Package ‘critpath’

January 9, 2024

Type Package
Title Setting the Critical Path in Project Management
Version 0.2.2
Author Adam Kucharski
Maintainer Adam Kucharski <akucharski@interia.pl>
License GPL-2
Encoding UTF-8
LazyData true
Imports DiagrammeR, ggplot2, reshape2, dplyr, stringr
Suggests knitr, rmarkdown
VignetteBuilder knitr
Depends R (>= 4.0.0)
Date 2024-01-06
RoxygenNote 7.2.3
NeedsCompilation no
Repository CRAN
Date/Publication 2024-01-09 20:20:05 UTC
R topics documented:

cpmexample1 .. 2

cpmexample2 .. 3

lessexample1 .. 3

lessexample2 .. 4

pertextexample1 .. 4

pertextexample2 .. 5

PERT_newprob .. 5

PERT_newtime ... 6

plot_alap ... 6

plot_asap ... 7

plot_gantt .. 8

plot_graphAOA .. 8

plot_norm ... 9

plot_TC .. 10

solve_lessAOA ... 10

solve_pathAOA ... 11

Index 14

Index

<table>
<thead>
<tr>
<th>Dataset for the CPM method</th>
</tr>
</thead>
<tbody>
<tr>
<td>cpmexample1</td>
</tr>
</tbody>
</table>

Description

Fictitious data that is used in the examples. 6 activities, 5 nodes. In this dataset, the activities occur on the edges.

Usage

cpmexample1

Format

A data frame composed of predetermined columns:

from starting activity node
to final activity node
label activity label
time duration of the activity
Dataset for the CPM method

Description

Example from Miszczyńska D., Miszczyński M. "Wybrane metody badań operacyjnych" (2000, ISBN:83-907712-0-9). 10 activities, 8 nodes. In this dataset, the activities occur on the edges and a list of direct predecessors has been added.

Usage

cpmexample2

Format

A data frame composed of predetermined columns:

- **label**: activity label
- **pred**: preceding activities
- **time**: duration of the activity

Dataset for the LESS method

Description

Fictitious data that is used in the examples. 6 activities, 5 nodes. In this dataset, the activities occur on the edges

Usage

lessexample1

Format

A data frame composed of predetermined columns:

- **from**: starting activity node
- **to**: final activity node
- **label**: activity label
- **time**: normal duration of the activity
- **bound_time**: the shortest duration of the activity
- **norm_cost**: normal cost of the activity
- **bound_cost**: boundary cost of the activity
Dataset for the LESS method

Description

Example from Miszczyńska D., Miszczyński M. "Wybrane metody badań operacyjnych" (2000, ISBN:83-907712-0-9). In this dataset, the activities occur on the edges and a list of direct predecessors has been added.

Usage

lessexample2

Format

A data frame composed of predetermined columns:

- **label**: activity label
- **pred**: preceding activities
- **time**: normal duration of the activity
- **bound_time**: the shortest duration of the activity
- **norm_cost**: normal cost of the activity
- **bound_cost**: boundary cost of the activity

Dataset for the PERT method

Description

Fictitious data that is used in the examples. 9 activities, 8 nodes. In this dataset, the activities occur on the edges.

Usage

pertexample1

Format

A data frame composed of predetermined columns:

- **from**: starting activity node
- **to**: final activity node
- **label**: activity label
- **opt_time**: optimistic duration of activity
- **likely_time**: the most likely duration of the activity
- **pes_time**: pesimistic duration of activity
Dataset for the PERT method

Description
Example from Miszczyńska D., Miszczyński M. "Wybrane metody badań operacyjnych" (2000, ISBN:83-907712-0-9). 10 activities, 8 nodes. In this dataset, the activities occur on the edges and a list of direct predecessors has been added.

Usage

pertexample2

Format
A data frame composed of predetermined columns:

- **label**: activity label
- **pred**: preceding activities
- **opt_time**: optimistic duration of activity
- **likely_time**: the most likely duration of the activity
- **pes_time**: pessimistic duration of activity

PERT_newprob

Probability for the given directive term

Description
Probability for the given directive term

Usage

PERT_newprob(new_DT, yourlist)

Arguments

- **new_DT**: The given project completion date. The parameter must be greater than zero.
- **yourlist**: List of objects that make up the solution to the project management problem.

Value
This function calculates the probability of completing the project within the time specified by the user. A normal distribution was assumed.

Examples

```r
y <- solve_pathAOA(pertexample1, deterministic = FALSE)
PERT_newprob(new_DT = 30, y)
```
PERT_newtime

A new directive term for any probability

Description

A new directive term for any probability

Usage

```r
PERT_newtime(new_prob = 0.5, yourlist)
```

Arguments

- `new_prob`: Probability of the project completion. Default set to 0.5.
- `yourlist`: List of objects that make up the solution to the project management problem.

