Package ‘corrplot’

November 10, 2021

Type Package
Title Visualization of a Correlation Matrix
Version 0.91
Date 2021-11-11
Maintainer Taiyun Wei <weitaiyun@gmail.com>
Suggests seriation, knitr, RColorBrewer, rmarkdown, magrittr,
 prettydoc, testthat
Description Provides a visual exploratory tool on correlation matrix that supports automatic variable reordering to help detect hidden patterns among variables.
License MIT + file LICENSE
URL https://github.com/taiyun/corrplot
BugReports https://github.com/taiyun/corrplot/issues
VignetteBuilder knitr
RoxygenNote 7.1.1
NeedsCompilation no
Author Taiyun Wei [cre, aut],
 Viliam Simko [aut],
 Michael Levy [ctb],
 Yihui Xie [ctb],
 Yan Jin [ctb],
 Jeff Zemla [ctb],
 Moritz Freidank [ctb],
 Jun Cai [ctb],
 Tomas Protivinsky [ctb]
Repository CRAN
Date/Publication 2021-11-10 09:40:02 UTC
R topics documented:

- corrplot-package ... 2
- COL1 ... 3
- COL2 ... 4
- colorlegend ... 6
- cor.mtest ... 8
- corrMatOrder ... 9
- corrplot ... 10
- corrplot.mixed ... 20
- corrRect ... 21
- corrRect.hclust ... 23

Index ... 26

corrplot-package | Visualization of a correlation matrix

Description

The corrplot package is a graphical display of a correlation matrix, confidence interval or general matrix. It also contains some algorithms to do matrix reordering. In addition, corrplot is good at details, including choosing color, text labels, color labels, layout, etc.

Author(s)

Taiyun Wei (weitaiyun@gmail.com)
Viliam Simko (viliam.simko@gmail.com)
Maintainer: Taiyun Wei (weitaiyun@gmail.com)

References

See Also

The plotcorr function in the ellipse package and corrgram function in the corrgram package has some similarities.
Get sequential colors

Description
Get diverging colors from palette theme name and n. The color palettes are from RColorBrewer.

Usage

```r
COL1(
  sequential = c("Oranges", "Purples", "Reds", "Blues", "Greens", "Greys", "OrRd", 
  "Y1OrRd", "Y1OrBr", "Y1Gn"),
  n = 200
)
```

Arguments
- `sequential` Sequential color Palettes
- `n` the number of colors (>= 1) to be in the palette.

Value
A character vector containing color names

See Also
Function `colorRampPalette`, package RColorBrewer

Examples

```r
## diverging colors
par(mar = c(0, 0, 0, 0) + 0.1)
plot(0, xlim = c(-0.1, 1), ylim = c(0, 1), type = "n")

col = c("RdBu", "BrBG", "PiYG", "PRGn", "PuOr", "RdYlBu")

for(i in 1:length(col)) {
  colorlegend(COL2(col[i]), -10:10/10, align = "l", cex = 0.8, xlim = c(0, 1), 
    ylim = c(i/length(col)-0.1, i/length(col)), vertical = FALSE)
  text(-0.01, i/length(col)-0.02, col[i], adj = 0.5, pos = 2, cex = 0.8)
}

## sequential colors
par(mar = c(0, 0, 0, 0) + 0.1)
plot(0, xlim = c(-0.1, 1), ylim = c(0, 1), type = "n")

