Package ‘compound.Cox’

July 4, 2019

Type Package

Title Univariate Feature Selection and Compound Covariate for Predicting Survival

Version 3.18

Date 2019-7-4

Author Takeshi Emura, Hsuan-Yu Chen, Shigeyuki Matsui, Yi-Hau Chen

Maintainer Takeshi Emura <takeshiemura@gmail.com>

Description

License GPL-2

Depends numDeriv, survival

NeedsCompilation no

Repository CRAN

Date/Publication 2019-07-04 05:11:18 UTC

R topics documented:

compound.Cox-package 2
CG.Clayton 3
CG.Gumbel 4
cindex.CV 6
compound.reg 8
dependCox.reg 10
dependCox.reg.CV 11
Lung .. 13
compound.Cox-package

Univariate Feature Selection and Compound Covariate for Predicting Survival

Description

Details

Package: compound.Cox
Type: Package
Version: 3.18
Date: 2019-7-4
License: GPL-2

Author(s)

Takeshi Emura, Hsuan-Yu Chen, Shigeyuki Matsui, Yi-Hau Chen; Maintainer: Takeshi Emura <takeshiemura@gmail.com>

References

CG.Clayton

Copula-graphic estimator under the Clayton copula.

Description

This function computes the copula-graphic (CG) estimator (Rivest & Wells 2001) of a survival function under the Clayton copula.

Usage

CG.Clayton(t.vec, d.vec, alpha, S.plot = TRUE, S.col = "black")

Arguments

- `t.vec` Vector of survival times (time to either death or censoring)
- `d.vec` Vector of censoring indicators, 1=death, 0=censoring
- `alpha` Association parameter that is related to Kendall's tau through "tau= alpha/(alpha+2)"
- `S.plot` If TRUE, the survival curve is displayed
- `S.col` Color of the survival curve in the plot

Details

The CG estimator is a variant of the Kaplan-Meier estimator for a survival function. The CG estimator relaxes the independent censoring assumption of the KM estimator through a copula-based dependent censoring model. The computational formula of the CG estimator is given in Appendix D of Emura et al. (2019). The output shows the survival probabilities at given time points of "t.vec". The input requires to specify an association parameter "alpha" of the Clayton copula (alpha>0), where alpha=0 corresponds to the independence copula. Emura and Chen (2016, 2018) applied the CG estimator to assess survival prognosis for lung cancer patients.

Value

- `tau` Kendall's tau (=alpha/(alpha+2))
- `time` sort(t.vec)
- `surv` survival probability at "time"

Author(s)

Takeshi Emura
References

Examples

```r
## Example 1 (a toy example of n=8) ##
t.vec=c(1,3,5,4,7,8,10,13)
d.vec=c(1,0,0,1,1,0,1,0)
CG.Clayton(t.vec,d.vec,alpha=18,S.col="blue")

## CG.Clayton gives identical results with the Kaplan-Meier estimator with alpha=0 ##
CG.Clayton(t.vec,d.vec,alpha=0,S.plot=FALSE)$surv
survfit(Surv(t.vec,d.vec)-1)$surv

## Example 2 (Analysis of the lung cancer data) ##
data(Lung) # read the data
t.vec=Lung[,"t.vec"]
d.vec=Lung[,"d.vec"]
x.vec=Lung[,"MMP1"] # the gene associated with survival (Emura and Chen 2016, 2018) #
Poor=x.vec>median(x.vec) ## Indicator of poor survival
Good=x.vec<median(x.vec) ## Indicator of good survival
par(mfrow=c(1,2))

## Predicted survival curves via the CG estimator ##
t.good=t.vec[Good]
d.good=d.vec[Good]
CG.Clayton(t.good,d.good,alpha=18,S.plot=TRUE,S.col="blue")

t.poor=t.vec[Poor]
d.poor=d.vec[Poor]
CG.Clayton(t.poor,d.poor,alpha=18,S.plot=TRUE,S.col="red")
```

CG.Gumbel

Copula-graphic estimator under the Gumbel copula.

Description

This function computes the copula-graphic (CG) estimator (Rivest & Wells 2001) under the Gumbel copula.
Usage

CG.Gumbel(t.vec, d.vec, alpha, S.plot = TRUE, S.col = "black")

Arguments

t.vec Vector of survival times (time to either death or censoring)
d.vec Vector of censoring indicators, 1=death, 0=censoring
alpha Association parameter that is related to Kendall’s tau through "tau= alpha/(alpha+1)"
S.plot If TRUE, the survival curve is displayed
S.col Color of the survival curve in the plot

Details

The CG estimator is a variant of the Kaplan-Meier estimator for a survival function. The CG estimator relaxes the independent censoring assumption of the KM estimator through a copula-based dependent censoring model. The computational formula of the CG estimator is given in Appendix D of Emura et al. (2019). The output shows the survival probabilities at given time points of "t.vec". The input requires to specify an association parameter "alpha" of the Gumbel copula (alpha>=0), where alpha=0 corresponds to the independence copula. Emura and Chen (2016, 2018) applied the CG estimator to assess survival prognosis for lung cancer patients.

