Package ‘ctsemOMX’

June 2, 2021

Type Package

Title Continuous Time SEM - 'OpenMx' Based Functions

Version 1.0.4

Date 2021-6-1

Description Original 'ctsem' (continuous time structural equation modelling) functionality, based on the 'OpenMx' software, as described in Driver, Oud, Voelkle (2017) <doi:10.18637/jss.v077.i05>, with updated details in vignette. Combines stochastic differential equations representing latent processes with structural equation measurement models. These functions were split off from the main package of 'ctsem', as the main package uses the 'rstan' package as a backend now -- offering estimation options from max likelihood to Bayesian. There are nevertheless use cases for the wide format SEM style approach as offered here, particularly when there are no individual differences in observation timing and the number of individuals is large. For the main 'ctsem' package, see <https://cran.r-project.org/package=ctsem>.

License GPL-3

Depends R (>= 3.5.0), ctsem (>= 3.3.2), OpenMx (>= 2.9.0)

URL https://github.com/cdriveraus/ctsemOMX

Imports graphics, grDevices, Matrix, methods, plyr, stats, utils

Encoding UTF-8

LazyData true

ByteCompile true

Suggests knitr, testthat

VignetteBuilder knitr

RoxygenNote 7.1.1

NeedsCompilation no

Author Charles Driver [aut, cre, cph], Manuel Voelkle [aut, cph], Han Oud [aut, cph]

Maintainer Charles Driver <charles.driver@ibe.uzh.ch>

Repository CRAN

Date/Publication 2021-06-02 06:00:10 UTC
Description

A dataset containing panel data assessments of individuals Anomia and Authoritarianism.

Format

data frame with 2722 rows, 14 columns. Column Y1 represents anomia, Y2 Authoritarianism, dTx the time interval for measurement occasion x.

Source

ctCI Computes confidence intervals on specified parameters / matrices for already fitted ctsem fit object.

Description

ctCI Computes confidence intervals on specified parameters / matrices for already fitted ctsem fit object.

Usage

ctCI(ctfitobj, confidenceintervals, optimizer = "NPSOL", verbose = 0)

Arguments

ctfitobj Already fit ctsem fit object (class: ctsemFit) to estimate confidence intervals for.
confidenceintervals
character vector of matrices and or parameters for which to estimate 95% confidence intervals for.
optimizer
character vector. Defaults to NPSOL (recommended), but other optimizers available within OpenMx (e.g. ‘CSOLNP’) may be specified.
verbose
Integer between 0 and 3 reflecting amount of output while calculating.

Details

Confidence intervals typically estimate more reliably using the proprietary NPSOL optimizer available within OpenMx only when installing directly from OpenMx website. Use command "source('http://openmx.psyc.virginia.edu/getOpenMx.R')" to install OpenMx with NPSOL. If estimating for a multigroup model, specify confidence intervals as normal, e.g. confidenceintervals = c('DRIFT','diffusion_Y1_Y1'). The necessary group prefixes are added internally.

Value

ctfitobj, with confidence intervals included.

Examples

Examples set to 'donttest' because they take longer than 5s.
data("ctExample3")
model <- ctModel(n.latent = 1, n.manifest = 3, Tpoints = 100,
LAMBDA = matrix(c(1, "lambda2", "lambda3"), nrow = 3, ncol = 1),
MANIFESTMEANS = matrix(c(0, "manifestmean2", "manifestmean3"), nrow = 3, ncol = 1))
fit <- ctFit(dat = ctExample3, ctmodelobj = model, objective = "Kalman",
stationary = c("T0VAR"))
fit <- ctCI(fit, confidenceintervals = 'DRIFT')
ctCompareExpected

ctCompareExpected Compares model implied to observed means and covariances for panel data fit with ctsem.

Description

cCompareExpected Compares model implied to observed means and covariances for panel data fit with ctsem.