```

```
'YlOrRd', 'YlOrBr', 'YlGn')

for(i in 1:length(col)) {
    colorlegend(COL1(col[i]), 0:10, align = 'l', cex = 0.8, xlim = c(0, 1),
               ylim = c(i/length(col)-0.1, i/length(col)), vertical = FALSE)
    text(-0.01, i/length(col)-0.02, col[i], adj = 0.5, pos = 2)
}

## other examples to show colorlegend function
par(mar = rep(0, 4))
plot(0, xlim = c(0, 6), ylim = c(-0.5, 1.2), type = 'n')
colorlegend(rainbow(100), 0:9)
colorlegend(heat.colors(100), LETTERS[1:12], xlim = c(1, 2))
colorlegend(terrain.colors(100), 0:9, ratio.colbar = 0.6,
            lim.segment = c(0, 0.6), xlim = c(2, 3), align = 'l')
colorlegend(topo.colors(100), 0:9, lim.segment = c(0, 0.6),
            xlim = c(3, 4), align = 'l', offset = 0)
colorlegend(cm.colors(100), 1:5, xlim = c(4, 5))
colorlegend(sample(rainbow(12)), labels = LETTERS[1:12],
            at = seq(0.05, 0.95, len = 12), xlim = c(5, 6), align = 'r')
colorlegend(colbar = grey(1:100 / 100), 1:10, col = 'red', align = 'l',
            xlim = c(0, 6), ylim = c(-0.5, -0.1), vertical = FALSE)
colorlegend(sample(rainbow(12)),
            labels = LETTERS[1:12], at = seq(0.05, 0.95, len = 12),
            xlim = c(0, 6), ylim = c(1.1, 1.2), vertical = FALSE)

---

**COL2**

*Get diverging colors*

**Description**

Get diverging colors from palette theme name and n. The color palettes are from RColorBrewer, but with the middle color changing to 'FFFFFF' (white)

**Usage**

COL2(diverging = c("RdBu", "BrBG", "PiYG", "PRGn", "PuOr", "RdYlBu"), n = 200)
Arguments

diverging Diverging color Palettes
n the number of colors (>= 1) to be in the palette.

Value

A character vector containing color names

See Also

Function colorRampPalette, package RColorBrewer

Examples

## diverging colors
par(mar = c(0, 0, 0, 0) + 0.1)
plot(0, xlim = c(-0.1, 1), ylim = c(0, 1), type = 'n')

col = c('RdBu', 'BrBG', 'PiYG', 'PRGn', 'PuOr', 'RdYlBu')

for(i in 1:length(col)) {
  colorlegend(COL2(col[i]), -10:10/10, align = 'l', cex = 0.8, xlim = c(0, 1),
            ylim = c(i/length(col)-0.1, i/length(col)), vertical = FALSE)
  text(-0.01, i/length(col)-0.02, col[i], adj = 0.5, pos = 2, cex = 0.8)
}

## sequential colors
par(mar = c(0, 0, 0, 0) + 0.1)
plot(0, xlim = c(-0.1, 1), ylim = c(0, 1), type = 'n')

col = c('Oranges', 'Purples', 'Reds', 'Blues', 'Greens', 'Greys', 'OrRd',
        'YlOrRd', 'YlOrBr', 'YlGn')

for(i in 1:length(col)) {
  colorlegend(COL1(col[i]), 0:10, align = 'l', cex = 0.8, xlim = c(0, 1),
              ylim = c(i/length(col)-0.1, i/length(col)), vertical = FALSE)
  text(-0.01, i/length(col)-0.02, col[i], adj = 0.5, pos = 2)
}

## other examples to show colorlegend function
par(mar = rep(0, 4))
plot(0, xlim = c(0, 6), ylim = c(-0.5, 1.2), type = 'n')

colorlegend(rainbow(100), 0:9)

colorlegend(heat.colors(100), LETTERS[1:12], xlim = c(1, 2))
colorlegend(terrain.colors(100), 0:9, ratio.colbar = 0.6, 
        lim.segment = c(0, 0.6), xlim = c(2, 3), align = 'l')

colorlegend(topo.colors(100), 0:9, lim.segment = c(0, 0.6), 
        xlim = c(3, 4), align = 'l', offset = 0)

colorlegend(cm.colors(100), 1:5, xlim = c(4, 5))

colorlegend(sample(rainbow(12)), labels = LETTERS[1:12], 
        at = seq(0.05, 0.95, len = 12), xlim = c(5, 6), align = 'r')

colorlegend(colbar = grey(1:100 / 100), 1:10, col = 'red', align = 'l', 
        xlim = c(0, 6), ylim = c(-0.5, -0.1), vertical = FALSE)

colorlegend(sample(rainbow(12)), 
        labels = LETTERS[1:12], at = seq(0.05, 0.95, len = 12), 
        xlim = c(0, 6), ylim = c(1.1, 1.2), vertical = FALSE)

---

colorlegend

**Draw color legend.**

**Description**

Draw color legend.

**Usage**

```r
colorlegend(
 colbar,
 labels,
 at = NULL,
 xlim = c(0, 1),
 ylim = c(0, 1),
 vertical = TRUE,
 ratio.colbar = 0.4,
 lim.segment = "auto",
 align = c("c", "l", "r"),
 addlabels = TRUE,
 ...
)
```

**Arguments**

- `colbar` Vector, color of colbar.
- `labels` Vector, numeric or character to be written.
- `at` Numeric vector (quantile), the position to put labels. See examples for details.
- `xlim` See in `plot`
colorlegend

ylim
vertical
ratio.colbar
lim.segment
align
addlabels

Logical, whether the colorlegend is vertical or horizon.
The width ratio of colorbar to the total colorlegend (including colorbar, segments and labels).