Value

This function computes a new directive term for a probability given by the user. A normal distribution was assumed.

Examples

```r
y <- solve_pathAOA(pertexample1, deterministic = FALSE)
PERT_newtime(new_prob = 0.3, y)
```

plot_alap

An ALAP chart

Description

An ALAP chart

Usage

```r
plot_alap(yourlist, show_dummy = FALSE, bar_size = 10)
```

Arguments

- `yourlist`: List of objects that make up the solution to the project management problem.
- `show_dummy`: Decides whether dummy activities should be included in the chart. If so, set it to TRUE (set to FALSE by default).
- `bar_size`: Thickness of the bar drawn for activity (set to 10 by default).
Value

Draws an ALAP (activities start and finish As Late As Possible) chart broken down into critical ("CR") and non-critical ("NC") activities. Marks total float.

Examples

```r
x <- solve_pathAOA(cpmexample1, deterministic = TRUE)
plot_alap(x)
```

plot_asap

An ASAP chart

Description

An ASAP chart

Usage

```r
plot_asap(yourlist, show_dummy = FALSE, bar_size = 10)
```

Arguments

- **yourlist**: List of objects that make up the solution to the project management problem.
- **show_dummy**: Decides whether dummy activities should be included in the chart. If so, set it to TRUE (set to FALSE by default).
- **bar_size**: Thickness of the bar drawn for activity (set to 10 by default).

Value

Draws an ASAP (activities start and finish As Soon As Possible) chart broken down into critical ("CR") and non-critical ("NC") activities. Marks total floats.

Examples

```r
x <- solve_pathAOA(cpmexample1, deterministic = TRUE)
plot_asap(x)
```
plot_gantt

A Gantt chart

Description
A Gantt chart

Usage

```
plot_gantt(yourlist, show_dummy = FALSE, bar_size = 10)
```

Arguments

- `yourlist` List of objects that make up the solution to the project management problem.
- `show_dummy` Decides whether dummy activities should be included in the chart. If so, set it to TRUE (set to FALSE by default).
- `bar_size` Thickness of the bar drawn for activity (set to 10 by default).

Value

Draws a Gantt chart broken down into critical ("CR") and non-critical ("NC") activities. Marks total float.

Examples

```
x <- solve_pathAOA(cpmexample1, deterministic = TRUE)
plot_gantt(x)
```

plot_graphAOA

A graph of connections between nodes

Description
A graph of connections between nodes

Usage

```
plot_graphAOA(input_data, predecessors = FALSE, solved = NULL, fixed_seed = 23)
```

Arguments

- `input_data` Data frame describing the problem.
- `predecessors` TRUE if the user data contains a list of immediately preceding activities
- `solved` List of objects that make up the solution to the project management problem.
- `fixed_seed` Optional parameter setting random seed to user value to get similar looking plots each time the function is run (set to 23 by default).
Value

The function draws a graph showing dependencies between nodes. The "solved" parameter determines whether there is a critical path in the graph. In that case, you must solve the problem first. In the examples below, the function first draws the graph only on the basis of the data frame and then after determining the critical path.

Examples

```r
plot_graphAOA(cpmexample1)
x <- solve_pathAOA(cpmexample1, TRUE)
plot_graphAOA(solved = x)
```

plot_norm

The cumulative distribution function of the normal distribution

Description

The cumulative distribution function of the normal distribution

Usage

```r
plot_norm(yourlist)
```

Arguments

- `yourlist` List of objects making up the solution to the project management problem

Value

Draws a graph of the normal distribution with the expected directive term from the PERT method and the standard deviation for this term. The chart also includes lines indicating the schedules of the risk-taker and the belayer.

Examples

```r
y <- solve_pathAOA(pertexample1, deterministic = FALSE)
plot_norm(y)
```
plot_TC
Total cost change plot

Description
Total cost change plot

Usage
`plot_TC(your_list)`

Arguments
- **your_list**
 List containing solved problem

Value
Based on the results of the LESS method, a graph of the total cost value of all iterations is created

Examples
```r
z <- solve_lessAOA(lessexample1, 50, 15)
plot_TC(z)
```

solve_lessAOA
Determines the solution using the LESS method. Relationships between activities can be given as a list of predecessors or start and end node numbers.

Description
Determines the solution using the LESS method. Relationships between activities can be given as a list of predecessors or start and end node numbers.