Usage

cCompareExpected(
 fitobj,
 cov = TRUE,
 outputmatrices = FALSE,
 pause = TRUE,
 varlist = "all",
 ylim = c(-1, 1),
 ...
)

Arguments

fitobj Fitted model object from OpenMx or ctsem.
cov Logical. If TRUE, show covariance plots, if FALSE show correlations.
outputmatrices if TRUE, output expected, observed, and residual correlation matrices as well as plots.
pause if TRUE (default) output plots interactively, one at a time. If FALSE, output without stopping.
varlist if "all" include all variables in dataset. Otherwise, specify numeric vector of variables to include.
ylim vector of min and max Y axis limits for plot.
... additional arguments passed to plot.
ctExample1

Description
Simulated example dataset for the ctsem package

Format
100 by 17 matrix containing ctsem wide format data. 6 measurement occasions of leisure time and happiness and 5 measurement intervals for each of 100 individuals.

ctExample1TIpred

Description
Simulated example dataset for the ctsem package

Format
100 by 18 matrix containing ctsem wide format data. 6 measurement occasions of leisure time and happiness, 1 measurement of number of friends, and 5 measurement intervals for each of 100 individuals.

ctExample2

Description
Simulated example dataset for the ctsem package

Format
100 by 18 matrix containing ctsem wide format data. 8 measurement occasions of leisure time and happiness, 7 measurement occasions of a money intervention dummy, and 7 measurement intervals for each of 50 individuals.
Description
Simulated example dataset for the ctsem package

Format
100 by 18 matrix containing ctsem wide format data. 8 measurement occasions of leisure time and happiness, 7 measurement occasions of a money intervention dummy, and 7 measurement intervals for each of 50 individuals.

Description
Simulated example dataset for the ctsem package

Format
1 by 399 matrix containing ctsem wide format data. 100 observations of variables Y1 and Y2 and 199 measurement intervals, for 1 subject.

Description
Simulated example dataset for the ctsem package

Format
20 by 79 matrix containing 20 observations of variables Y1, Y2, Y3, and 19 measurement intervals dTx, for each of 20 individuals.
ctFit

Fit a ctsem object

Description

This function fits continuous time SEM models specified via ctModel to a dataset containing one or more subjects.

Usage

ctFit(dat, ctmodelobj, dataform = "auto", objective = "auto", stationary = c("T0TRAITEFFECT", "T0TIPREDEFFECT"), optimizer = "CSOLNP", retryattempts = 5, iterationSummary = FALSE, carefulFit = TRUE, carefulFitWeight = 100, showInits = FALSE, asymptotes = FALSE, meanIntervals = FALSE, crossEffectNegStarts = TRUE, fit = TRUE, nofit = FALSE, discreteTime = FALSE, verbose = 0, useOptimizer = TRUE, omxStartValues = NULL, transformedParams = TRUE, datawide = NA)

Arguments

dat the data you wish to fit a ctsem model to, in either wide format (one individual per row), or long format (one time point of one individual per row). See details.

ctmodelobj the ctsem model object you wish to use, specified via the ctModel function.

dataform either "wide" or "long" depending on which input format you wish to use for the data. See details and or vignette.

objective 'auto' selects either 'Kalman', if fitting to single subject data, or 'mxRAM' for multiple subjects. For single subject data, 'Kalman' uses the mxExpectationStateSpace function from OpenMx to implement the Kalman filter. For more than one subject, 'mxRAM' specifies a wide format SEM with a row of data per subject.
'cov' may be specified, in which case the 'meanIntervals' argument is set to TRUE, and the covariance matrix of the supplied data is calculated and fit instead of the raw data. This is much faster but only a rough approximation, unless there are no individual differences in time interval and no missing data. 'Kalman' may be specified for multiple subjects, however as no trait matrices are used by the Kalman filter one must consider how average level differences between subjects are accounted for. See \texttt{ctMultigroupFit} for the possibility to apply the Kalman filter over multiple subjects.

