Package ‘codacore’

January 7, 2022

Title Learning Sparse Log-Ratios for Compositional Data

Version 0.0.3

Description In the context of high-throughput genetic data, CoDaCoRe identifies a set of sparse biomarkers that are predictive of a response variable of interest (Gordon-Rodriguez et al., 2021) <doi:10.1093/bioinformatics/btab645>. More generally, CoDaCoRe can be applied to any regression problem where the independent variable is Compositional (CoDa), to derive a set of scale-invariant log-ratios (ILR or SLR) that are maximally associated to a dependent variable.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

Depends R (>= 3.6.0)

Imports tensorflow (>= 2.1), keras (>= 2.3), pROC (>= 1.17), R6 (>= 2.5), gtools(>= 3.8)

SystemRequirements TensorFlow (https://www.tensorflow.org/)

Suggests zCompositions, testthat (>= 2.1.0), knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Elliott Gordon-Rodriguez [aut, cre], Thomas Quinn [aut]

Maintainer Elliott Gordon-Rodriguez <eg2912@columbia.edu>

Repository CRAN

Date/Publication 2022-01-07 10:10:02 UTC

R topics documented:

 activeInputs.codacore .. 2
activeInputs.codacore

Description

activeInputs

Usage

activeInputs.codacore(cdcr)

Arguments

cdcr

A codacore object.

Value

The covariates included in the log-ratios
Description

This function implements the codacore algorithm described by Gordon-Rodriguez et al. 2021 (https://doi.org/10.1101/2021.02.11.430695).

Usage

codacore(
 x,
 y,
 logRatioType = "balances",
 objective = NULL,
 lambda = 1,
 offset = NULL,
 shrinkage = 1,
 maxBaseLearners = 5,
 optParams = list(),
 cvParams = list(),
 verbose = FALSE,
 overlap = TRUE,
 fast = TRUE
)

Arguments

x A data.frame or matrix of the compositional predictor variables.
y A data.frame, matrix or vector of the response.
logRatioType A string indicating whether to use "balances" or "amalgamations". Also accepts "balance", "B", "ILR", or "amalgam", "A", "SLR". Note that the current implementation for balances is not strictly an ILR, but rather just a collection of balances (which are possibly non-orthogonal in the Aitchison sense).
objective A string indicating "binary classification" or "regression". By default, it is NULL and gets inferred from the values in y.
lambda A numeric. Corresponds to the "lambda-SE" rule. Sets the "regularization strength" used by the algorithm to decide how to harden the ratio. Larger numbers tend to yield fewer, more sparse ratios.
offset A numeric vector of the same length as y. Works similarly to the offset in a glm.
shrinkage A numeric. Shrinkage factor applied to each base learner. Defaults to 1.0, i.e., no shrinkage applied.
maxBaseLearners An integer. The maximum number of log-ratios that the model will learn before stopping. Automatic stopping based on seRule may occur sooner.
optParams A list of named parameters for the optimization of the continuous relaxation. Empty by default. User can override as few or as many of our defaults as desired. Includes adaptiveLR (learning rate under adaptive training scheme), momentum (in the gradient-descent sense), epochs (number of gradient-descent epochs), batchSize (number of observations per minibatch, by default the entire dataset), and vanillaLR (the learning rate to be used if the user does *not* want to use the 'adaptiveLR', to be used at the risk of optimization issues).

cvParams A list of named parameters for the "hardening" procedure using cross-validation. Includes numFolds (number of folds) and maxCutoffs (number of candidate cutoff values of 'c' to be tested out during CV process).

verbose A boolean. Toggles whether to display intermediate steps.

overlap A boolean. Toggles whether successive log-ratios found by CoDaCoRe may contain repeated input variables. TRUE by default. Changing to FALSE implies that the log-ratios obtained by CoDaCoRe will become orthogonal in the Aitchison sense, analogously to the isometric-log-ratio transformation, while losing a small amount of model flexibility.

fast A boolean. Whether to run in fast or slow mode. TRUE by default. Running in slow mode will take ~x5 the computation time, but may help identify slightly more accurate log-ratios.

Value

A codacore object.

Examples

```r
data("Crohn")
x <- Crohn[, -ncol(Crohn)]
y <- Crohn[, ncol(Crohn)]
x <- x + 1
model = codacore(x, y)
print(model)
plot(model)
```

Crohn

Microbiome composition related to Crohn’s disease study

Description

A dataset containing the number of counts of 48 different genera in a group of 975 samples (including 662 samples of patients with Crohn’s disease and 313 controls). The data.frame is composed by 48 genera and a factor variable.
FranzosaMetabolite

Format
The data.frame is composed by 48 genera and a variable

- **genera**: The first 48 columns, from *g_Turicibacter* until *g_Bilophila* referred to different genera.

- **y**: a factor indicating if the sample corresponds to a case (*CD*) or a control (*no*).

References

https://qiita.ucsd.edu/

FranzosaMetabolite \hspace{1cm} Metabolite relative abundances (Franzosa et al., 2019)

Description

A dataset containing the relative abundances of 7156 metabolites in a group of 220 samples, together with an additional response variable indicating the corresponding Diagnosis.

Format

The data.frame is composed by metabolite data and Diagnosis

- **Metabolites**: TBD

- **Diagnosis**: Indicates if the sample was diagnosed with Crohn’s disease (*CD*), ulcerative colitis (*UC*), or was a control (*Control*).

