Package ‘covafillr’

November 22, 2019

Title Local Polynomial Regression of State Dependent Covariates in State-Space Models
Version 0.4.4
Date 2019-11-22
Maintainer Christoffer Moesgaard Albertsen <cmoe@aqua.dtu.dk>
Description Facilitates local polynomial regression for state dependent covariates in state-space models. The functionality can also be used from ‘C++’ based model builder tools such as ‘Rcpp’/‘inline’, ‘TMB’, or ‘JAGS’.

BugReports https://github.com/calbertsen/covafillr/issues
URL https://github.com/calbertsen/covafillr
Depends R (>= 3.0.0)
Imports methods, stats, Rcpp (>= 0.11.0)
LinkingTo RcppEigen
Suggests TMB, rjags, inline, ggplot2
License BSD_2_clause + file LICENSE
LazyData true
Biarch true
NeedsCompilation yes
RoxygenNote 7.0.0
Author Christoffer Moesgaard Albertsen [aut, cre]
 (<https://orcid.org/0000-0003-0088-4363>)
Repository CRAN
Date/Publication 2019-11-22 10:40:09 UTC

R topics documented:
covafill-class .. 2
covatree-class ... 3
cxxFlags ... 4
covafill-class

A Reference Class for Local Polynomial Regression with covafill.

Description

A Reference Class for Local Polynomial Regression with covafill.

Fields

ptr External pointer to the covafill C++ object

Methods

getBandwith() Get the bandwith.
getDegree() Get the polynomial degree.
getDim() Get the dimension of the coordinates.
initialize(coord, obs, h = suggestBandwith(coord, p), p = 3L, ...) Method to initialize the covafill. coord is a matrix of coordinates, obs is a vector of corresponding observations, h is a vector of bandwiths, and p is the polynomial degree.
predict(coord, se.fit = FALSE) Predict function value and derivatives with local polynomial regression at coord. If se.fit=TRUE a list is returned with estimates and their standard deviations.
residuals(excludeRadius) Get 'leave-neighborhood-out' residuals, i.e. local polynomial regression predictions excluding points within excludeRadius subtracted from the observation.
setBandwith(h) Set the bandwith to h.

Examples

getRefClass('covafill')
fn <- function(x) x^4 - x^2
x <- runif(2000,-3,3)
y <- fn(x) + rnorm(2000,0,0.1)
cf <- covafill(coord = x,obs = y,p = 5L)
cf$getDim()
cf$getDegree()
cf$setBandwith()
x0 <- seq(-1,1,0.1)
y0 <- cf$predict(x0)
par(mfrow=c(3,1))
plot(x0,y0[,1], main = "Function")
covatree-class

A Reference Class for Search Tree Approximated Local Polynomial Regression with covatree.

Description

A Reference Class for Search Tree Approximated Local Polynomial Regression with covatree.

Fields

ptr External pointer to the covatree C++ object

Methods

getDim() Get the dimension of the coordinates.
initialize(coord, obs, h = suggestBandwith(coord, p), p = 3L, minLeft = length(obs)/10, ...) Method to initialize the covafill. coord is a matrix of coordinates, obs is a vector of corresponding observations, h is a vector of bandwidths, p is the polynomial degree, and minLeft is the minimum number of observations that will create a sub tree.
predict(coord) Predict function value and first order derivatives with search tree approximated local polynomial regression at coord.

Examples

getRefClass('covatree')
fn <- function(x) x ^ 4 - x ^ 2
x <- runif(2000,-3,3)
y <- fn(x) + rnorm(2000,0,0.1)
ct <- covatree(coord = x, obs = y, p = 5L, minLeft = 50)
ct$getDim()
x0 <- seq(-1,1,0.1)
y0 <- ct$predict(x0)
par(mfrow=c(2,1))
plot(x0,y0[,1], main = "Function")
lines(x0,fn(x0))
plot(x0, y0[,2], main = "First derivative")
lines(x0, 4 * x0 ^ 3 - 2 * x0)

```r
lines(x0,y0[,2])
plot(x0, y0[,2], main = "First derivative")
lines(x0, 4 * x0 ^ 3 - 2 * x0)
```
cxxFlags

CXXFLAGS to compile with covafill

Description
Get CXXFLAGS to compile with covafill

Usage

cxxFlags()

Value
Returns a string with the CXXFLAGS needed to compile C++ code using covafill.