\begin{itemize}
\item \textbf{stationary} Character vector of T0 matrix names in which to constrain any free parameters to stationarity. Defaults to \texttt{c('T0TRAITEFFECT', 'T0TIPREDEFFECT')}, constraining only between person effects to stationarity. Use \texttt{NULL} for no constraints, or 'all' to constrain all T0 matrices.
\item \textbf{optimizer} character string, defaults to the open-source 'CSOLNP' optimizer that is distributed in all versions of OpenMx. However, 'NPSOL' may sometimes perform better for these problems, though requires that you have installed OpenMx via the OpenMx web site, by running: \texttt{source('http://openmx.psyc.virginia.edu/getOpenMx.R')}
\item \textbf{retryattempts} Number of times to retry the start value randomisation and fit procedure, if non-convergance or uncertain fits occur.
\item \textbf{iterationSummary} if TRUE, outputs limited fit details after every fit attempt.
\item \textbf{carefulFit} if TRUE, first fits the specified model with a penalised likelihood function to force MANIFESTVAR, DRIFT, TRAITVAR, MANIFESTTRAITVAR parameters to remain close to 0, then fits the specified model normally, using these estimates as starting values. Can help to ensure optimization begins at sensible, non-extreme values, though results in any user specified start values being ignored for the final fit (though they are still used for initial fit).
\item \textbf{carefulFitWeight} Positive numeric. Sets the weight for the penalisation (or prior) applied by the carefulFit algorithm. Generally unnecessary to adjust, may be helpful to try a selection of values (perhaps between 0 and 1000) when optimization is problematic.
\item \textbf{showInits} if TRUE, prints the list of starting values for free parameters. These are the 'raw' values used by OpenMx, and reflect the log (var / cov matrices) or -log(DRIFT matrices) transformations used in ctsem. These are saved in the fit object under \texttt{fitobject$omxStartValues}.
\item \textbf{asymptotes} when TRUE, optimizes over asymptotic parameter matrices instead of continuous time parameter matrices. Can be faster for optimization and in some cases makes reliable convergance easier. Will result in equivalent models when continuous time input matrices (DRIFT, DIFFUSION, CINT) are free, but fixing the values of any such matrices will result in large differences - a value of 0 in a cell of the normal continuous time DIFFUSION matrix does not necessarily result in a value of 0 for the asymptotic DIFFUSION matrix, for instance.
\item \textbf{meanIntervals} Use average time intervals for each column for calculation (both faster and inaccurate to the extent that intervals vary across individuals).
\item \textbf{crossEffectNegStarts} Logical. If TRUE (default) free DRIFT matrix cross effect parameters have starting values set to small negative values (e.g. -.05), if FALSE, the start values
are 0. The TRUE setting is useful for easy initialisation of higher order models, while the FALSE setting is useful when one has already estimated a model without cross effects, and wishes to begin optimization from those values by using the omxStartValues switch. are re-transformed into regular continuous time parameter matrices, and may be interpreted as normal.

- **fit**: if FALSE, output only openmx model without fitting
- **nofit**: Deprecated. If TRUE, output only openmx model without fitting
- **discreteTime**: Estimate a discrete time model - ignores timing information, parameter estimates will correspond to those of classical vector autoregression models, OpenMx fit object will be directly output, thus ctsem summary and plot functionality will be unavailable. Time dependent predictor type also becomes irrelevant.
- **verbose**: Integer between 0 and 3. Sets mxComputeGradientDescent messaging level, defaults to 0.
- **useOptimizer**: Logical. Defaults to TRUE. Passes argument to mxRun, useful for using custom optimizers or fitting to specified parameters.
- **omxStartValues**: A named vector containing the raw (potentially log transformed) OpenMx starting values for free parameters, as captured by OpenMx function omxGetParameters(ctmodelobj$mxobj). These values will take precedence over any starting values already specified using ctModel.
- **transformedParams**: Logical indicating whether or not to log transform certain parameters internally to allow unconstrained estimation over entire ‘sensible’ range for parameters. When TRUE (default) raw OpenMx parameters (only reported if verbose=TRUE argument used for summary function) will reflect these transformations and may be harder to interpret, but summary matrices are reported as normal.
- **datawide**: included for compatibility with scripts written for earlier versions of ctsem. Do not use this argument, instead use the dat argument, and the dataform argument now specifies whether the data is in wide or long format.

