, smoothing splines, tree models as base learners.

**Usage**

```r
mhingeova(xtr, ytr, xte=NULL, yte=NULL, cost = NULL, nu=0.1,
learner=c("tree", "ls", "sm"), maxdepth=1, m1=200, twinboost = FALSE, m2=200)
```

```r
S3 method for class 'mhingeova'
print(x, ...)
```

**Arguments**

- `xtr`: training data containing the predictor variables.
- `ytr`: vector of training data responses. ytr must be in \{1,2,...,k\}.
- `xte`: test data containing the predictor variables.
- `yte`: vector of test data responses. yte must be in \{1,2,...,k\}.
- `cost`: default is NULL for equal cost; otherwise a numeric vector indicating price to pay for false positive, 0 < cost < 1; price of false negative is 1-cost.
- `nu`: a small number (between 0 and 1) defining the step size or shrinkage parameter.
- `learner`: a character specifying the component-wise base learner to be used: ls linear models, sm smoothing splines, tree regression trees.
- `maxdepth`: tree depth used in learner=tree
- `m1`: number of boosting iteration
- `twinboost`: logical: twin boosting?
- `m2`: number of twin boosting iteration
- `x`: class of `mhingeova`.
- `...`: additional arguments.

**Details**

For a C-class problem (C > 2), each class is separately compared against all other classes with HingeBoost, and C functions are estimated to represent confidence for each class. The classification rule is to assign the class with the largest estimate. A linear or nonlinear multi-class HingeBoost classifier is fitted using a boosting algorithm based on one-against component-wise base learners for +1/-1 responses, with possible cost-sensitive hinge loss function.

**Value**

An object of class `mhingeova` with `print` method being available.
Author(s)

Zhu Wang

References


See Also

`bst` for HingeBoost binary classification. Furthermore see `cv.bst` for stopping iteration selection by cross-validation, and `bst_control` for control parameters.

Examples

```r
Not run:
dat2 <- read.table("http://archive.ics.uci.edu/ml/machine-learning-databases/thyroid-disease/ann-test.data")
res <- mhingeova(xtr=dat1[,-22], ytr=dat1[,22], xte=dat2[,-22], yte=dat2[,22],
 cost=c(2/3, 0.5, 0.5), nu=0.5, learner="ls", m1=100, K=5, cv1=FALSE,
 twinboost=TRUE, m2= 200, cv2=FALSE)
res <- mhingeova(xtr=dat1[,-22], ytr=dat1[,22], xte=dat2[,-22], yte=dat2[,22],
 cost=c(2/3, 0.5, 0.5), nu=0.5, learner="ls", m1=100, K=5, cv1=FALSE,
 twinboost=TRUE, m2= 200, cv2=TRUE)
End(Not run)
```

**nsel**  

*Find Number of Variables In Multi-class Boosting Iterations*

Description

Find Number of Variables In Multi-class Boosting Iterations

Usage

`nsel(object, mstop)`

Arguments

- `object` an object of `mhingebst`, `mbst`, or `rmbst`
- `mstop` boosting iteration number
Value

A vector of length mstop indicating number of variables selected in each boosting iteration.

Author(s)

Zhu Wang

**rbst**

Robust Boosting for Robust Loss Functions

**Description**

MM (majorization/minimization) algorithm based gradient boosting for optimizing nonconvex robust loss functions with componentwise linear, smoothing splines, tree models as base learners.

**Usage**

```r
rbst(x, y, cost = 0.5, rfamily = c("tgaussian", "thuber", "thinge", "tbinom", "binomd", "texpo", "tpoisson", "clossR", "closs", "gloss", "qloss"), ctrl=bst_control(), control.tree=list(maxdepth = 1), learner=c("ls", "sm", "tree"), del=1e-10)
```

**Arguments**

- **x**: a data frame containing the variables in the model.
- **y**: vector of responses. y must be in {1, -1} for classification.
- **cost**: price to pay for false positive, 0 < cost < 1; price of false negative is 1-cost.
- **rfamily**: robust loss function, see details.
- **ctrl**: an object of class bst_control.
- **control.tree**: control parameters of rpart.
- **learner**: a character specifying the component-wise base learner to be used: ls linear models, sm smoothing splines, tree regression trees.
- **del**: convergency criteria