Value

tau Kendall’s tau (=alpha/(alpha+1))
time sort(t.vec)
surv survival probability at "time"

Author(s)

Takeshi Emura

References

Examples

```r
## Example 1 (a toy example of n=8) ##
t.vec=c(1,3,4,7,8,10,13)
d.vec=c(1,0,0,1,1,0,1,0)
CG.Gumbel(t.vec,d.vec,alpha=9,S.col="blue")
### CG.Gumbel gives identical results with the Kaplan-Meier estimator with alpha=0 ###
CG.Gumbel(t.vec,d.vec,alpha=0,S.plot=FALSE)$surv
survfit(Surv(t.vec,d.vec)-1)$surv

## Example 2 (Analysis of the lung cancer data) ##
data(Lung) # read the data
t.vec=Lung[,"t.vec"]
d.vec=Lung[,"d.vec"]
x.vec=Lung[,"MMP16"] # the gene associated with survival (Emura and Chen 2016, 2018) #
Poor=x.vec<median(x.vec) ## Indicator of poor survival
Good=x.vec>=median(x.vec) ## Indicator of good survival

par(mfrow=c(1,2))
##### Predicted survival curves via the CG estimator #####
t.good=t.vec[Good]
d.good=d.vec[Good]
CG.Gumbel(t.good,d.good,alpha=9,S.plot=TRUE,S.col="blue")

t.poor=t.vec[Poor]
d.poor=d.vec[Poor]
CG.Gumbel(t.poor,d.poor,alpha=9,S.plot=TRUE,S.col="red")
```

cindex.CV

Cross-validated c-index for measuring the predictive accuracy of a prognostic index under a copula-based dependent censoring model.

Description

This function calculates the cross-validated c-index (concordance index) for measuring the predictive accuracy of a prognostic index under a copula-based dependent censoring model. Here the prognostic index is calculated as a compound covariate predictor based on the univariate Cox regression estimates. The expression and details are given in Section 3.2 of Emura and Chen (2016). The association between survival time and censoring time is modeled via the Clayton copula.

Usage

cindex.CV(t.vec, d.vec, X.mat, alpha, K = 5)

Arguments

t.vec Vector of survival times (time to death or time to censoring, whichever comes first)
d.vec Vector of censoring indicators, 1=death, 0=censoring
X.mat n by p matrix of covariates, where n is the sample size and p is the number of covariates
alpha Association parameter of the Clayton copula; Kendall’s tau = alpha/(alpha+2)
K The number of cross-validation folds (K=5 is the default)

Details
Currently, only the Clayton copula is implemented for modeling association between survival time and censoring time. The Clayton model yields positive association between survival time and censoring time with the Kendall’s tau being equal to alpha/(alpha+2), where alpha > 0. The independent copula corresponds to alpha = 0.

If the number of covariates p is large (e.g., p>=100), the computational time becomes very long. Pre-filtering for covariates is recommended to reduce p.

Value
concordant Cross-validated c-index

Author(s)
Takeshi Emura

References

Examples
n=25 ### sample size ###
p=3 ### the number of covariates ###
set.seed(1)
T=rexp(n) ### survival time
U=rexp(n) ### censoring time
t.vec=min(T,U) ### minimum of survival time and censoring time
d.vec=as.numeric(c(T<=U)) ### censoring indicator
X.mat=matrix(runif(n*p),n,p) ### covariates matrix

cindex.CV(t.vec,d.vec,X.mat,alpha=2) ### alpha=2 corresponds to Kendall's tau=0.5
Compound shrinkage estimation under the Cox model

Description

This function implements the "compound shrinkage estimator" to calculate the regression coefficients of the Cox model, which was proposed by Emura, Chen & Chen (2012). The method is a variant of the Cox partial likelihood estimator such that the regression coefficients are mixed with the univariate Cox regression estimators. The resultant estimator is applicable even when the number of covariates is greater than the number of samples (the p>n setting). The standard errors (SEs) are calculated based on the asymptotic theory (see Emura et al., 2012).