Details

For full discussion of how to structure the data and use this function, see the vignette using: vignette('ctsem'), or the data examples data("longexample") ; longexample for long and data("datastructure") ; datastructure for wide. If using long format, the subject id column must be numeric and grouped by ascending time within subject, and named 'id'. The time column must also be numeric, and representing absolute time (e.g., since beginning of study, *not* time intervals), and called 'time'. Models are specified using the ctModel function. For help regarding the summary function, see summary.ctsemFit, and for the plot function, plot.ctsemFit. Multi-group models may be specified using ctMultigroupFit. Confidence intervals for any matrices and or parameters may be estimated using ctCI. Difficulties during estimation can sometimes be alleviated using ctRefineTo instead of ctFit – this uses a multistep fit procedure.

Examples

```r
## Examples set to 'donttest' because they take longer than 5s.

mfrow0ld<-par()$mfrow
```
par(mfrow=c(2, 3))
example from Driver, Oud, Voelkle (2017),
simulated happiness and leisure time with unobserved heterogeneity.
data(ctExample1)
traitmodel <- ctModel(n.manifest=2, n.latent=2, Tpoints=6, LAMBDA=diag(2),
 manifestNames=c('LeisureTime', 'Happiness'),
 latentNames=c('LeisureTime', 'Happiness'), TRAITVAR="auto")
traitfit <- ctFit(dat=ctExample1, ctmodelobj=traitmodel)
summary(traitfit)
plot(traitfit, wait=FALSE)

###Example from Voelkle, Oud, Davidov, and Schmidt (2012) - anomia and authoritarianism.
data(AnomAuth)
AnomAuthmodel <- ctModel(LAMBDA = matrix(c(1, 0, 0, 1), nrow = 2, ncol = 2),
 Tpoints = 5, n.latent = 2, n.manifest = 2, MANIFESTVAR=diag(0, 2), TRAITVAR = NULL)
AnomAuthfit <- ctFit(AnomAuth, AnomAuthmodel)
summary(AnomAuthfit)

Single subject time series - using Kalman filter (OpenMx statespace expectation)
data('ctExample3')
model <- ctModel(n.latent = 1, n.manifest = 3, Tpoints = 100,
 LAMBDA = matrix(c(1, 'lambda2', 'lambda3'), nrow = 3, ncol = 1),
 CINT= matrix('cint'),
 MANIFESTMEANS = matrix(c(0, 'manifestmean2', 'manifestmean3'), nrow = 3, ncol = 1))
fit <- ctFit(dat = ctExample3, ctmodelobj = model, objective = 'Kalman',
 stationary = c('T0VAR'))

###Oscillating model from Voelkle & Oud (2013).
data("Oscillating")
inits <- c(-39, -.3, 1.01, 10.01, .1, 10.01, 0.05, .9, 0)
names(inits) <- c("crosseffect", "autoeffect", "diffusion", "T0var11", "T0var21", "T0var22", "m1", "m2", "manifestmean")
oscillatingm <- ctModel(n.latent = 2, n.manifest = 1, Tpoints = 11,
 MANIFESTVAR = matrix(c(0), nrow = 1, ncol = 1),
 LAMBDA = matrix(c(1, 0), nrow = 1, ncol = 2),
 T0MEANS = matrix(c('m1', 'm2'), nrow = 2, ncol = 1),
 T0VAR = matrix(c("T0var11", "T0var21", 0, "T0var22"), nrow = 2, ncol = 2),
 DRIFT = matrix(c(0, 'crosseffect', 1, "autoeffect"), nrow = 2, ncol = 2),
 CINT = matrix(0, ncol = 1, nrow = 2),
 MANIFESTMEANS = matrix('manifestmean', nrow = 1, ncol = 1),
 DIFFUSION = matrix(c(0, 0, 0, "diffusion"), nrow = 2, ncol = 2),
 startValues=inits)
oscillatingf <- ctFit(Oscillating, oscillatingm, carefulFit = FALSE)
Generates data according to the model estimated in a ctsemFit object.

