clickb: Web Data Analysis by Bayesian Mixture of Markov Models

Designed for web usage data analysis, it implements tools to process web sequences and identify web browsing profiles through sequential classification. Sequences' clusters are identified by using a model-based approach, specifically mixture of discrete time first-order Markov models for categorical web sequences. A Bayesian approach is used to estimate model parameters and identify sequences classification as proposed by Fruehwirth-Schnatter and Pamminger (2010) <doi:10.1214/10-BA606>.

Version: 0.1
Imports: DiscreteWeibull, mclust, MCMCpack, parallel
Suggests: seqHMM
Published: 2023-02-13
DOI: 10.32614/CRAN.package.clickb
Author: Furio Urso [aut, cre], Reza Mohammadi [aut], Antonino Abbruzzo [aut], Maria Francesca Cracolici [aut]
Maintainer: Furio Urso <furio.urso at>
License: MIT + file LICENSE
NeedsCompilation: no
CRAN checks: clickb results


Reference manual: clickb.pdf


Package source: clickb_0.1.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): clickb_0.1.tgz, r-oldrel (arm64): clickb_0.1.tgz, r-release (x86_64): clickb_0.1.tgz, r-oldrel (x86_64): clickb_0.1.tgz


Please use the canonical form to link to this page.