Usage
`solve_lessAOA(input_data, ICconst, ICslope, predecessors = FALSE)`

Arguments
- **input_data**
 Data frame containing the graph structure and activity durations. For the LESS method and start/end nodes you need 7 columns (the order matters):
 1. from The number of the node where the activity starts.
 2. to The number of the node where the activity ends.
 3. label Activity labels.
 4. time Normal duration of activities.
5. crash_time Crash (the shortest possible) duration of activities.
6. norm_cost Normal costs.
7. crash_cost Crash costs.

For the LESS method and predecessors list you need 6 columns (the order matters):

1. label Activity labels.
2. pred List of predecessors.
3. time Normal duration of activities.
4. crash_time Crash (the shortest possible) duration of activities.
5. norm_cost Normal costs.
6. crash_cost Crash costs.

ICconst Intercept of the indirect cost function.
ICslope Slope of the indirect cost function.
predecessors TRUE if the user data contains a list of immediately preceding activities If set
to FALSE (default), start nad end nodes are used. If is set to TRUE, predecessors
list is used.

Value
A list made of a graph and a result set.

Examples

z <- solve_lessAOA(lessexample1, 50, 15)

solve_pathAOA(Finds a solution using CPM and PERT methods. Relationships be-
between activities can be given as a list of predecessors or start and end
node numbers.

Description
Finds a solution using CPM and PERT methods. Relationships between activities can be given as a
list of predecessors or start and end node numbers.

Usage

solve_pathAOA(
 input_data,
 deterministic = TRUE,
 predecessors = FALSE,
 pert_param = 0
)
Arguments

input_data Data frame containing the structure of the graph and the duration of the activity. For the CPM method and start/end nodes you need 4 columns (the order is important, not the name of the column):

1. from The number of the node where the activity starts.
2. to The number of the node where the activity ends.
3. label Activity labels.
4. time Activities durations.

For the CPM method and predecessors list you need 3 columns (the order is important, not the name of the column):

1. label Activity labels.
2. pred List of predecessors.
3. time Activities durations.

For the PERT method and start/end nodes you need 6 columns (the order is important, not the name of the column):

1. from The number of the node where the activity starts.
2. to The number of the node where the activity ends.
3. label Activity labels.
4. opt_time Optimistic duration of activities.
5. likely_time The most likely duration of the activity.
6. pes_time Pessimistic duration of activities.

For the PERT method and predecessors list you need 5 columns (the order is important, not the name of the column):

1. label Activity labels.
2. pred List of predecessors.
3. opt_time Optimistic duration of activities.
4. likely_time The most likely duration of the activity.
5. pes_time Pessimistic duration of activities.

deterministic A logical parameter specifying the solution method. If set to TRUE (default), the CPM method is used. If is set to FALSE, the PERT method is used.

predecessors TRUE if the user data contains a list of immediately preceding activities If set to FALSE (default), start nad end nodes are used. If is set to TRUE, predecessors list is used.

pert_param A parameter that controls the method of calculating the expected value and variance in the PERT method. 0 - classic formula (default), 1 - 1st and 99th percentile of the beta distribution, 2 - 5th and 95th percentile of the beta distribution, 3 - 5th and 95th percentiles of the beta distribution with modification by (Perry and Greig, 1975), 4 - Extended Pearson’s and Tukey’s formula (Pearson and Tukey, 1965), 5 - Golenko-Ginzburg’s full formula (Golenko-Ginzburg, 1988), 6 - Golenko-Ginzburg’s reduced formula (Golenko-Ginzburg, 1988), 7 - Farnum’s and Stanton’s formula (Farnum and Stanton, 1987).
solve_pathAOA

Value

The list is made of a graph, schedule and selected partial results.

Examples

```r
x <- solve_pathAOA(cpmexample1, deterministic = TRUE)
y <- solve_pathAOA(pertexample1, deterministic = FALSE)
x <- solve_pathAOA(cpmexample2, deterministic = TRUE, predecessors = TRUE)
y <- solve_pathAOA(pertexample2, deterministic = FALSE, predecessors = TRUE)
```
Index

* datasets
 cpmexample1, 2
 cpmexample2, 3
 lessexample1, 3
 lessexample2, 4
 pertexample1, 4
 pertexample2, 5
 cpmexample1, 2
 cpmexample2, 3
 lessexample1, 3
 lessexample2, 4
 PERT_newprob, 5
 PERT_newtime, 6
 pertexample1, 4
 pertexample2, 5
 plot_alap, 6
 plot_asap, 7
 plot_gantt, 8
 plot_graphAOA, 8
 plot_norm, 9
 plot_TC, 10
 solve_lessAOA, 10
 solve_pathAOA, 11