Usage
(ctGenerateFromFit(
 fit,
 timestep = "asdata",
 n.subjects = 100,
 timerange = "asdata",
 predictorSubjects = "all",
 ...
)
)

Arguments

- fit: object of class ctsemFit as returned from ctFit.
- timestep: positive numeric value indicating the time interval to use for data generation.
- n.subjects: integer. Number of subjects worth of data to generate.
- timerange: either 'asdata' to calculate range based on data in fit object, or vector of length 2 specifying min and max times for generation.
- predictorSubjects: vector of integers, or string 'all', defining which subjects to sample time dependent and independent predictors from.
- ...: parameters to pass to ctGenerate function, such as wide=FALSE.

Value

- matrix of generated data

Examples

```r
data(AnomAuth)
AnomAuthmodel <- ctModel(LAMBDA = matrix(c(1, 0, 0, 1), nrow = 2, ncol = 2),
  Tpoints = 5, n.latent = 2, n.manifest = 2, MANIFESTVAR=diag(0, 2))
AnomAuthfit <- ctFit(AnomAuth, AnomAuthmodel)

dwide <- ctGenerateFromFit(AnomAuthfit, timestep=1, n.subjects=5, wide=TRUE)
head(dwide)
```
ctIndplot

Description
Convenience function to simply plot individuals trajectories from ctsem wide format data

Usage
ctIndplot(
 datawide,
 n.manifest,
 Tpoints,
 n.subjects = "all",
 colourby = "variable",
 vars = "all",
 opacity = 1,
 varnames = NULL,
 xlab = "Time",
 ylab = "Value",
 type = "b",
 start = 0,
 legend = TRUE,
 legendposition = "topright",
 new = TRUE,
 jittersd = 0.05,
 ...
)

Arguments

- **datawide**: ctsem wide format data
- **n.manifest**: Number of manifest variables in data structure
- **Tpoints**: Number of discrete time points per case in data structure
- **n.subjects**: Number of subjects to randomly select for plotting, or character vector 'all'.
- **colourby**: set plot colours by "subject" or "variable"
- **vars**: either 'all' or a numeric vector specifying which manifest variables to plot.
- **opacity**: Opacity of plot lines
- **varnames**: vector of variable names for legend (defaults to NULL)
- **xlab**: X axis label.
- **ylab**: Y axis label.
- **type**: character specifying plot type, as per usual base R plot commands. Defaults to 'b', both points and lines.
- **start**: Measurement occasion to start plotting from - defaults to T0.
ctModelFromFit

Extract a ctsem model structure with parameter values from a ctsem fit object.

Description

Extract a ctsem model structure with parameter values from a ctsem fit object.

Usage

```r
ctModelFromFit(fit)
```

Arguments

- `fit`
 object output by `ctFit`

Value

object of class 'ctsemInit' (as generated by `ctModel`), which can be used with `ctFit` and functions.

Examples

```r
data(AnomAuth)  
AnomAuthmodel <- ctModel(LAMBDA = matrix(c(1, 0, 0, 1), nrow = 2, ncol = 2),  
Tpoints = 5, n.latent = 2, n.manifest = 2, MANIFESTVAR=diag(0, 2))  
AnomAuthfit <- ctFit(AnomAuth, AnomAuthmodel)  
fitmodel <- ctModelFromFit(AnomAuthfit)
```
ctMultigroupFit

Fits a multiple group continuous time model.