Vector (quantile) of length 2, the elements should be in [0,1], giving segments coordinates ranges. If the value is NULL or 'auto', then the ranges are derived automatically.
Character, alignment type of labels, 'l' means left, 'c' means center and 'r' right.
Logical, whether add text label or not.

Additional arguments, passed to plot

Author(s)
Taiyun Wei

Examples

## diverging colors
par(mar = c(0, 0, 0, 0) + 0.1)
plot(0, xlim = c(-0.1, 1), ylim = c(0, 1), type = 'n')
col = c('RdBu', 'BrBG', 'PiYG', 'PRGn', 'PuOr', 'RdYlBu')
for(i in 1:length(col)) {
  colorlegend(COL2(col[i]), -10:10/10, align = 'l', cex = 0.8, xlim = c(0, 1),
               ylim = c(i/length(col)-0.1, i/length(col)), vertical = FALSE)
  text(-0.01, i/length(col)-0.02, col[i], adj = 0.5, pos = 2, cex = 0.8)
}

## sequential colors
par(mar = c(0, 0, 0, 0) + 0.1)
plot(0, xlim = c(-0.1, 1), ylim = c(0, 1), type = 'n')
col = c('Oranges', 'Purples', 'Reds', 'Blues', 'Greens', 'Greys', 'OrRd',
       'YlOrRd', 'YlOrBr', 'YlGn')
for(i in 1:length(col)) {
  colorlegend(COL1(col[i]), 0:10, align = 'l', cex = 0.8, xlim = c(0, 1),
               ylim = c(i/length(col)-0.1, i/length(col)), vertical = FALSE)
  text(-0.01, i/length(col)-0.02, col[i], adj = 0.5, pos = 2)
}

## other examples to show colorlegend function
par(mar = rep(0, 4))
plot(0, xlim = c(0, 6), ylim = c(-0.5, 1.2), type = 'n')
colorlegend(rainbow(100), 0:9)

colorlegend(heat.colors(100), LETTERS[1:12], xlim = c(1, 2))

colorlegend(terrain.colors(100), 0:9, ratio.colbar = 0.6,
lim.segment = c(0, 0.6), xlim = c(2, 3), align = 'l')

colorlegend(topo.colors(100), 0:9, lim.segment = c(0, 0.6),
xlim = c(3, 4), align = 'l', offset = 0)

colorlegend(cm.colors(100), 1:5, xlim = c(4, 5))

colorlegend(sample(rainbow(12)), labels = LETTERS[1:12],
at = seq(0.05, 0.95, len = 12), xlim = c(5, 6), align = 'r')

colorlegend(colbar = grey(1:100 / 100), 1:10, col = 'red', align = 'l',
xlim = c(0, 6), ylim = c(-0.5, -0.1), vertical = FALSE)

colorlegend(sample(rainbow(12)),
labels = LETTERS[1:12], at = seq(0.05, 0.95, len = 12),
xlim = c(0, 6), ylim = c(1.1, 1.2), vertical = FALSE)

cor.mtest

Significance test which produces p-values and confidence intervals for each pair of input features.

Description

Significance test which produces p-values and confidence intervals for each pair of input features.

Usage

cor.mtest(mat, ...)

Arguments

mat Input matrix of size NxF, with N rows that represent samples and F columns that represent features.

... Additional arguments passed to function cor.test, e.g. conf.level = 0.95.

Value

Return a list containing:

p Square matrix of size FxF with p-values as cells

lowCI Square matrix of size FxF, each cell represents the lower part of a confidence interval

uppCI Square matrix of size FxF, each cell represents the upper part of a confidence interval
corrMatOrder

See Also
Function cor.test

corrMatOrder  Reorder a correlation matrix.

Description
Draw rectangle(s) around the chart of correlation matrix based on the number of each cluster's members.

Usage
corrMatOrder(
corr,
order = c("AOE", "FPC", "hclust", "alphabet"),
hclust.method = c("complete", "ward", "ward.D", "ward.D2", "single", "average", "mcquitty", "median", "centroid")
)

Arguments
corr  Correlation matrix to reorder.
order  Character, the ordering method for the correlation matrix.
  • 'AOE' for the angular order of the eigenvectors. It is calculated from the order of the angles, $a_i$:
    \[
    a_i = \arctan(e_{i2}/e_{i1}), \text{if } e_{i1} > 0
    \]
    \[
    a_i = \arctan(e_{i2}/e_{i1}) + \pi, \text{otherwise.}
    \]
    where $e_1$ and $e_2$ are the largest two eigenvalues of matrix corr. See Michael Friendly (2002) for details.
  • 'FPC' for the first principal component order.
  • 'hclust' for hierarchical clustering order.
  • 'alphabet' for alphabetical order.
hclust.method  Character, the agglomeration method to be used when order is hclust. This should be one of 'ward', 'ward.D', 'ward.D2', 'single', 'complete', 'average', 'mcquitty', 'median' or 'centroid'.

Value
Returns a single permutation vector.

Author(s)
Taiyun Wei
See Also

Package seriation offers more methods to reorder matrices, such as ARSA, BBURCG, BB-WRCG, MDS, TSP, Chen and so forth.

Examples