**Details**

An MM algorithm operates by creating a convex surrogate function that majorizes the nonconvex objective function. When the surrogate function is minimized with gradient boosting algorithm, the desired objective function is decreased. The MM algorithm contains difference of convex (DC) algorithm for rfamily=c("tgaussian", "thuber", "thinge", "tbinom", "binomd", "texpo", "tpoisson") and quadratic majorization boosting algorithm (QMBA) for rfamily=c("clossR", "closs", "gloss", "qloss")..

s must be a numeric value to be specified in bst_control. For rfAMILY="thinge","tbinom","texpo" s < 0. For rfAMILY="binom","tpoisson","closs","qloss","clossR", s > 0 and for rfAMILY="gloss", s > 1. Some suggested s values: "thinge" = -1, "tbinom" = -log(3), "binomd" = log(4), "texpo" = log(0.5), "closs" = 1, "gloss" = 1.5, "qloss" = 2, "clossR" = 1.

Value

An object of class bst with print, coef, plot and predict methods are available for linear models. For nonlinear models, methods print and predict are available.

x, y, cost, rfAMILY, learner, control.tree, maxdepth
These are input variables and parameters

ctrl the input ctrl with possible updated fk if rfAMILY="tgaussian","thingeDC", "tbinomDC", "binomdDC" or "tpoisson".

yhat predicted function estimates

ens a list of length mstop. Each element is a fitted model to the pseudo residuals, defined as negative gradient of loss function at the current estimated function

ml.fit the last element of ens

ensemble a vector of length mstop. Each element is the variable selected in each boosting step when applicable

xselect selected variables in mstop

coef estimated coefficients in mstop

Author(s)

Zhu Wang

References


See Also

cv.rbst for cross-validated stopping iteration. Furthermore see bst_control

Examples

x <- matrix(rnorm(100*5),ncol=5)
c <- 2*x[,1]
p <- exp(c)/(exp(c)+exp(-c))
y <- rbinom(100,1,p)
y[y != 1] <- -1
y[1:10] <- -y[1:10]
x <- as.data.frame(x)
network graph

Description

Gradient boosting path for optimizing robust loss functions with componentwise linear, smoothing splines, tree models as base learners. See details below before use.

Usage

\[
\text{rbstpath}(x, y, \text{rmstop} = \text{seq}(40, 400, \text{by}=20), \text{ctrl}=\text{bst\_control}(), \text{del}=1e-16, \ldots)
\]

Arguments

- **x**: a data frame containing the variables in the model.
- **y**: vector of responses. \(y\) must be in \{1, -1\}.
- **rmstop**: vector of boosting iterations
- **ctrl**: an object of class \text{bst\_control}.
- **del**: convergency criteria
- \ldots: arguments passed to \text{rbst}

Details

This function invokes \text{rbst} with \text{mstop} being each element of vector \text{rmstop}. It can provide different paths. Thus \text{rmstop} serves as another hyper-parameter. However, the most important hyper-parameter is the loss truncation point or the point determines the level of nonconvexity. This is an experimental function and may not be needed in practice.

Value

A length \text{rmstop} vector of lists with each element being an object of class \text{rbst}.

Author(s)

Zhu Wang

See Also

\text{rbst}
Examples

```r
x <- matrix(rnorm(100*5),ncol=5)
c <- 2*x[,1]
p <- exp(c)/(exp(c)+exp(-c))
y <- rbinom(100,1,p)
y[y != 1] <- -1
y[1:10] <- -y[1:10]
x <- as.data.frame(x)
dat.m <- bst(x, y, ctrl = bst_control(mstop=50), family = "hinge", learner = "ls")
predict(dat.m)
dat.m1 <- bst(x, y, ctrl = bst_control(twinboost=TRUE,
coefir=coef(dat.m), xselect.init = dat.m$xselect, mstop=50))
dat.m2 <- rbst(x, y, ctrl = bst_control(mstop=50, s=0, trace=TRUE),
rfamily = "thinge", learner = "ls")
predict(dat.m2)
rmstop <- seq(10, 40, by=10)
dat.m3 <- rbstpath(x, y, rmstop, ctrl=bst_control(s=0), rfamily = "thinge", learner = "ls")
```

---

rmbst

Robust Boosting for Multi-class Robust Loss Functions

Description

MM (majorization/minimization) based gradient boosting for optimizing nonconvex robust loss functions with componentwise linear, smoothing splines, tree models as base learners.