Usage

```
compound.reg(t.vec, d.vec, X.mat, K = 5, delta_a = 0.025, a_0 = 0, var = FALSE,
plot=TRUE, randomize = FALSE, var.detail = FALSE)
```

Arguments

- `t.vec`: Vector of survival times (time to either death or censoring)
- `d.vec`: Vector of censoring indicators, 1=death, 0=censoring
- `X.mat`: n by p matrix of covariates, where n is the sample size and p is the number of covariates
- `K`: The number of cross validation folds, K=n corresponds to a leave-one-out cross validation (default=5)
- `delta_a`: The step size for a grid search for the maximum of the cross-validated likelihood (default=0.025)
- `a_0`: The starting value of a grid search for the maximum of the cross-validated likelihood (default=0)
- `var`: If TRUE, the standard deviations and confidence intervals are given (default=FALSE, to reduce the computational cost)
- `plot`: If TRUE, the cross validated likelihood curve and its maximized point are drawn
- `randomize`: If TRUE, randomize the subject ID's so that the subjects in the cross validation folds are randomly chosen. Otherwise, the cross validation folds are constructed in the ascending sequence
- `var.detail`: Detailed information about the covariance matrix, which is mainly used for theoretical purposes. Please consult Takeshi Emura for more details (default=FALSE)

Details

K=5 cross validation is recommended for computational efficiency, though the results appear to be robust against the choice of the number K. If the number of covariates is greater than 200, the computational time becomes very long. In such a case, the univariate pre-selection is recommended to reduce the number of covariates.
Value

- **a**: An optimized value of the shrinkage parameter (0 <= a <= 1)
- **beta**: Estimated regression coefficients
- **SE**: Standard errors for estimated regression coefficients
- **Lower95CI**: Lower ends of 95 percent confidence intervals (beta_hat - 1.96 * SE)
- **Upper95CI**: Upper ends of 95 percent confidence intervals (beta_hat + 1.96 * SE)
- **Sigma**: Covariance matrix for estimated regression coefficients
- **V**: Estimates of the information matrix (−[Hessian of the loglikelihood]/n)
- **Hessian_CV**: Second derivative of the cross-validated likelihood. Normally negative since the cross-validated curve is concave
- **h_dot**: Derivative of Equation (8) of Emura et al. (2012) with respect to a shrinkage parameter "a"

Author(s)

Takeshi Emura & Yi-Hau Chen

References

Examples

```r
### A simulation study ###
n=50  ### sample size
beta_true=c(1,1,0,0,0)
p=length(beta_true)
t.vec=d.vec=numeric(n)
X.mat=matrix(0,n,p)

set.seed(1)
for(i in 1:n){
  X.mat[i,]=rnorm(p,mean=0,sd=1)
  eta=sum( as.vector(X.mat[i,])*beta_true )
  T=rexp(1,rate=exp(eta))
  C=runif(1,min=0,max=5)
  t.vec[i]=min(T,C)
  d.vec[i]=(T<=C)
}
compound.reg(t.vec,d.vec,X.mat,delta_a=0.1)
### compare the estimates (beta) with the true value ###
beta_true

### Lung cancer data analysis (Emura et al. 2012 PLoS ONE) ###
data(Lung)
temp=Lung[,"train"]==TRUE
t.vec=Lung[temp,"t.vec"]
```
Univariate Cox regression under dependent censoring.

Description

This function performs univariate Cox regression under dependent censoring, where dependence between survival time and censoring time is modeled via the Clayton copula (Emura and Chen 2016).

Usage

dependCox.reg(t.vec, d.vec, X.vec, alpha, var = TRUE, censor.reg=FALSE)

Arguments

t.vec A vector of survival times (time-to-death or censoring)
d.vec A vector of censoring indicators, 1=death, 0=censoring
X.vec A vector of covariates (multiple covariates are not allowed)
alpha An copula parameter (Kendall’s tau = alpha/(alpha+2)
var If TRUE, the standard deviations are given (use FALSE to reduce the computational cost)
censor.reg If TRUE, show the fitted results for both survival and censoring models

Details

The Clayton model yields positive association between survival time and censoring time with Kendall’s tau being equal to alpha/(alpha+2), where alpha > 0 is a copula parameter. The independence copula corresponds to alpha = 0.

Value

beta The estimated regression coefficient
SE The standard error for the estimated regression coefficient
Z The Z-value for testing the null hypothesis of "beta=0" (the Wald test)
P The P-value for testing the null hypothesis of "beta=0" (the Wald test)

Author(s)