```r
M = cor(mtcars)

(order.AOE = corrMatOrder(M, order = 'AOE'))
(order.FPC = corrMatOrder(M, order = 'FPC'))
(order.hc = corrMatOrder(M, order = 'hclust'))
(order.hc2 = corrMatOrder(M, order = 'hclust', hclust.method = 'ward.D'))

M.AOE = M[order.AOE, order.AOE]
M.FPC = M[order.FPC, order.FPC]
M.hc = M[order.hc, order.hc]
M.hc2 = M[order.hc2, order.hc2]

par(ask = TRUE)
corrplot(M)
corrplot(M.AOE)
corrplot(M.FPC)
corrplot(M.hc)
corrplot(M.hc)
corrRect.hclust(corr = M.hc, k = 2)
corrplot(M.hc)
corrRect.hclust(corr = M.hc, k = 3)
corrplot(M.hc2)
corrRect.hclust(M.hc2, k = 2, method = 'ward.D')
```

corrplot

A visualization of a correlation matrix.

Description

A graphical display of a correlation matrix, confidence interval. The details are paid great attention to. It can also visualize a general matrix by setting `is.corr = FALSE`.

Usage

corrplot(
  corr,
  method = c("circle", "square", "ellipse", "number", "shade", "color", "pie"),
  type = c("full", "lower", "upper"),
  ...,
  title = "A Visualization of a Correlation Matrix")
corplot

col = NULL,
col.lim = NULL,
bg = "white",
title = "",
is.corr = TRUE,
add = FALSE,
diag = TRUE,
outline = FALSE,
mar = c(0, 0, 0, 0),
addgrid.col = NULL,
addCoef.col = NULL,
addCoefasPercent = FALSE,
order = c("original", "AOE", "FPC", "hclust", "alphabet"),
hclust.method = c("complete", "ward", "ward.D", "ward.D2", "single", "average",
"mcquitty", "median", "centroid"),
addrect = NULL,
rect.col = "black",
rect.lwd = 2,
tl.pos = NULL,
tl.cex = 1,
tl.col = "red",
tl.offset = 0.4,
tl.srt = 90,
cl.pos = NULL,
cl.length = NULL,
cl.cex = 0.8,
cl.ratio = 0.15,
cl.align.text = "c",
cl.offset = 0.5,
number.cex = 1,
number.font = 2,
number.digits = NULL,
addshade = c("negative", "positive", "all"),
shade.lwd = 1,
shade.col = "white",
p.mat = NULL,
sig.level = 0.05,
insig = c("pch", "p-value", "blank", "n", "label_sig"),
pch = 4,
pch.col = "black",
pch.cex = 3,
plotCI = c("n", "square", "circle", "rect"),
lowCI.mat = NULL,
uppCI.mat = NULL,
na.label = "?",
na.label.col = "black",
win.asp = 1,
...
Arguments

corr The correlation matrix to visualize, must be square if order is not 'original'. For general matrix, please using is.corr = FALSE to convert.

method Character, the visualization method of correlation matrix to be used. Currently, it supports seven methods, named 'circle' (default), 'square', 'ellipse', 'number', 'pie', 'shade' and 'color'. See examples for details.
The areas of circles or squares show the absolute value of corresponding correlation coefficients. Method 'pie' and 'shade' came from Michael Friendly's job (with some adjustment about the shade added on), and 'ellipse' came from D.J. Murdoch and E.D. Chow's job, see in section References.

type Character, 'full' (default), 'upper' or 'lower', display full matrix, lower triangular or upper triangular matrix.

col Vector, the color of glyphs. It is distributed uniformly in col.lim interval. If is.corr is TRUE, col will be COL2('RdBu',200). If is.corr is FALSE and all values of the matrix are positive or negative, col will be COL2('RdBu',200).
If is.corr is FALSE and the values of the matrix are partly positive and partly negative, col will be COL1('YlOrBr',200).

col.lim The limits (x1,x2) interval for assigning color by col. If NULL, col.lim will be c(-1,1) when is.corr is TRUE. col.lim will be c(min(corr),max(corr)) when is.corr is FALSE.
NOTICE: if you set col.lim when is.corr is TRUE, the assigning color method is still distributed uniformly in [-1, 1], it only affect the display on color-legend.

bg The background color.
title Character, title of the graph.
is.corr Logical, whether the input matrix is a correlation matrix or not. We can visualize the non-correlation matrix by setting is.corr = FALSE.

add Logical, if TRUE, the graph is added to an existing plot, otherwise a new plot will be created.
diag Logical, whether display the correlation coefficients on the principal diagonal.

outline Logical or character, whether plot outline of circles, square and ellipse, or the color of these glyphs. For pie, this represents the color of the circle outlining the pie. If outline is TRUE, the default value is 'black'.

mar See par.

addgrid.col The color of the grid. If NA, don't add grid. If NULL the default value is chosen. The default value depends on method, if method is color or shade, the color of the grid is NA, that is, not draw grid; otherwise 'grey'.

addCoef.col Color of coefficients added on the graph. If NULL (default), add no coefficients.

addCoefasPercent Logic, whether translate coefficients into percentage style for spacesaving.

order Character, the ordering method of the correlation matrix.

• 'original' for original order (default).
hclust.method

Character, the agglomeration method to be used when order is hclust. This should be one of 'ward', 'ward.D', 'ward.D2', 'single', 'complete', 'average', 'mcquitty', 'median' or 'centroid'.

addrect

Integer, the number of rectangles draws on the graph according to the hierarchical cluster, only valid when order is hclust. If NULL (default), then add no rectangles.

rect.col

Color for rectangle border(s), only valid when addrect is equal or greater than 1.

rect.lwd

Numeric, line width for borders for rectangle border(s), only valid when addrect is equal or greater than 1.

tl.pos