Usage

```r
rmbst(x, y, cost = 0.5, rfamily = c("thinge", "closs"), ctrl=bst_control(),
control.tree=list(maxdepth = 1),learner=c("ls","sm","tree"),del=1e-10)
```

Arguments

- **x**: a data frame containing the variables in the model.
- **y**: vector of responses. y must be in \{1, 2, ..., k\}.
- **cost**: price to pay for false positive, 0 < cost < 1; price of false negative is 1-cost.
- **rfamily**: family = "thinge" is currently implemented.
- **ctrl**: an object of class `bst_control`.
- **control.tree**: control parameters of rpart.
- **learner**: a character specifying the component-wise base learner to be used: ls linear models, sm smoothing splines, tree regression trees.
- **del**: convergency criteria
Details

An MM algorithm operates by creating a convex surrogate function that majorizes the nonconvex objective function. When the surrogate function is minimized with gradient boosting algorithm, the desired objective function is decreased. The MM algorithm contains difference of convex (DC) for rfamily="thinge", and quadratic majorization boosting algorithm (QMB) for rfamily="closs".

Value

An object of class bst with print, coef, plot and predict methods are available for linear models. For nonlinear models, methods print and predict are available.

x, y, cost, rfamily, learner, control.tree, maxdepth
These are input variables and parameters

ctrl the input ctrl with possible updated fk if type="adaptive"

yhat predicted function estimates

ens a list of length mstop. Each element is a fitted model to the pseudo residuals, defined as negative gradient of loss function at the current estimated function

ml.fit the last element of ens

ensemble a vector of length mstop. Each element is the variable selected in each boosting step when applicable

xselect selected variables in mstop

coef estimated coefficients in mstop

Author(s)

Zhu Wang

References


See Also

cv.rmbst for cross-validated stopping iteration. Furthermore see bst_control

Examples

x <- matrix(rnorm(100*5),ncol=5)
c <- quantile(x[,1], prob=c(0.33, 0.67))
y <- rep(1, 100)
y[x[,1] > c[2]] <- 3
```r
x <- as.data.frame(x)
x <- as.data.frame(x)
dat.m <- mbst(x, y, ctrl = bst_control(mstop=50), family = "hinge", learner = "ls")
predict(dat.m)
dat.m1 <- mbst(x, y, ctrl = bst_control(twinboost=TRUE, f.init=predict(dat.m), xselect.init = dat.m$xselect, mstop=50))
dat.m2 <- rmbst(x, y, ctrl = bst_control(mstop=50, s=1, trace=TRUE), rfamily = "hinge", learner = "ls")
predict(dat.m2)
```
# Index

* **classification**
  - bst, 2
  - ex1data, 16
  - mada, 17
  - mbst, 18
  - mhingebst, 20
  - mhingeova, 22
  - rbst, 24
  - rbstpath, 26
  - rmbst, 27

* **models**
  - bst.sel, 4

* **regression**
  - bst.sel, 4

balanced.folds (loss), 17
bst, 2, 3, 5, 7, 8, 23
bst.sel, 4
bst_control, 3, 4, 5, 8, 10, 11, 13, 15, 18, 20, 21, 23–28

coef, 3, 19, 25, 28
coef.bst (bst), 2
cv.bst, 4, 5, 7, 23
cv.mada, 9, 18
cv.mbst, 10, 20
cv.mhingebst, 11, 21
cv.mhingeova, 12
cv.rbst, 13, 25
cv.rmbst, 15, 28
cvfolds (loss), 17
error.bars (loss), 17
ex1data, 16

fpartial.bst (bst), 2
fpartial.mbst (mbst), 18
fpartial.mhingebst (mhingebst), 20
gaussloss (loss), 17
gaussngra (loss), 17

gradient (loss), 17
hingeloss (loss), 17
hingengra (loss), 17
loss, 17
mada, 9, 17
mbst, 11, 18, 19, 23
mbst_fit (loss), 17
mhingebst, 12, 20, 21, 23
mhingebst_fit (loss), 17
mhingeova, 13, 22, 22
ngradient (loss), 17
nsel, 23
permute.rows (loss), 17
plot, 3, 19, 25, 28
plot.bst (bst), 2
plotCVbst (loss), 17
predict, 3, 19, 21, 25, 28
predict.bst (bst), 2
predict.mbst (mbst), 18
predict.mhingebst (mhingebst), 20
print, 3, 19, 21, 22, 25, 28
print.bst (bst), 2
print.mbst (mbst), 18
print.mhingebst (mhingebst), 20
print.mhingeova (mhingeova), 22

rbst, 14, 24, 26
rbstpath, 26
rmbst, 16, 23, 27