Takeshi Emura
References

Examples

```r
### Joint Cox regression of survival and censoring ###
data(Lung)
t.vec=Lung[,"t.vec"] # death or censoring times #
d.vec=Lung[,"d.vec"] # censoring indicators #
# 16-gene prognostic index (Emura and Chen 2016; 2018) #
X.vec=0.51*Lung[,"ZNF264"]+0.50*Lung[,"MMP16"]+
    0.50*Lung[,"HGF"]-0.49*Lung[,"HCK"]+0.47*Lung[,"NF1"]+
    0.46*Lung[,"ERBB3"]+0.57*Lung[,"NR2F6"]+0.77*Lung[,"AXL"]+
    0.51*Lung[,"CDC23"]+0.92*Lung[,"DLG2"]-0.34*Lung[,"IGF2"]+
    0.54*Lung[,"RBXP6"]+0.51*Lung[,"COX11"]+
    0.40*Lung[,"DUSP6"]-0.37*Lung[,"ENG"]+0.41*Lung[,"IHPK1"]
dependcox.reg(t.vec,d.vec,censor=18,censor.reg=TRUE)

temp=c(Lung[,"train"]==TRUE)
t.vec=Lung[temp,"t.vec"]
d.vec=Lung[temp,"d.vec"]
dependcox.reg(t.vec,d.vec,Lung[temp,"ZNF264"],alpha=18)
# this reproduces Table 3 of Emura and Chen (2016) #

### A simulation study under dependent censoring ###
beta_true=1.5 # true regression coefficient
alpha_true=2 # true copula parameter corresponding to Kendall's tau=0.5
n=150
t.vec=d.vec=X.vec=numeric(n)
set.seed(1)
for(i in 1:n){
  X.vec[i]=runif(1)
  eta=X.vec[i]*beta_true
  U=runif(1)
  V=runif(1)
  T=1/exp(eta)*log(1-U) # Exp(eta) distribution
  W=(1-U)^(-alpha_true) # dependence produced by the Clayton copula
  C=1/(alpha_true/exp(eta)*log((1-W)/(1-V)^(-alpha_true/(alpha_true+1)))) # Exp(eta) distribution
  t.vec[i]=min(T,C)
  d.vec[i]=(T<=C)
}
dependcox.reg(t.vec,d.vec,X.vec,alpha=alpha_true,Var=FALSE) # faster computation by "var=FALSE"
beta_true# the above estimate is close to the true value
coxph(Surv(t.vec,d.vec)-X.vec)$coef
# this estimate is biased for the true value due to dependent censoring
```
Description

This function performs estimation and significance testing for survival data under a copula-based dependent censoring model proposed in Emura and Chen (2016). The dependency between the failure and censoring times is modeled via the Clayton copula. The method is based on the semi-parametric maximum likelihood estimation, where the association parameter is estimated by maximizing the cross-validated c-index (see Emura and Chen 2016 for details).

Usage

dependCox.reg.CV(t.vec, d.vec, X.mat, K = 5, G = 20)

Arguments

t.vec A vector of survival times (time-to-death or censoring)
d.vec A vector of censoring indicators, 1=death, 0=censoring
X.mat An (n*p) matrix of covariates, where n is the sample size and p is the number of covariates
K The number of cross-validation folds
G The number of grids to optimize c-index (c-index is computed for G different values of copula parameters)

Details

The Clayton model yields positive association between survival time and censoring time with Kendall’s tau being equal to alpha/(alpha+2), where alpha > 0 is a copula parameter. The independence copula corresponds to alpha = 0.

If the number of covariates p is large (p>=100), the computational time becomes very long. We suggest using "uni.selection" to reduce the number such that p<100.

If the number of grids G is large, the computational time becomes very long. Please take 5<=G<=20.

Value

beta The estimated regression coefficients
SE The standard errors for the estimated regression coefficients
Z The Z-values for testing the null hypothesis of "beta=0" (the Wald test)
P The P-values for testing the null hypothesis of "beta=0" (the Wald test)
alpha The estimated copula parameter by optimizing c-index
c_index The optimized value of c_index

Author(s)

Takeshi Emura

References

Examples

```r
### Reproduce Section 5 of Emura and Chen (2016) ###
data(Lung)
temp=Lung[,"train"]==TRUE
t.vec=Lung[temp,"t.vec"]
d.vec=Lung[temp,"d.vec"]
X.mat=as.matrix(Lung[temp,-c(1,2,3)])
#dependCox.reg.CV(t.vec,d.vec,X.mat,G=20) # time-consuming process #
```

Lung

Survival data for patients with non-small-cell lung cancer.

Description

A subset of the lung cancer data (Chen et al. 2007) made available by Emura et al. (2019). The subset consists of 97 gene expressions from 125 patients with non-small-cell lung cancer. The 97 genes were selected with P-value<0.20 under univariate Cox regression analyses as previously done in Emura et al. (2012) and Emura and Chen (2016). The intensity of gene expression was transformed to an ordinal level using the quantile, i.e. if the intensity of gene expression was \(<=25\text{th}\), \(>25\text{th}\), \(>50\text{th}\), or \(>75\text{th}\) percentile, it was coded as 1, 2, 3, or 4, respectively (Chen et al. 2007).