Character or logical, position of text labels. If character, it must be one of 'lt', 'ld', 'td', 'd' or 'n'. 'lt'(default if type=='full') means left and top, 'ld'(default if type=='lower') means left and diagonal, 'td'(default if type=='upper') means top and diagonal(near), 'l' means left, 'd' means diagonal, 'n' means don't add text-label.

tl.cex

Numeric, for the size of text label (variable names).

tl.col

The color of text label.

tl.offset

Numeric, for text label, see text.

tl.srt

Numeric, for text label string rotation in degrees, see text.

cl.pos

Character or logical, position of color-legend; If character, it must be one of 'r' (default if type=='upper' or 'full'), 'b' (default if type=='lower') or 'n', 'n' means don't draw color-legend.

cl.length

Integer, the number of number-text in color-legend, passed to colorlegend. If NULL, cl.length is length(col) + 1 when length(col) <=20; cl.length is 11 when length(col) > 20

cl.cex

Numeric, cex of number-label in color-legend, passed to colorlegend.

cl.ratio

Numeric, to justify the width of color-legend, 0.1~0.2 is suggested.

cl.align.text

Character, 'l', 'c' (default) or 'r', for number-label in color-legend, 'l' means left, 'c' means center, and 'r' means right.

cl.offset

Numeric, for number-label in color-legend, see text.

number.cex

The cex parameter to send to the call to text when writing the correlation coefficients into the plot.

number.font

the font parameter to send to the call to text when writing the correlation coefficients into the plot.

number.digits

indicating the number of decimal digits to be added into the plot. Non-negative integer or NULL, default NULL.
addshade  Character for shade style, 'negative', 'positive' or 'all', only valid when method is 'shade'. If 'all', all correlation coefficients' glyph will be shaded; if 'positive', only the positive will be shaded; if 'negative', only the negative will be shaded. Note: the angle of shade line is different, 45 degrees for positive and 135 degrees for negative.

shade.lwd  Numeric, the line width of shade.

shade.col  The color of shade line.

p.mat  Matrix of p-value, if NULL, parameter sig.level, insig, pch, pch.col, pch.cex are invalid.

sig.level  Significant level, if the p-value in p-mat is bigger than sig.level, then the corresponding correlation coefficient is regarded as insignificant. If insig is 'label_sig', this may be an increasing vector of significance levels, in which case pch will be used once for the highest p-value interval and multiple times (e.g. '*', '**', '***') for each lower p-value interval.

insig  Character, specialized insignificant correlation coefficients, 'pch' (default), 'p-value', 'blank', 'n', or 'label_sig'. If 'blank', wipe away the corresponding glyphs; if 'p-value', add p-values the corresponding glyphs; if 'pch', add characters (see pch for details) on corresponding glyphs; if 'n', don't take any measures; if 'label_sig', mark significant correlations with pch (see sig.level).

pch  Add character on the glyphs of insignificant correlation coefficients (only valid when insig is 'pch'). See par.

pch.col  The color of pch (only valid when insig is 'pch').

pch.cex  The cex of pch (only valid when insig is 'pch').

plotCI  Character, method of ploting confidence interval. If 'n', don't plot confidence interval. If 'rect', plot rectangles whose upper side means upper bound and lower side means lower bound, respectively. If 'circle', first plot a circle with the bigger absolute bound, and then plot the smaller. Warning: if the two bounds are the same sign, the smaller circle will be wiped away, thus forming a ring. Method 'square' is similar to 'circle'.

lowCI.mat  Matrix of the lower bound of confidence interval.

uppCI.mat  Matrix of the upper bound of confidence interval.

na.label  Label to be used for rendering NA cells. Default is '?'. If 'square', then the cell is rendered as a square with the na.label.col color.

na.label.col  Color used for rendering NA cells. Default is 'black'.

win.asp  Aspect ration for the whole plot. Value other than 1 is currently compatible only with methods 'circle' and 'square'.

...  Additional arguments passing to function text for drawing text label.

Details

corrplot function offers flexible ways to visualize correlation matrix, lower and upper bound of confidence interval matrix.
**Value**

(Invisibly) returns a list(corr, corrPos, arg). `corr` is a reordered correlation matrix for plotting. `corrPos` is a data frame with xName, yName, x, y, corr and p.value (if p.mat is not NULL) column, which x and y are the position on the correlation matrix plot. `arg` is a list of some `corrplot()` input parameters’ value. Now `type` is in.

**Note**

Cairo and cairoDevice packages is strongly recommended to produce high-quality PNG, JPEG, TIFF bitmap files, especially for that method circle, ellipse.

Row- and column names of the input matrix are used as labels rendered in the corrplot. Plothmath expressions will be used if the name is prefixed by one of the following characters: :, = or $. For example `:alpha + beta`.

**Author(s)**

Taiyun Wei (weitaiyun@gmail.com)
Viliam Simko (viliam.simko@gmail.com)
Michael Levy (michael.levy@healthcatalyst.com)

**References**


**See Also**

Function `plotcorr` in the ellipse package and corrgram in the corrgram package have some similarities.

Package seriation offered more methods to reorder matrices, such as ARSA, BBURCG, BB-WRCG, MDS, TSP, Chen and so forth.

**Examples**

data(mtcars)
M = cor(mtcars)
set.seed(0)