Description

Fits a single continuous time structural equation models to multiple groups (where each group contains 1 or more subjects), by default, all parameters are free across groups. Can also be used to easily estimate separate models for each group.

Usage

ctMultigroupFit(
 dat,
 groupings,
 ctmodelobj,
 dataform = "wide",
 fixedmodel = NA,
 freemodel = NA,
 carefulFit = TRUE,
 omxStartValues = NULL,
 retryattempts = 5,
 showInits = FALSE,
 ...
)

Arguments

dat
 Wide format data, as used in ctFit. See ctLongToWide to easily convert long format data.

groupings
 For wide format: Vector of character labels designating group membership for each row of dat. For long format: Named list of groups, with each list element containing a vector of subject id’s for the group. In both cases, group names will be prefixed on relevant parameter estimates in the summary.

cemodelobj
 Continuous time model to fit, specified via ctModel function.

dataform
 either "wide" or "long" depending on which input format you wish to use for the data. See details of ctFit and or vignette.

fixedmodel
 Modified version of ctmodelobj, wherein any parameters you wish to keep fixed over groups should be given the value 'groupfixed'. If specified, all other parameters will be fixed across groups.

freemodel
 Modified version of ctmodelobj, wherein any parameters you wish to free across groups should be given the label 'groupfree'. If specified, all other parameters will be fixed across groups. If left NULL, the default, all parameters are free across groups.
if TRUE, first fits the specified model with a penalised likelihood function to discourage parameters from boundary conditions, then fits the specified model normally, using these estimates as starting values. Can help / speed optimization, though results in user specified inits being ignored for the final fit.

A named vector containing the raw (potentially log transformed) OpenMx starting values for free parameters, as captured by OpenMx function `omxGetParameters(ctmodelobj$mxobj)`. These values will take precedence over any starting values already specified using ctModel.

Number of fit retries to make.

Displays start values prior to optimization

... additional arguments to pass to `ctFit`.

Additional `ctFit` parameters may be specified as required. Confidence intervals for any matrices and or parameters may be estimated after fitting using `ctCI`.

Returns an OpenMx fit object.

`ctFit` and `ctModel`

#Two group model, all parameters except LAMBDA[3,1] constrained across groups.

```
data(ctExample4)
basemodel<-ctModel(n.latent=1, n.manifest=3, Tpoints=20,
  LAMBDA=matrix(c(1, 'lambda2', 'lambda3'), nrow=3, ncol=1),
  MANIFESTMEANS=matrix(c(0, 'manifestmean2', 'manifestmean3'),
    nrow=3, ncol=1), TRAITVAR = 'auto')
```

```
freemodel<-basemodel
freemodel$LAMBDA[3,1]<-’groupfree’
groups<-paste0(’g’,rep(1:2, each=10),’_’)
multif<-ctMultigroupFit(dat=ctExample4, groupings=groups,
  ctmodelobj=basemodel, freemodel=freemodel)
summary(multif,group=1)
```

#fixed model approach

```
fixedmodel<-basemodel
fixedmodel$LAMBDA[2,1]<-’groupfixed’
groups<-paste0(’g’,rep(1:2, each=10),’_’)
```
multif<-ctMultigroupFit(dat=ctExample4, groupings=groups, ctmodelobj=basemodel, fixedmodel=fixedmodel)
summary(multif,group=2)

ctPlot

description

Plots mean trajectories, autoregression, and crossregression plots, for ctsemFit objects. More customizeable than basic plot.ctsemFit function.