Usage

```r
data("Lung")
```

Format

A data frame with 125 observations on the following 100 variables.

t.vec survival times (time to either death or censoring) in months
d.vec censoring indicators, 1=death, 0=censoring
train TRUE=training set, FALSE=test set, as defined in Chen et al. (2007)
VHL gene expression, coded as 1, 2, 3, or 4
VHPK1 gene expression, coded as 1, 2, 3, or 4
HMMR gene expression, coded as 1, 2, 3, or 4
CMKOR1 gene expression, coded as 1, 2, 3, or 4
PLAU gene expression, coded as 1, 2, 3, or 4
IGF2 gene expression, coded as 1, 2, 3, or 4
FGF gene expression, coded as 1, 2, 3, or 4
MYBL2 gene expression, coded as 1, 2, 3, or 4
ODC1 gene expression, coded as 1, 2, 3, or 4
MTHFD2 gene expression, coded as 1, 2, 3, or 4
GLIPR1 gene expression, coded as 1, 2, 3, or 4
EZH2 gene expression, coded as 1, 2, 3, or 4
HCK gene expression, coded as 1, 2, 3, or 4
CCNC gene expression, coded as 1, 2, 3, or 4
XRCC1 gene expression, coded as 1, 2, 3, or 4
CYP1B1 gene expression, coded as 1, 2, 3, or 4
CDC25A gene expression, coded as 1, 2, 3, or 4
CD44 gene expression, coded as 1, 2, 3, or 4
LCK gene expression, coded as 1, 2, 3, or 4
MTHFS gene expression, coded as 1, 2, 3, or 4
PON3 gene expression, coded as 1, 2, 3, or 4
PTPN6 gene expression, coded as 1, 2, 3, or 4
KIDINS220 gene expression, coded as 1, 2, 3, or 4
KLHL22 gene expression, coded as 1, 2, 3, or 4
RBBP6 gene expression, coded as 1, 2, 3, or 4
GABARAPL2 gene expression, coded as 1, 2, 3, or 4
SEH1L gene expression, coded as 1, 2, 3, or 4
CITED2 gene expression, coded as 1, 2, 3, or 4
BARD1 gene expression, coded as 1, 2, 3, or 4
TLX1 gene expression, coded as 1, 2, 3, or 4
CRMP1 gene expression, coded as 1, 2, 3, or 4
CTNNA1 gene expression, coded as 1, 2, 3, or 4
ANXA5 gene expression, coded as 1, 2, 3, or 4
PTGS2 gene expression, coded as 1, 2, 3, or 4
SMC4L1 gene expression, coded as 1, 2, 3, or 4
LOC285086 gene expression, coded as 1, 2, 3, or 4
ATP11B gene expression, coded as 1, 2, 3, or 4
CDK10 gene expression, coded as 1, 2, 3, or 4
IRF4 gene expression, coded as 1, 2, 3, or 4
MYH11 gene expression, coded as 1, 2, 3, or 4
ME3 gene expression, coded as 1, 2, 3, or 4
CCT6A gene expression, coded as 1, 2, 3, or 4
SNCG gene expression, coded as 1, 2, 3, or 4
MAK3 gene expression, coded as 1, 2, 3, or 4
VCPIP1 gene expression, coded as 1, 2, 3, or 4
JMJD1A gene expression, coded as 1, 2, 3, or 4
STAT2 gene expression, coded as 1, 2, 3, or 4
DDX6 gene expression, coded as 1, 2, 3, or 4
Lung gene expression, coded as 1, 2, 3, or 4