```r
different color series
COL2: Get diverging colors
c('RdBu', 'BrBG', 'PiYG', 'PRGn', 'PuOr', 'RdYlBu')
COL1: Get sequential colors
c('Oranges', 'Purples', 'Reds', 'Blues', 'Greens', 'Greys', 'OrRd', 'Y10rRd', 'Y10rBr', 'Y1Gn')

wb = c('white', 'black')
```
par(ask = TRUE)

## different color scale and methods to display corr-matrix
corrplot(M, method = 'number', col = 'black', cl.pos = 'n')
corrplot(M, method = 'number')
corrplot(M)
corrplot(M, order = 'AOE')
corrplot(M, order = 'AOE', addCoef.col = 'grey')
corrplot(M, order = 'AOE', cl.length = 21, addCoef.col = 'grey')
corrplot(M, order = 'AOE', col = COL2(n=10), addCoef.col = 'grey')
corrplot(M, order = 'AOE', col = COL2('PiYG'))
corrplot(M, order = 'AOE', col = COL2('PRGn'), addCoef.col = 'grey')
corrplot(M, order = 'AOE', col = COL2('PuOr', 20), cl.length = 21, addCoef.col = 'grey')
corrplot(M, order = 'AOE', col = COL2('PuOr', 10), addCoef.col = 'grey')
corrplot(M, order = 'AOE', col = COL2('RdYlBu', 100))
corrplot(M, order = 'AOE', col = COL2('RdYlBu', 10))

corrplot(M, method = 'color', col = COL2(n=20), cl.length = 21, order = 'AOE',
addCoef.col = 'grey')
corrplot(M, method = 'square', col = COL2(n=200), order = 'AOE')
corrplot(M, method = 'ellipse', col = COL2(n=200), order = 'AOE')
corrplot(M, method = 'shade', col = COL2(n=20), order = 'AOE')
corrplot(M, method = 'pie', order = 'AOE')

## col = wb
corrplot(M, col = wb, order = 'AOE', outline = TRUE, cl.pos = 'n')

## like Chinese wiqi, suit for either on screen or white-black print.
corrplot(M, col = wb, bg = 'gold2', order = 'AOE', cl.pos = 'n')

## mixed methods: It's more efficient if using function 'corrplot.mixed'
## circle + ellipse
corrplot(M, order = 'AOE', type = 'upper', tl.pos = 'd')
corrplot(M, add = TRUE, type = 'lower', method = 'ellipse', order = 'AOE',
diag = FALSE, tl.pos = 'n', cl.pos = 'n')

## circle + square
corrplot(M, order = 'AOE', type = 'upper', tl.pos = 'd')
corrplot(M, add = TRUE, type = 'lower', method = 'square', order = 'AOE',
diag = FALSE, tl.pos = 'n', cl.pos = 'n')

## circle + colorful number
corrplot(M, order = 'AOE', type = 'upper', tl.pos = 'd')
corrplot(M, add = TRUE, type = 'lower', method = 'number', order = 'AOE',
diag = FALSE, tl.pos = 'n', cl.pos = 'n')

## circle + black number
corrplot(M, order = 'AOE', type = 'upper', tl.pos = 'tp')
corrplot(M, add = TRUE, type = 'lower', method = 'number', order = 'AOE',
col = 'black', diag = FALSE, tl.pos = 'n', cl.pos = 'n')

## order is hclust and draw rectangles
    corrplot(M, order = 'hclust')
    corrplot(M, order = 'hclust', addrect = 2)
    corrplot(M, order = 'hclust', addrect = 3, rect.col = 'red')
    corrplot(M, order = 'hclust', addrect = 4, rect.col = 'blue')
    corrplot(M, order = 'hclust', hclust.method = 'ward.D2', addrect = 4)

## visualize a matrix in [0, 1]
    corrplot(abs(M), order = 'AOE', col.lim = c(0, 1))
    corrplot(abs(M), order = 'AOE', is.corr = FALSE, col.lim = c(0, 1))

    # when is.corr=TRUE, col.lim only affect the color legend
    # If you change it, the color is still assigned on [-1, 1]
    corrplot(M/2)
    corrplot(M/2, col.lim = c(-0.5, 0.5))

    # when is.corr=FALSE, col.lim is also used to assign colors
    # if the matrix have both positive and negative values
    # the matrix transformation keep every values positive and negative
    corrplot(M*2, is.corr = FALSE, col.lim = c(-2, 2))
    corrplot(M*2, is.corr = FALSE, col.lim = c(-2, 2) * 2)
    corrplot(M*2, is.corr = FALSE, col.lim = c(-2, 2) * 4)

    ## 0.5~0.6
    corrplot(abs(M)/10+0.5, col = COL1('Greens', 10))
    corrplot(abs(M)/10+0.5, is.corr = FALSE, col.lim = c(0.5, 0.6), col = COL1('YlGn', 10))

    ## visualize a matrix in [-100, 100]
    ran = round(matrix(runif(225, -100, 100), 15))
    corrplot(ran, is.corr = FALSE)
    corrplot(ran, is.corr = FALSE, col.lim = c(-100, 100))

    ## visualize a matrix in [100, 300]
    ran2 = ran + 200

    # bad color, not suitable for a matrix in [100, 300]
    corrplot(ran2, is.corr = FALSE, col.lim = c(100, 300), col = COL2(, 100))

    # good color
    corrplot(ran2, is.corr = FALSE, col.lim = c(100, 300), col = COL1(, 100))

    ## text-labels and plot type
    corrplot(M, order = 'AOE', tl.srt = 45)
    corrplot(M, order = 'AOE', tl.srt = 60)
    corrplot(M, order = 'AOE', tl.pos = 'd', cl.pos = 'n')
    corrplot(M, order = 'AOE', diag = FALSE, tl.pos = 'd')
corrplot(M, order = 'AOE', type = 'upper')
corrplot(M, order = 'AOE', type = 'upper', diag = FALSE)
corrplot(M, order = 'AOE', type = 'lower', cl.pos = 'b')
corrplot(M, order = 'AOE', type = 'lower', cl.pos = 'b', diag = FALSE)

#### color-legend
corrplot(M, order = 'AOE', cl.ratio = 0.2, cl.align = 'l')
corrplot(M, order = 'AOE', cl.ratio = 0.2, cl.align = 'c')
corrplot(M, order = 'AOE', cl.ratio = 0.2, cl.align = 'r')
corrplot(M, order = 'AOE', cl.pos = 'b')
corrplot(M, order = 'AOE', cl.pos = 'b', tl.pos = 'd')
corrplot(M, order = 'AOE', cl.pos = 'n')

## deal with missing Values
M2 = M
diag(M2) = NA
corrplot(M2)
corrplot(M2, na.label = 'o')
corrplot(M2, na.label = 'NA')

## the input matrix is not square
corrplot(M[1:8, ])
corrplot(M[, 1:8])

testRes = cor.mtest(mtcars, conf.level = 0.95)

## specialized the insignificant value according to the significant level
corrplot(M, p.mat = testRes$p, sig.level = 0.05, order = 'hclust', addrect = 2)

## leave blank on no significant coefficient
corrplot(M, p.mat = testRes$p, method = 'circle', type = 'lower', insig = 'blank',
          addCoef.col = 'black', number.cex = 0.8, order = 'AOE', diag = FALSE)

## add p-values on no significant coefficients
corrplot(M, p.mat = testRes$p, insig = 'p-value')

## add all p-values
corrplot(M, p.mat = testRes$p, insig = 'p-value', sig.level = -1)

## add significant level stars
corrplot(M, p.mat = testRes$p, method = 'color', diag = FALSE, type = 'upper',
          sig.level = c(0.001, 0.01, 0.05), pch.cex = 0.9,
          insig = 'label_sig', pch.col = 'grey20', order = 'AOE')

## add significant level stars and cluster rectangles
corrplot(M, p.mat = testRes$p, tl.pos = 'd', order = 'hclust', addrect = 2,
          insig = 'label_sig', sig.level = c(0.001, 0.01, 0.05),
          pch.cex = 0.9, pch.col = 'grey20')
# Visualize confidence interval

corrplot(M, lowCI = testRes$lowCI, uppCI = testRes$uppCI, order = 'hclust',
        tl.pos = 'd', rect.col = 'navy', plotC = 'rect', cl.pos = 'n')

corrplot(M, p.mat = testRes$p, lowCI = testRes$lowCI, uppCI = testRes$uppCI,
