Package ‘changepoint.np’

January 20, 2021

Type Package
Title Methods for Nonparametric Changepoint Detection
Version 1.0.3
Date 2021-01-20
Description Implements the multiple changepoint algorithm PELT with a nonparametric cost function based on the empirical distribution of the data. This package extends the changepoint package (see Killick, R and Eckley, I (2014) <doi:10.18637/jss.v058.i03>).
Depends changepoint
RdMacros Rdpack
Imports methods,zoo,Rdpack
License GPL
RoxygenNote 7.1.1
NeedsCompilation yes
Author Kaylea Haynes [aut],
Rebecca Killick [aut],
Paul Fearnhead [ths, ctb],
Idris Eckley [ths],
Daniel Grose [ctb, cre]
Maintainer Daniel Grose <changepoints@lancaster.ac.uk>
Repository CRAN
Date/Publication 2021-01-20 22:00:02 UTC

R topics documented:

cpt.np ... 2
HeartRate .. 4
Index 6
Identifying Changes using a Nonparametric Cost Function

description
Calculates the optimal positioning and number of changepoints for data given a user specified cost function and penalty.

usage
```r
cpt.np(
  data,
  penalty = "MBIC",
  pen.value = 0,
  method = "PELT",
  test.stat = "empirical_distribution",
  class = TRUE,
  minseglen = 1,
  nquantiles = 10,
  verbose = TRUE
)
```

arguments
- **data**: A vector, ts object or matrix containing the data within which you wish to find a changepoint. If the data is a matrix, each row is considered as a separate dataset.
- **penalty**: Choice of "None", "SIC", "BIC", "MBIC", "AIC", "Hannan-Quinn", "Manual" and "CROPS" penalties. If Manual is specified, the manual penalty is contained in the pen.value parameter. If CROPS is specified, the penalty range is contained in the pen.value parameter; note this is a vector of length 2 which contains the minimum and maximum penalty value. Note CROPS can only be used if the method is "PELT". The predefined penalties listed DO count the changepoint as a parameter, post-fix a 0 e.g. "SIC0" to NOT count the changepoint as a parameter.
- **pen.value**: The value of the penalty when using the Manual penalty option. A vector of length 2 (min,max) if using the CROPS penalty.
- **method**: Currently the only method is "PELT".
- **test.stat**: The assumed test statistic/distribution of the data. Currently only "empirical_distribution".
- **class**: Logical. If TRUE then an object of class cpt is returned.
- **minseglen**: Positive integer giving the minimum segment length (number of observations between changes), default is the minimum allowed by theory.
- **nquantiles**: The number of quantiles to calculate when test.stat = "empirical_distribution".
- **verbose**: Logical value. If TRUE then progress will be reported when penalty=CROPS. Default value is TRUE.
Details

This function is used to find multiple changes in a data set using the changepoint algorithm PELT with a nonparametric cost function based on the empirical distribution. A changepoint is denoted as the first observation of the new segment.

Value

If class=TRUE then an object of S4 class "cpt" is returned. The slot cpts contains the changepoints that are returned. For class=FALSE the structure is as follows.

If data is a vector (single dataset) then a vector/list is returned depending on the value of method. If data is a matrix (multiple datasets) then a list is returned where each element in the list is either a vector or list depending on the value of method.

If method is PELT then a vector is returned containing the changepoint locations for the penalty supplied. If the penalty is CROPS then a list is returned with the elements:

- cpt.out: A data frame containing the value of the penalty value where the number of segmentations changes, the number of segmentations and the value of the cost at that penalty value.
- changepoints: The optimal changepoints for the different penalty values starting with the lowest penalty value.

Author(s)

Kaylea Haynes

References

See Also

PELT in parametric settings: cpt.mean for changes in the mean, cpt.var for changes in the variance and cpt.meanvar for changes in the mean and variance.

Examples

#Example of a data set of length 1000 with changes in location
#(model 1 of Haynes, K et al. (2016)) with the empirical distribution cost function.
set.seed(12)

J <- function(x){
 (1+sign(x))/2
}

n <- 1000
tau <- c(0.1, 0.13, 0.15, 0.23, 0.25, 0.4, 0.44, 0.65, 0.76, 0.78, 0.81)*n
h <- c(2.01, -2.51, 1.51, -2.01, 2.51, -2.11, 1.05, 2.16, -1.56, 2.56, -2.11)
sigma <- 0.5
t <- seq(0,1,length.out = n)
data <- array()
for (i in 1:n){
 data[i] <- sum(h*J(n*t[i] - tau)) + (sigma * rnorm(1))
}

out <- cpt.np(data, penalty = "SIC", method="PELT", test.stat="empirical_distribution",
 class=TRUE, minseglen=2, nquantiles =4*log(length(data)))
cpts(out)
#returns 100 130 150 230 250 400 440 650 760 780 810 as the changepoint locations.
plot(out)

#Example 2 uses the heart rate data.

data(HeartRate)
cptHeartRate <- cpt.np(HeartRate, penalty = "CROPS", pen.value = c(5,200),
 method="PELT", test.stat="empirical_distribution",
 class=TRUE, minseglen=2, nquantiles =4*log(length(HeartRate)))
plot(cptHeartRate, diagnostic = TRUE)
plot(cptHeartRate, ncpts = 11)

HeartRate

Recorded heart rate during a run

Description

A dataset containing heart-rate recorded during a run.

Usage

data(HeartRate)

Format

A vector of recorded heart rates at points over time with 1160 data points.
HeartRate

Author(s)

Kaylea Haynes

References

Index

* datasets
 HeartRate, 4

cpt.mean, 3
cpt.meanvar, 3
cpt.np, 2
cpt.var, 3

HeartRate, 4