ERBB3 gene expression, coded as 1, 2, 3, or 4

PAX2 gene expression, coded as 1, 2, 3, or 4

PCTK2 gene expression, coded as 1, 2, 3, or 4

NF1 gene expression, coded as 1, 2, 3, or 4

DLG2 gene expression, coded as 1, 2, 3, or 4

JMJD1A.1 gene expression, coded as 1, 2, 3, or 4

SUCLA2 gene expression, coded as 1, 2, 3, or 4

MMP16 gene expression, coded as 1, 2, 3, or 4

AP3B2 gene expression, coded as 1, 2, 3, or 4

HGF gene expression, coded as 1, 2, 3, or 4

MAP2K3 gene expression, coded as 1, 2, 3, or 4

CPEB4 gene expression, coded as 1, 2, 3, or 4

ZNF264 gene expression, coded as 1, 2, 3, or 4

AXL gene expression, coded as 1, 2, 3, or 4

CDC23 gene expression, coded as 1, 2, 3, or 4

MAST3 gene expression, coded as 1, 2, 3, or 4

COX11 gene expression, coded as 1, 2, 3, or 4

PRKAG2 gene expression, coded as 1, 2, 3, or 4

MAN1B1 gene expression, coded as 1, 2, 3, or 4

F8 gene expression, coded as 1, 2, 3, or 4

RSU1 gene expression, coded as 1, 2, 3, or 4

MMD gene expression, coded as 1, 2, 3, or 4

AK5 gene expression, coded as 1, 2, 3, or 4

IDS gene expression, coded as 1, 2, 3, or 4

BNIP1 gene expression, coded as 1, 2, 3, or 4

ENG gene expression, coded as 1, 2, 3, or 4

PCDHGC3 gene expression, coded as 1, 2, 3, or 4

RALY gene expression, coded as 1, 2, 3, or 4

WDR33 gene expression, coded as 1, 2, 3, or 4

RNF4 gene expression, coded as 1, 2, 3, or 4

PRDX1 gene expression, coded as 1, 2, 3, or 4

FXN gene expression, coded as 1, 2, 3, or 4

PTPRU gene expression, coded as 1, 2, 3, or 4

FRAP1 gene expression, coded as 1, 2, 3, or 4

MMP7 gene expression, coded as 1, 2, 3, or 4

CST3 gene expression, coded as 1, 2, 3, or 4

TIMP2 gene expression, coded as 1, 2, 3, or 4
TAL1 gene expression, coded as 1, 2, 3, or 4
STAT1 gene expression, coded as 1, 2, 3, or 4
CCND1 gene expression, coded as 1, 2, 3, or 4
DUSP6 gene expression, coded as 1, 2, 3, or 4
SNRPF gene expression, coded as 1, 2, 3, or 4
MMP13 gene expression, coded as 1, 2, 3, or 4
NR2F6 gene expression, coded as 1, 2, 3, or 4
HOXA1 gene expression, coded as 1, 2, 3, or 4
RIPK1 gene expression, coded as 1, 2, 3, or 4
IL7R gene expression, coded as 1, 2, 3, or 4
SEC13L1 gene expression, coded as 1, 2, 3, or 4
RPL5 gene expression, coded as 1, 2, 3, or 4

Details

Survival data consisting of 125 patients.

Source

References

Examples

data(Lung)
Lung[1:3,] ## show the first 3 samples ##

The five-gene signature in Chen et al. (2007)
temp=Lung[,"train"]==TRUE
t.vec=Lung[temp,"t.vec"]
d.vec=Lung[temp,"d.vec"]
coxph(Surv(t.vec,d.vec)-Lung[temp,"ERBB3"])
coxph(Surv(t.vec,d.vec)-Lung[temp,"LCX"])
coxph(Surv(t.vec,d.vec)-Lung[temp,"DUSP6"])
coxph(Surv(t.vec,d.vec)-Lung[temp,"STAT1"])
coxph(Surv(t.vec,d.vec)-Lung[temp,"MMD"])
Primary biliary cirrhosis (PBC) of the liver data

Description

Usage

data(PBC)

Format

A data frame with 276 observations on the following 19 variables.

- T Survival times (either time to death or censoring) in days
- d Censoring indicator, 1=death, 0=censoring
- trt Treatment indicator, 1=treatment by D-penicillamine, 0=placebo
- age Age in years (days divided by 365.25)
- sex Sex, 0=male, 1=female
- asc Presence of ascites, 0=no, 1=yes
- hep Presence of hepatomegaly, 0=no, 1=yes
- spi Presence of spiders, 0=no, 1=yes
- ede Presence of edema, 0=no edema, 0.5=edema resolved by therapy, 1=edema not resolved by therapy
- bil log(bilirubin, mg/dl)
- cho log(cholesterol, mg/dl)
- alb log(albumin, gm/dl)
- cop log(urine copper, mg/day)
- alk log(alkarine, U/liter)
- sgo log(SGOT, in U/ml)
- tri log(triglycerides, in mg/dl)
- pla log(platelet count, [the number of platelets per-cubic-milliliter of blood]/1000)
- pro log(prothrombin time, in seconds)
- gra Histologic stage of disease, graded 1, 2, 3, or 4

Details

Survival data consisting of 276 patients with 17 covariates. Among them, 111 patients died (d=1) while others were censored (d=0). The covariates consist of a treatment indicator (trt), age, sex, 5 categorical variables (ascites, hepatomegaly, spider, edema, and stage of disease) and 9 log-transformed continuous variables (bilirubin, cholesterol, albumin, urine copper, alkarine, SGOT, triglycerides, platelet count, and prothrombine).
uni.score

Source
Fleming & Harrington (1991); Tibshirani (1997)

References

Examples
data(PBC)
PBC[1:5,] ### profiles for the first 5 patients ###
See also Appendix D.1 of Fleming & Harrington, Counting Process & Survival Analysis (1991)

uni.score

Univariate Cox score test

Description
Univariate significance analyses via the score tests (Witten & Tibshirani 2010; Emura et al. 2019) based on association between individual features and survival.