        addrect = 3, rect.col = 'navy', plotC = 'rect', cl.pos = 'n')

res1 = cor.mtest(mtcars, conf.level = 0.95)
res2 = cor.mtest(mtcars, conf.level = 0.99)

## plot confidence interval(0.95), 'circle' method

corrplot(M, low = res1$lowCI, upp = res1$uppCI,
        plotCI = 'circle', addg = 'grey20', cl.pos = 'n')

corrplot(M, p.mat = res1$p, low = res1$lowCI, upp = res1$uppCI,
        plotCI = 'circle', addg = 'grey20', cl.pos = 'n')

corrplot(M, low = res1$lowCI, upp = res1$uppCI,
        col = c('white', 'black'), bg = 'gold2', order = 'AOE',
        plotCI = 'circle', cl.pos = 'n', pch.col = 'red')

corrplot(M, p.mat = res1$p, low = res1$lowCI, upp = res1$uppCI,
        col = c('white', 'black'), bg = 'gold2', order = 'AOE',
        plotCI = 'circle', cl.pos = 'n', pch.col = 'red')

## plot confidence interval(0.95), 'square' method

corrplot(M, low = res1$lowCI, upp = res1$uppCI,
        col = c('white', 'black'), bg = 'gold2', order = 'AOE',
        plotCI = 'square', addg = NULL, cl.pos = 'n')

corrplot(M, p.mat = res1$p, low = res1$lowCI, upp = res1$uppCI,
        col = c('white', 'black'), bg = 'gold2', order = 'AOE',
        plotCI = 'square', addg = NULL, cl.pos = 'n')

## plot confidence interval(0.95, 0.95, 0.99, 'rect' method

corrplot(M, low = res1$lowCI, upp = res1$uppCI, order = 'hclust',
        rect.col = 'navy', plotCI = 'rect', cl.pos = 'n')

corrplot(M, p.mat = res1$p, low = res1$lowCI, upp = res1$uppCI,
        order = 'hclust', pch.col = 'red', sig.level = 0.05, addrect = 3,
        rect.col = 'navy', plotCI = 'rect', cl.pos = 'n')

corrplot(M, p.mat = res2$p, low = res2$lowCI, upp = res2$uppCI,
        order = 'hclust', pch.col = 'red', sig.level = 0.01, addrect = 3,
        rect.col = 'navy', plotCI = 'rect', cl.pos = 'n')

## an animation of changing confidence interval in different significance level

## begin animation

par(ask = FALSE)

for (i in seq(0.1, 0, -0.005)) {
  tmp = cor.mtest(mtcars, conf.level = 1 - i)
  corrplot(M, p.mat = tmp$p, low = tmp$lowCI, upp = tmp$uppCI, order = 'hclust',
           pch.col = 'red', sig.level = i, plotCI = 'rect', cl.pos = 'n',
           mar = c(0, 0, 1, 0),
           cl.pos = 'n',
           order = 'hclust', pch.col = 'red', sig.level = i, plotCI = 'rect', cl.pos = 'n',
           mar = c(0, 0, 1, 0),

        col = c('white', 'black'), bg = 'gold2', order = 'AOE',
        plotCI = 'circle', cl.pos = 'n', pch.col = 'red')

corrplot(M, p.mat = res1$p, low = res1$lowCI, upp = res1$uppCI,
        col = c('white', 'black'), bg = 'gold2', order = 'AOE',
        plotCI = 'circle', cl.pos = 'n', pch.col = 'red')

## Visualize confidence interval and cross the significant coefficients

corrplot(M, p.mat = testRes$p, lowCI = testRes$lowCI, uppCI = testRes$uppCI,
        order = 'hclust',
        tl.pos = 'd', rect.col = 'navy', plotC = 'rect', cl.pos = 'n')

## b...
title = substitute(alpha == x,
    list(x = format(i, digits = 3, nsmall = 3)))
Sys.sleep(0.15)
}
## end.animation

corrplot.mixed  Using mixed methods to visualize a correlation matrix.

Description
Using mixed methods to visualize a correlation matrix.

Usage
corrplot.mixed(
corr,
lower = "number",
upper = "circle",
tl.pos = c("d", "lt", "n"),
diag = c("n", "l", "u"),
bg = "white",
addgrid.col = "grey",
lower.col = NULL,
upper.col = NULL,
plotCI = c("n", "square", "circle", "rect"),
mar = c(0, 0, 0, 0),
...
)

Arguments
corr  Matrix, the correlation matrix to visualize.
lower  Character, the visualization method for the lower triangular correlation matrix.
upper  Character, the visualization method for the upper triangular correlation matrix.
tl.pos  Character, 'lt', 'd' or 'n', giving position of text labels, 'lt' means left and top, 'd' means diagonal. If 'n', add no textlabel.
diag  Character, for specifying the glyph on the principal diagonal. It is one of 'n' (default, draw nothing), 'l' (draw the glyphs of lower triangular) or 'u' (draw the glyphs of upper triangular).
bg  The background color.
addgrid.col  See the addgrid.col parameter in the function corrplot
lower.col  Passed as col parameter to the lower matrix.
upper.col  Passed as col parameter to the upper matrix.
plotCI  See the plotCI parameter in the function corrplot
mar  See par.
...  Additional arguments for corrplot’s wrappers
Author(s)
Taiyun Wei

Examples

\[
M = \text{cor(mtcars)}\\
\text{ord} = \text{corrMatOrder}(M, \text{order} = '\text{AOE}')\\
M_2 = M[\text{ord}, \text{ord}]\\
\]

corrplot.mixed(M_2)\\
corrplot.mixed(M_2, \text{lower} = '\text{ellipse}', \text{upper} = '\text{circle}')\\
corrplot.mixed(M_2, \text{lower} = '\text{square}', \text{upper} = '\text{circle}')\\
corrplot.mixed(M_2, \text{lower} = '\text{shade}', \text{upper} = '\text{circle}')\\
corrplot.mixed(M_2, \text{tl.pos} = '\text{lt}')\\
corrplot.mixed(M_2, \text{tl.pos} = '\text{lt}', \text{diag} = '\text{u}')\\
corrplot.mixed(M_2, \text{tl.pos} = '\text{lt}', \text{diag} = '\text{l}')\\
corrplot.mixed(M_2, \text{tl.pos} = '\text{n}')</code>

corrRect  

**Draw rectangle(s) on the correlation matrix graph.**

Description

Draw rectangle(s) after the correlation matrix plotted. SUGGESTION: It's more convenient to draw rectangle(s) by using pipe operator `|>` since R 4.1.0.

Usage

corrRect(  
corrRes = NULL,  
index = NULL,  
name = NULL,  
namesMat = NULL,  
col = "black",  
lwd = 2,  
...  
)

Arguments

corrRes  List of the corrplot() returns.
index  Vector, variable index of diag rect c(Rect1from, Rect2from, Rect3from, ..., RectNto) on the correlation matrix graph. It works when the colnames are the same as rownames, or both of them is NULL. It needs corrRes inputted.
name  Vector, variable name of diag rect c(Rect1from, Rect2from, Rect3from, ..., RectNto) on the correlation matrix graph. OIt works when the colnames are the same as rownames. It needs corrRes inputted.
namesMat  4-length character vector or 4-columns character matrix, represents the names of xleft, ybottom, xright, ytop correspondingly. It needs corrRes inputted.

col  Color of rectangles.

dlwd  Line width of rectangles.

...  Additional arguments passing to function rect().

Details

corrRect needs one of index, name and namesMat inputted. While corrRect.hclust can get the members in each cluster based on hierarchical clustering (hclust).

Value

(Invisibly) returns input parameter corrRes, usually list(corr, corrTrans, arg).

Author(s)

Taiyun Wei

Examples