Usage

crPlot(
 x,
 plotType,
 xlim,
 resolution = 50,
 impulseIndex = NULL,
 subject = 1,
 typeVector = "auto",
 colVector = "auto",
 ltyVector = "auto",
 ...
)

Arguments

x ctsemFit object as generated by ctFit.
plotType string. "mean" for expectation independent of any data, "AR" for autoregressions, "CR" for cross regressions, "standardiseCR" for standardised cross regressions (standardised based on estimated within subject variance), "withinVar" for within variance and covariance, "randomImpulse" for expected change in processes given a random fluctuation of +1 for each process (so a mixture of DIFFUSION and DRIFT characteristics), "experimentalImpulse" for expected change in processes given an exogenous input of +1 for each process, provides alternate characterisation of autoregressive and cross regressive plots.
xlim vector. As per usual for plot(), but xlim may not be negative.
resolution Numeric. Plot points between each unit of time. Default of 'auto' adapts to xlim and results in 500 points in total.
impulseIndex Numeric. Only required for impulse plot types, specifies which column of the DRIFT matrix the impulse relates to.

subject numeric. Specifies the subject (row of data from the mxobj) to plot for factorScores type plot.
typeVector Vector of plot types to use for plotting.
colVector vector of colours to use for plotting.
lytVector Vector of line types to use for plotting.
... Other options passed to plot(). ylim is required.

Value

Character vector of labels from the DRIFT matrix in order plotted - useful for legends. Side-effect: plots graphs.

Examples

Examples set to 'donttest' because they take longer than 5s.

example from Driver, Oud, Voelkle (2016),
simulated happiness and leisure time with unobserved heterogeneity.
data(ctExample1)
traitmodel <- ctModel(n.manifest=2, n.latent=2, Tpoints=6, LAMBDA=diag(2),
manifestNames=c('LeisureTime', 'Happiness'),
latentNames=c('LeisureTime', 'Happiness'), TRAITVAR="auto")
traitfit <- ctFit(dat=ctExample1, ctmodelobj=traitmodel)
ctPlot(traitfit, plotType='CR', xlim=c(0,5), ylim=c(-1,1))

cPostPredict

Posterior predictive type check for ctsemFit.

Description

Samples data according to the ctsemFit object, computes quantiles over time based on model fit, plots these against original data.

Usage

cPostPredict(
 fit,
 timestep = 0.1,
 n.subjects = 100,
 probs = c(0.025, 0.5, 0.975),
 plot = TRUE,
 ctPlotArrayArgs = list(grid = FALSE, legend = FALSE),
 indPlotArgs = list(colourby = "subject", lwd = 2, new = FALSE, type = "p", opacity = 0.3),
 mfrow = "auto"
)
ctRefineTo

Arguments

fit object of class ctsemFit as returned from ctFit
timestep positive value denoting the time interval to use for sampling.
n.subjects Number of subjects worth of data to sample.
probs Vector of values between 0 and 1 denoting quantiles to generate. For plotting, vector should be of length 3 and values should be rising.
plot Whether to plot or return the generated data.
ctPlotArrayArgs additional arguments to pass to ctPlotArray function, for plotting generated distributions.
indPlotArgs list of parameters to pass to ctIndplot, for plotting original data. Only used if plot=TRUE.
mfrow 2 dimensional integer vector defining number of rows and columns of plots, as per the mfrow argument to par. 'auto' determines automatically, to a maximum of 4 by 4, while NULL uses the current system setting.

Value

Either nothing (if plot=TRUE) or an array containing generated data over quantiles.

Examples

data("AnomAuth")
AnomAuthmodel <- ctModel(LAMBDA = matrix(c(1, 0, 0, 1), nrow = 2, ncol = 2),
 Tpoints = 5, n.latent = 2, n.manifest = 2, MANIFESTVAR=diag(0, 2), TRAITVAR = 'auto')
AnomAuthFit <- ctFit(AnomAuth, AnomAuthmodel)
ctPostPredict(AnomAuthFit,timestep=.5,n.subjects=100)

data("AnomAuth")
AnomAuthmodel <- ctModel(LAMBDA = matrix(c(1, 0, 0, 1), nrow = 2, ncol = 2),
 Tpoints = 5, n.latent = 2, n.manifest = 2, MANIFESTVAR=diag(0, 2), TRAITVAR = 'auto')
AnomAuthFit <- ctFit(AnomAuth, AnomAuthmodel)
ctPostPredict(AnomAuthFit,timestep=.5,n.subjects=100)

ctRefineTo

Description

Fits a ctsem m in a stepwise fashion to help with difficult optimization.