References

https://www.nature.com/articles/s41564-018-0306-4

FranzosaMicrobiome \hspace{1cm} Microbiome relative abundances (Franzosa et al., 2019)

Description

A dataset containing the relative abundances of 58 bacteria in a group of 220 samples, together with an additional response variable indicating the corresponding Diagnosis.

Format

The data.frame is composed by microbiome data and Diagnosis

- **Microbiome**: The first 58 columns.

- **Diagnosis**: Indicates if the sample was diagnosed with Crohn’s disease (*CD*), ulcerative colitis (*UC*), or was a control (*Control*).

References

https://www.nature.com/articles/s41564-018-0306-4
Description
getDenominatorParts

Usage
getDenominatorParts(cdcr, baseLearnerIndex = 1)

Arguments
- cdcr: A codacore object.
- baseLearnerIndex: An integer indicating which of the (possibly multiple) log-ratios learned by codacore to be used.

Value
The covariates in the denominator of the selected log-ratio.

Description
getLogRatios

Usage
getLogRatios(cdcr, x = NULL)

Arguments
- cdcr: A codacore object
- x: A set of (possibly unseen) compositional data. The covariates must be passed in the same order as for the original codacore() call.

Value
The learned log-ratio features, computed on input x.
getNumeratorParts

Description
getNumeratorParts

Usage
getNumeratorParts(cdcr, baseLearnerIndex = 1)

Arguments
- **cdcr**: A codacore object.
- **baseLearnerIndex**: An integer indicating which of the (possibly multiple) log-ratios learned by codacore to be used.

Value
The covariates in the numerator of the selected log-ratio.

getSlopes

Description
getSlopes

Usage
getSlopes(cdcr)

Arguments
- **cdcr**: A codacore object

Value
The slopes (i.e., regression coefficients) for each log-ratio.
HIV Microbiome, HIV infection and MSM factor

Description

A dataset containing the number of counts of 60 different genera in a group of 155 samples (including HIV - infected and non - infected patients). The data.frame is composed by 60 genera and two variables.

Format

The data.frame is composed by 60 genera and 2 variables

- **genera** The first 60 columns, from g_Prevotella until o_NB1-n_g_unclassified referred to different genera.
- **MSM** a factor determining if the individual is MSM (Men Sex with Men) or not (nonMSM).
- **HIV_Status** a factor specifying if the individual is infected (Pos) or not (Neg).

References

plot.codacore plot

Description

Plots a summary of a fitted codacore model. Credit to the authors of the selbal package (Rivera-Pinto et al., 2018), from whose package these plots were inspired.

Usage

```r
## S3 method for class 'codacore'
plot(x, index = 1, ...)
```

Arguments

- **x** A codacore object.
- **index** The index of the log-ratio to plot.
- **...** Not used.
plotROC

Description

plotROC

Usage

plotROC(cdcr)

Arguments

cdcr A codacore object.

predict.codacore

Description

predict

Usage

S3 method for class 'codacore'
predict(object, newx, asLogits = TRUE, numLogRatios = NA, ...)

Arguments

object A codacore object.
newx A set of inputs to our model.
asLogits Whether to return outputs in logit space (as opposed to probability space). Should
always be set to TRUE for regression with continuous outputs, but can be tog-
gled for classification problems.
numLogRatios How many predictive log-ratios to include in the prediction. By default, in-
cludes the effects of all log-ratios that were obtained during training. Setting
this parameter to an integer k will restrict to using only the top k log-ratios in
the model.
... Not used.
print.codacore

print

Description

print

Usage

```r
## S3 method for class 'codacore'
print(x, ...)
```

Arguments

- `x` A codacore object.
- `...` Not used.

sCD14

Microbiome and sCD14 inflammation parameter

Description

A dataset containing the number of counts of 60 different genera in a group of 151 samples (including HIV-infected and non-infected patients). The `data.frame` is composed by 60 genera and a numeric variable.

Format

The `data.frame` is composed by 60 genera and a variable:

- **genera** The first 60 columns, from `g_Prevotella` until `o_NB1-n_g_unclassified` referred to different genera.
- **sCD14** A numeric variable with the value of the inflammation parameter sCD14 for each sample.

References

doi: 10.1016/j.ebiom.2016.01.032
Description
This function simulates a set of (x, y) pairs. The covariates x are compositional, meaning they only carry relative information. The response y is a binary indicator. The rule linking x and y can be a balance or an amalgamation.

Usage
simulateHTS(n, p, outputType = "binary", logratio = "simple")

Arguments
- n: Number of observations.
- p: Number of covariates.
- outputType: A string indicating 'binary' or 'continuous'.
- logratio: A string indicating 'simple', 'balance', or 'amalgamation'.

Value
A list containing a matrix of inputs and a vector of outputs
Index

* data
 Crohn, 4
 FranzosaMetabolite, 5
 FranzosaMicrobiome, 5
 HIV, 8
 sCD14, 10

activeInputs.codacore, 2

codacore, 3
Crohn, 4

 FranzosaMetabolite, 5
 FranzosaMicrobiome, 5

getDenominatorParts, 6
getLogRatios, 6
getNumeratorParts, 7
getSlopes, 7

HIV, 8

plot.codacore, 8
plotROC, 9
predict.codacore, 9
print.codacore, 10

sCD14, 10
simulateHTS, 11