Package ‘contingency’

January 29, 2021

Title Discrete Multivariate Probability Distributions
Version 0.0.6
Description Provides an object class for dealing with many multivariate probability distributions at once, useful for simulation.
Depends R (>= 3.5.0), rje
License GPL-2
LazyData true
Suggests knitr, rmarkdown, testthat
VignetteBuilder knitr
RoxygenNote 7.1.1
NeedsCompilation no
Author Robin Evans [aut, cre]
Maintainer Robin Evans <evans@stats.ox.ac.uk>
Repository CRAN
Date/Publication 2021-01-29 09:20:11 UTC

R topics documented:

aperm.tables ... 2
as.array.tables ... 2
as.matrix.tables .. 3
as_tables ... 3
capply .. 4
checkCI ... 4
entropy ... 5
interactionInf ... 6
kl ... 7
margin ... 7
margin.tables ... 8
mutualInf ... 9
ntables ... 10
aperm.tables
Permute dimensions of tables

Description
Method for permuting indices of tables object.

Usage
S3 method for class 'tables'
aperm(a, perm, ...)

Arguments
a object of class tables
perm permutation of 1,...,k, where each table has k dimensions
... other arguments to methods

Value
A permuted tables object.

as.array.tables Convert tables into array

Description
Convert tables into array

Usage
S3 method for class 'tables'
as.array(x, ...)

Arguments
x tables object
... other arguments
as.matrix.tables

Description
Convert tables into matrix

Usage
S3 method for class 'tables'
as.matrix(x, ...)

Arguments
- x tables object
- ... other arguments

Value
A matrix object

as_tables

Description
As tables

Usage
as_tables(x, tdim, ...)

Arguments
- x array or matrix object
- tdim dimensions for each table
- ... other arguments for methods

Value
A tables object.
capply

Apply function over tables

Description

Apply a function to each contingency table in a tables object.

Usage

capply(x, f, ...)

Arguments

x object of class tables
f function to apply to each table
... additional arguments to f

Value

a vector, matrix or list of outputs from the function f.

checkCI

Check conditional independence

Description

Gives a numerical check that a (conditional) independence holds in a probability distribution.

Usage

checkCI(x, A, B, C = integer(0), eps = .Machine$double.eps, ...)

S3 method for class 'array'
checkCI(x, A, B, C = integer(0), eps = .Machine$double.eps, ...)

S3 method for class 'tables'
checkCI(x, A, B, C = integer(0), eps = .Machine$double.eps, ...)

Arguments

x an array or object of class tables
A, B the sets of variables whose independence is to be tested
C conditioning set (possibly empty)
eps tolerance parameter
... other arguments to methods
Details

just tests to an appropriate numerical precision that a conditional independence holds: this is *not* a statistical test for conditional independence. If A and B overlap with C then these vertices are ignored. If A and B intersect with one another (but not C) then the solution is always false.

Value

A logical, or a vector of logicals of the same length as the number of tables provided, indicating whether the conditional independence seems to hold numerically.

Methods (by class)

• array: method for array object
• tables: method for tables object

entropy | Calculate entropy of discrete distribution

Description

Calculate entropy of discrete distribution

Usage

entropy(p, ...)

Default S3 method:
entropy(p, ...)

S3 method for class 'array'
entropy(p, margin, ...)

S3 method for class 'tables'
entropy(p, margin, ...)

Arguments

p | non-negative numeric vector
... | other arguments to methods
margin | margin to consider

Value

A numeric value of the entropy, or vector of entropies.
interactionInf

Methods (by class)

- default: Default method for vectors
- array: Method for arrays
- tables: Method for tables object

interactionInf

Interaction information

Description

Interaction information

Usage

```r
interactionInf(p, ...)  
```

```r
## Default S3 method:  
interactionInf(p, ..., condition)
```

Arguments

- **p**: object to find interaction information for
- **...**: other arguments to methods
- **condition**: variables on which to condition

Value

Numeric value for interaction information, or a vector of interaction information values.

Methods (by class)

- default: Default method for vectors
kl

Kullback-Leibler Divergence

Description

Get the KL Divergence between two discrete distributions

Usage

kl(x, y, ...)

Default S3 method:
kl(x, y, ...)

S3 method for class 'tables'
kl(x, y, ...)

Arguments

x, y
vectors (of probabilities)

...
other arguments to methods

Value

a numeric value, vector or matrix of KL-divergences.

Methods (by class)

- default: Default method for vectors
- tables: Method for tables object

margin

Get margin of a table or tables

Description

Get margin of a table or tables
Usage

margin(x, ...)
margin2(x, ...)
conditional(x, ...)
conditional2(x, ...)
intervention(x, ...)

Arguments

x a contingency table or tables object
... a contingency table or tables object

Details

`margin2` keeps all dimensions, and hence results will sum to the number of cells summed over.

Value

an object of the same class as `x`. The resulting array, or collection of tables, will contain a marginal, conditional or interventional distribution.

Functions

- `margin2`: keep all dimensions
- `conditional`: conditional distributions
- `conditional2`: conditional distributions with all dimensions kept
- `intervention`: interventional distributions

margin.tables Get the marginal distributions

Description

Get the marginal distributions

Usage

```r
## S3 method for class 'tables'
margin(x, margin = NULL, order = TRUE, ...)
```
Arguments

- **x**: an object of class `tables`
- **margin**: integer vector giving margin to be calculated (1 for rows, etc.)
- **order**: logical indicating whether resulting indices should be in the same order as stated in `margin`
- ... other arguments to function

Details

Calculates marginal distributions for each entry in a `probMat`.