```r
data(mtcars)
M = cor(mtcars)

r = rbind(c('gear', 'wt', 'qsec', 'carb'),
 c('wt', 'gear', 'carb', 'qsec'))
corrplot(M, order = 'AOE') -> p
corrRect(p, namesMat = r)

same as using pipe operator `|>'
if(getRversion() >= '4.1.0') {
 corrplot(M, order = 'AOE') |> corrRect(namesMat = r)
}

r = c('gear', 'carb', 'qsec', 'wt')
corrplot(M, order = 'AOE', type = 'lower') -> p
corrRect(p, namesMat = r)

same as using pipe operator `|>'
if(getRversion() >= '4.1.0') {
 corrplot(M, order = 'AOE', type = 'lower') |> corrRect(namesMat = r)
}

corrplot(M, order = 'hclust', type = 'upper') -> p
corrRect(p, index = c(1, 6, 11))

same as using pipe operator
if(getRversion() >= '4.1.0') {
```
corrRect.hclust

Draw rectangles on the correlation matrix graph.

Description

Draw rectangles on the correlation matrix graph based on hierarchical cluster (hclust).
**Usage**

```r
corrRect.hclust(
 corr,
 k = 2,
 col = "black",
 lwd = 2,
 method = c("complete", "ward", "ward.D", "ward.D2", "single", "average", "mcquitty",
 "median", "centroid")
)
```

**Arguments**

- **corr**: Correlation matrix for function `corrRect.hclust`. It uses `1-corr` as dist in hierarchical clustering (`hclust`).
- **k**: Integer, the number of rectangles drawn on the graph according to the hierarchical cluster, for function `corrRect.hclust`.
- **col**: Color of rectangles.
- **lwd**: Line width of rectangles.
- **method**: Character, the agglomeration method to be used for hierarchical clustering (`hclust`). This should be (an unambiguous abbreviation of) one of 'ward', 'ward.D', 'ward.D2', 'single', 'complete', 'average', 'mcquitty', 'median' or 'centroid'.

**Author(s)**

Taiyun Wei

**Examples**

```r
data(mtcars)
M = cor(mtcars)
corrplot(M, order = 'FPC') -> p
corrRect(p, index = c(1, 6, 11))

if(getRversion() >= '4.1.0') {
 corrplot(M, order = 'FPC') |> corrRect(index = c(1, 6, 11))
}

(order.hc = corrMatOrder(M, order = 'hclust'))
(order.hc2 = corrMatOrder(M, order = 'hclust', hclust.method = 'ward.D2'))
M.hc = M[order.hc, order.hc]
M.hc2 = M[order.hc2, order.hc2]
par(ask = TRUE)

same as: corrplot(M, order = 'hclust', addrect = 2)
corrplot(M.hc)
corrRect.hclust(corr = M.hc, k = 2)
```
# same as: corrplot(M, order = 'hclust', addrect = 3)
corrplot(M.hc)
corrRect.hclust(corr = M.hc, k = 3)

# same as: corrplot(M, order = 'hclust', hclust.method = 'ward.D2', addrect = 2)
corrplot(M.hc2)
corrRect.hclust(M.hc2, k = 2, method = 'ward.D2')

# same as: corrplot(M, order = 'hclust', hclust.method = 'ward.D2', addrect = 3)
corrplot(M.hc2)
corrRect.hclust(M.hc2, k = 3, method = 'ward.D2')

# same as: corrplot(M, order = 'hclust', hclust.method = 'ward.D2', addrect = 4)
corrplot(M.hc2)
corrRect.hclust(M.hc2, k = 4, method = 'ward.D2')
Index

* color
  COL1, 3
  COL2, 4
* confidence
cor.mtest, 8
* correlation
corrplot-package, 2
* correlogram
corrplot-package, 2
* dimensionality
corrplot-package, 2
* feature
corrplot-package, 2
* hplot
colorlegend, 6
corrMatOrder, 9
corrplot-package, 2
corrRect, 21
corrRect.hclust, 23
* p-value
cor.mtest, 8
* reduction
corrplot-package, 2
* selection
corrplot-package, 2
* significance
cor.mtest, 8

COL1, 3
COL2, 4
colorlegend, 6, 13
colorRampPalette, 3, 5
cor.mtest, 8
cor.test, 8, 9
corrMatOrder, 9, 13
corrplot, 10, 20
corrplot-package, 2
corrplot.mixed, 20
corrRect, 21
corrRect.hclust, 23

hclust, 13, 22–24
par, 12, 14, 20
plot, 6, 7
text, 13