Author(s)
Christofer Moesgaard Albertsen

See Also
compile

Examples

```r
## Not run:
if(require("TMB")){
  f <- system.file("examples","tmbtest","tmbtest.cpp", package="covafillr")
  TMB::compile(f,CXXFLAGS = cxxFlags())
}
## End(Not run)
```

kde

Kernel Density Estimation

Description
Wrapper for the covafill reference class to do kernel density estimation.

Usage

```
kde(X, bw = suggestBandwith(X, -1), npred = 100, from = min(X), to = max(X))
```
loadJAGSModule

Arguments

X A numeric matrix or vector of data coordinates
bw Bandwith used
npred Number of coordinate wise equally spaced points at which the density is to be estimated. The numbers are repeated if the length is less than the dimension of the coordinates.
from Coordinate wise lower bound of points at which the density is to be estimated. The numbers are repeated if the length is less than the dimension of the coordinates.
to Coordinate wise upper bound of points at which the density is to be estimated. The numbers are repeated if the length is less than the dimension of the coordinates.

Value

a list of coordinates and corresponding density estimates

Author(s)

Christoffer Moesgaard Albertsen

Description

Calls rjags::load.module with appropriate arguments to load the covafillr module.

Usage

loadJAGSModule()

Value

Nothing

Author(s)

Christoffer Moesgaard Albertsen

See Also

load.module

Examples

if(require("rjags") & covafillr:::.installed_with_jags)
 loadJAGSModule()
As an extension to the `ggplot2` package, the function adds a covafill fit to an (x,y) plot. The fit is predicted to points on the interval range(x).

Usage

```r
stat_covafill(
  mapping = NULL,
  data = NULL,
  geom = "smooth",
  position = "identity",
  na.rm = FALSE,
  show.legend = NA,
  inherit.aes = TRUE,
  n = 50,
  bandwith = NULL,
  polyDegree = 3L,
  level = 0.95,
  se = TRUE,
  ...
)
```

Arguments

- `mapping`: Set of mappings created by `aes` from the `ggplot2` package. The same as `ggplot2::stat_smooth`.
- `data`: The data to be displayed in this layer. The same as `ggplot2::stat_smooth`.
- `geom`: The same as `ggplot2::stat_smooth`.
- `position`: Position adjustments. The same as `ggplot2::stat_smooth`.
- `na.rm`: Not used
- `show.legend`: Should this legend be displayed? The same as `ggplot2::stat_smooth`.
- `inherit.aes`: The same as `ggplot2::stat_smooth`.
- `n`: Number of points to do prediction on.
- `bandwith`: Bandwith used in covafill. Uses `suggestBandwith` by default.
- `polyDegree`: Polynomial degree to use in covafill.
- `level`: Level of confidence interval to use.
- `se`: Should confidence intervals be displayed?
- `...`: Other arguments passed to `layer`.
suggestBandwith

Value
A ggplot2 layer.

Author(s)
Christoffer Moesgaard Albertsen

See Also
stat_smooth

suggestBandwith: Suggest bandwith for local polynomial regression

Description
The bandwith is suggested coordinate wise to be

\[
0.9\sqrt{5} \min \left(sd(x), \frac{IQR(x)}{1.349} \right) n^{-\frac{1}{4.31}} (p + 1)
\]

where \(p \) is the polynomial degree used and \(n \) is the number of coordinate points.

Usage
suggestBandwith(X, p)

Arguments
\[
\begin{align*}
X & \text{ A numeric matrix or vector of data coordinates} \\
p & \text{ Polynomial degree to base the suggestion on}
\end{align*}
\]

Value
a vector or scalar of suggested bandwiths

Author(s)
Christoffer Moesgaard Albertsen
Index

compile, 4
covafill(covafill-class), 2
covafill-class, 2
covatree(covatree-class), 3
covatree-class, 3
cxxFlags, 4

kde, 4

load.module, 5
loadJAGSModule, 5

stat_covafill, 6
stat_smooth, 7
suggestBandwith, 7