Value

An object of class `tables` consisting of the required marginal distribution.

mutualInf

(Conditional) mutual information

Usage

```r
mutualInf(p, m1, m2, condition, ...)
```

Default S3 method:

```r
mutualInf(p, m1, m2, condition, ...)
```

S3 method for class 'tables'

```r
mutualInf(p, m1, m2, condition, ...)
```

Arguments

- **p**: numeric array or `tables` class
- **m1, m2**: margins for mutual information
- **condition**: conditional margin
- ... other arguments to methods

Value

Numeric value for mutual information, or a vector of mutual information values.

Methods (by class)

- **default**: Default method for vectors
- **tables**: Method for tables object
ntables \hspace{1cm} Number of tables

Description

Number of tables

Usage

```r
ntables(x)
```

Arguments

- `x`: an object of class `tables`

Details

Gives the number of tables in an object of class `tables`.

Value

An integer.

perm_dim \hspace{1cm} Permute indices for variable \(k\)

Description

Currently only works for binary dimensions.

Usage

```r
perm_dim(x, k, perm, ...)
```

Arguments

- `x`: array or related object
- `k`: index to permute
- `perm`: permutation to perform
- `...`: other arguments (not currently used)

Details

Permutes the levels of one variable according to the permutation given in `perm`. Can be applied to matrices, arrays or tables.
print.tables

Value

A permuted array or tables object.

print.tables
Print tables

Description

Print method for object of class `tables`.

Usage

```r
## S3 method for class 'tables'
print(x, ...)
```

Arguments

- `x` object of class `tables`
- `...` arguments to pass to print method for an array

Value

The input provided (invisibly).

rprobMat
Generate matrix of (conditional) probability distributions

Description

Generates discrete probability distributions in a matrix.

Usage

```r
rprobMat(n, dim, d, alpha = 1)
rcondProbMat(n, dim, d, alpha = 1, condition)
```

Arguments

- `n` number of distributions
- `dim` dimension of contingency table for distributions
- `d` number of dimensions of table
- `alpha` parameter to use in dirichlet distribution
- `condition` which dimensions should be conditioned upon
Details

Returns an object of class `tables` consisting of discrete probability distributions. Each distribution is assumed to be a contingency table of dimension `dim`, and the probabilities are generated using a Dirichlet distribution with parameters all equal to `alpha`.

Value

A `tables` object containing random distributions.

Functions

• `rcondProbMat`: Random conditional distributions

Examples

dat <- rprobMat(10, c(2,2,2))

```
<table>
<thead>
<tr>
<th>tdim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension of distributions over contingency tables</td>
</tr>
</tbody>
</table>
```

Description

Dimension of distributions over contingency tables

Usage

tdim(x)

tdim(x) <- value

Arguments

x an object of class `tables`
value value to set parameters to

Details

The class `tables` is used to represent a collection of multidimensional tables; this function returns the dimension of each table.

Value

an integer vector of the dimensions

the `tables` object inputted with the new dimensions

Functions

• `tdim<-`: assign tables dimension
tdimnames

Dimension names for distributions over contingency tables

Description

Dimension names for distributions over contingency tables

Usage

tdimnames(x)

tdimnames(x) <- value

Arguments

x tables object
value value to set dimension names to

Value

the tables object inputted with the new dimension names

Functions

• tdimnames<-: assign dimension names

[.tables Subset object of class tables

Description

Take subset of tables class.

Usage

S3 method for class 'tables'
x[i, j, ..., drop = TRUE, keep = FALSE]
Arguments

- **x**: object of class `tables`
- **i**: indicies of which tables to retain
- **j**: which rows of each table to retain (or if ... not specified, entries)
- **drop**: usual logical indicating whether to consolidate margins of the table (doesn’t apply to i)
- **keep**: if only one table is specified with i, should the object output be an object of class `tables`? If not becomes a suitable array.

Details

There are two main ways to subset these tables. In both cases the first index refers to the tables being selected; one of the methods is to additionally specify all the indices corresponding to the tables, the other is to only specify a single entry. For example, `x[,1,2,2]` specifies the (1,2,2)th entry of each table; `x[,7]` will have the same effect for 2x2x2 tables.

If only one index is specified, then the function behaves just as ordinary subsetting on an array.

Value

A `tables` object over the specific entries and values selected.

Examples

```r
x <- rprobMat(n=10, rep(2,3))
x[1,]
x[,1:2,1]
x[,1:2,1,drop=FALSE]
```
Index

[.tables, 13
aperm.tables, 2
as.array.tables, 2
as.matrix.tables, 3
as_tables, 3
capply, 4
checkCI, 4
conditional (margin), 7
conditional2 (margin), 7
entropy, 5
interactionInf, 6
intervention (margin), 7
kl, 7
margin, 7
margin.tables, 8
margin2 (margin), 7
mutualInf, 9
ntables, 10
perm_dim, 10
print.tables, 11
rcondProbMat (rprobMat), 11
rprobMat, 11
tdim, 12
tdim<- (tdim), 12
tdimnames, 13
tdimnames<-(tdimnames), 13