Usage
uni.score(t.vec, d.vec, X.mat, d0=0)

Arguments
t.vec
Vector of survival times (time to either death or censoring)
d.vec
Vector of censoring indicators, 1=death, 0=censoring
X.mat
n by p matrix of covariates, where n is the sample size and p is the number of covariates
d0
A positive constant to stabilize the variance (Witten & Tibshirani 2010)

Details

Value
beta
Estimated regression coefficients (one-step estimator)
Z
Z-value for testing H_0: beta=0 (score test)
P
P-value for testing H_0: beta=0 (score test)

Author(s)
Takeshi Emura and Shigeyuki Matsui
References

Examples

data(Lung)
t.vec=Lung$t.vec[Lung$train==TRUE]
d.vec=Lung$d.vec[Lung$train==TRUE]
X.mat=Lung[Lung$train==TRUE,-c(1,2,3)]
uni.score(t.vec, d.vec, X.mat)

uni.selection

Univariate feature selection based on univariate significance tests

Description

This function performs univariate feature selection using significance tests (Wald tests or score tests) based on association between individual features and survival. Features are selected if their P-values are less than a given threshold (P.value).

Usage

uni.selection(t.vec, d.vec, X.mat, P.value=0.001,K=10,score=TRUE,d0=0, randomize=FALSE,CC.plot=FALSE,permutation=FALSE,M=200)

Arguments

t.vec
Vector of survival times (time to either death or censoring)
d.vec
Vector of censoring indicators (1=death, 0=censoring)
X.mat
n by p matrix of covariates, where n is the sample size and p is the number of covariates
P.value
A threshold for selecting features
K
The number of cross-validation folds
score
If TRUE, the score tests are used; if not, the Wald tests are used
d0
A positive constant to stabilize the variance of score statistics (Witten & Tibshirani 2010)
randomize
If TRUE, randomize patient ID’s before cross-validation
CC.plot
If TRUE, the compound covariate (CC) predictors are plotted
permutation
If TRUE, the FDR is computed by a permutation method (Witten & Tibshirani 2010; Emura et al. 2019)
M
The number of permutations to calculate the FDR
Details

The cross-validated likelihood (CVL) value is computed for selected features (Matsui 2006; Emura et al. 2019). A high CVL value corresponds to a better predictive ability of selected features. Hence, the CVL value can be used to find the optimal set of features. The CVL value is computed by a K-fold cross-validation, where the number K can be chosen by user. The false discovery rate (FDR) is also computed by a formula and a permutation test (if "permutation=TRUE"). The RCVL1 and RCVL2 are "re-substitution" CVL values and provide upper control limits for the CVL value. If the CVL value is less than RCVL1 and RCVL2 values, the CVL value would be in-control. On the other hand, if the CVL value exceeds either RCVL1 or RCVL2 value, then the CVL may be computed again after changing the sample allocation.

Value

gene Gene symbols
beta Estimated regression coefficients
Z Z-values for significance tests
P P-values for significance tests
CVL The value of CVL, RCVL1, and RCVL2 (Emura et al. 2019)
Genes The number of genes, the number of selected genes, and the number of falsely selected genes
FDR False discovery rate (by a formula or a permutation method)

Author(s)

Takeshi Emura

References

Examples

data(Lung)
t.vec=Lung$t.vec[Lung$train==TRUE]
d.vec=Lung$d.vec[Lung$train==TRUE]
x.mat=Lung[Lung$train==TRUE,-c(1,2,3)]
uni.selection(t.vec, d.vec, x.mat, P.value=0.05,K=5,score=FALSE)
the outputs reproduce table S of Emura and Chen (2016)
uni.Wald

Description
Univariate significance analyses via the Wald tests (Witten & Tibshirani 2010; Emura et al. 2019) based on association between individual features and survival.

Usage
uni.Wald(t.vec, d.vec, X.mat)

Arguments
t.vec Vector of survival times (time to either death or censoring)
d.vec Vector of censoring indicators, 1=death, 0=censoring
X.mat n by p matrix of covariates, where n is the sample size and p is the number of covariates

Details
Wald test

Value
beta Estimated regression coefficients
Z Z-value for testing H_0: beta=0 (Wald test)
P P-value for testing H_0: beta=0 (Wald test)

Author(s)
Takeshi Emura

References

Examples
data(Lung)
t.vec=Lung$t.vec[Lung$train==TRUE]d.vec=Lung$d.vec[Lung$train==TRUE]X.mat=Lung[Lung$train==TRUE,-c(1,2,3)]uni.Wald(t.vec, d.vec, X.mat)
X.pathway

Generate a matrix of gene expressions in the presence of pathways

Description

Generate a matrix of gene expressions in the presence of pathways (Scenario 2 of Emura et al. (2012)).

Usage

```r
X.pathway(n, p, q1, q2)
```

Arguments

- `n`: the number of individuals (sample size)
- `p`: the number of genes
- `q1`: the number of positive non-null genes
- `q2`: the number of negative non-null genes

Details

An `n` by `p` matrix of gene expressions are generated. Correlation between columns is introduced to reflect the presence of gene pathways. The distribution of each column is standardized to have mean=0 and SD=1. If two genes are correlated, the correlation is 0.5. Otherwise, the correlation is 0. Details are referred to p.4 of Emura et al. (2012). This data generation scheme was used in the simulations of Emura et al. (2012), Emura and Chen (2016) and Emura et al. (2017).

Value

- `X`: an `n` by `p` matrix of gene expressions

Author(s)

Takeshi Emura & Yi-Hau Chen

References

Examples

```r
X.tag(X.tag(n=200, p=100, q1=10, q2=10)
  round( colMeans(X.mat), 3 ) ## mean ~ 0 ##
  round( apply(X.mat, MARGIN=2, FUN=sd), 3) ## SD ~ 1 ##
```

X.tag

Generate a matrix of gene expressions in the presence of tag genes

Description

Generate a matrix of gene expressions in the presence of tag genes (Scenario 1 of Emura et al. (2012)).

Usage

```r
X.tag(n, p, q, s = 1)
```

Arguments

- `n` the number of individuals (sample size)
- `p` the number of genes
- `q` the number of non-null genes
- `s` the number of null genes correlated with a non-null gene (tag)

Details

n by p matrix of gene expressions are generated. Correlation between columns is introduced to reflect the presence of tag genes. The distribution of each column is standardized to have mean=0 and SD=1. If two genes are correlated, the correlation is 0.5. Otherwise, the correlation is 0. Details are referred to p.4 of Emura et al. (2012). This data generation scheme was used in the simulations of Emura et al. (2012) and Emura and Chen (2016).

Value

- `X` n by p matrix of gene expressions

Author(s)

Takeshi Emura & Yi-Hau Chen

References

Examples

```r
X.mat=X.tag(n=200, p=100, q=10, s=4)
round(colMeans(X.mat), 3) ## mean ~ 0 ##
round(apply(X.mat, MARGIN=2, FUN=sd), 3) ## SD ~ 1 ##
```
Index

* Topic **PBC**
 PBC, 17

* Topic **Wald test**
 uni.Wald, 21

* Topic **c-index**
 cindex.CV, 6

* Topic **compound covariate**
 compound.reg, 8
 uni.score, 18
 uni.selection, 19
 uni.Wald, 21

* Topic **copula-graphic estimator**
 CG.Clayton, 3
 CG.Gumbel, 4

* Topic **copula**
 CG.Clayton, 3
 CG.Gumbel, 4
 cindex.CV, 6
 dependCox.reg, 10
 dependCox.reg.CV, 11

* Topic **cross-validated partial likelihood**
 uni.selection, 19

* Topic **cross-validation**
 cindex.CV, 6

* Topic **datasets**
 Lung, 13
 PBC, 17

* Topic **dependent censoring**
 CG.Clayton, 3
 CG.Gumbel, 4
 dependCox.reg, 10
 dependCox.reg.CV, 11

* Topic **false discovery rate**
 uni.selection, 19

* Topic **feature selection**
 uni.score, 18
 uni.selection, 19
 uni.Wald, 21

* Topic **gene expression**
 Lung, 13
 X.pathway, 22
 X.tag, 23

* Topic **gene pathway**
 X.pathway, 22

* Topic **lung cancer**
 Lung, 13

* Topic **package**
 compound.Cox-package, 2

* Topic **score test**
 uni.score, 18

* Topic **shrinkage estimation**
 compound.reg, 8

* Topic **tag gene**
 X.tag, 23

* Topic **univariate Cox regression**
 dependCox.reg, 10
 dependCox.reg.CV, 11
 uni.score, 18
 uni.selection, 19
 uni.Wald, 21

CG.Clayton, 3
CG.Gumbel, 4
cindex.CV, 6
compound.Cox (compound.Cox-package), 2
compound.Cox-package, 2
compound.reg, 8
dependCox.reg, 10
dependCox.reg.CV, 11

Lung, 13

PBC, 17

uni.score, 18
uni.selection, 19
uni.Wald, 21
X. pathway, 22
X. tag, 23