Usage

crRefineTo(datawide, ctmodelobj, modfunc = NULL, ...)

Arguments

- **datawide**: Data in ctsem wide format
- **ctmodelobj**: A continuous time model specified via the `ctModel` function.
- **modfunc**: function to run prior to each optimization step, that takes ctsem fit object, modifies it as desired, and returns the fit object.
- **...**: additional parameters to pass to `ctFit`.

Details

This function fits a sequence of ctsem models increasing in complexity, starting with a model involving fixed and relatively strong auto effects, no cross effects, no predictors, and no off-diagonal covariances. For many models this can improve the speed and robustness of fitting.

Value

Returns a fitted ctsem object in the same manner as `ctFit`.

Description

cتسم is an R package for continuous time structural equation modelling of panel (N > 1) and time series (N = 1) data, using either a frequentist or Bayesian approach, or middle ground forms like maximum a posteriori. This ctsemOMX addition includes the original OpenMx based functions which have been split off from the main package.

Details

The general workflow begins by specifying a model using the `ctModel` function, in which the type of model is also specified. Then the model is fit to data using either `ctFit` if the original `omx` (OpenMx, SEM, max likelihood) model is specified. The omx forms are no longer in development and for most purposes, the newer stan based forms (contained in the base ctsem package) are more robust and flexible. For citation info, please run `citation('ctsem')`.

References

https://www.jstatsoft.org/article/view/v077i05

Oscillating

Description
Simulated example dataset for the ctsem package

Format
2 by 15 matrix containing ctsem wide format data. 3 measurement occasions of manifest variables Y1 and Y2, 2 measurement occasions of time dependent predictor TD1, 2 measurement intervals dTx, and 2 time independent predictors TI1 and TI2, for 2 individuals.

Source
Description

Ouputs mean trajectories, autoregression, and crossregression plots. For more customization possibilities, see `ctPlot`.

Usage

```r
## S3 method for class 'ctsemFit'
plot(
x, 
resolution = 50, 
wait = TRUE, 
max.time = "auto", 
mean = TRUE, 
withinVariance = TRUE, 
AR = TRUE, 
CR = TRUE, 
standardiseCR = FALSE, 
randomImpulse = FALSE, 
experimentalImpulse = FALSE, 
xlab = "Time", 
meansylim = "auto", 
ARylim = "auto", 
CRylim = "auto", 
ylab = "Value", 
...
)
```

Arguments

- **x** `ctsemFit` object as generated by `ctFit`.
- **resolution** Numeric. Plot points between each unit of time. Default of ‘auto’ adapts to `max.time` and results in 500 in total.
- **wait** If true, user is prompted to continue before plotting next graph. If false, graphs are plotted one after another without waiting.
- **max.time** Time scale on which to plot parameters. If auto, parameters are plotted for full range of observed variables.
- **mean** If TRUE, plot of means from 0 to `max.time` included in output.
- **withinVariance** If TRUE, plot within subject variance / covariance.
- **AR** If TRUE, plot of autoregressive values from 0 to `max.time` included in output.
- **CR** If TRUE, plot of cross regressive values from 0 to `max.time` included in output.
standardiseCR if TRUE, cross regression values are standardised based on estimated within subject variance.

randomImpulse if TRUE (default), plots expected change in processes given a random fluctuation of +1 for each process – plot is then a mixture of DIFFUSION and DRIFT characteristics.

experimentalImpulse if TRUE (default), plots expected change in processes given an exogenous input of +1 for each process – alternate characterisation of autoregressive and cross regressive plots.

xlab X axis label.

meansylim Vector of min and max limits for mean trajectory plot. 'auto' calculates automatically.

ARylim Vector of min and max limits for autoregression plot. 'auto' is c(0,1), and expands if necessary.

CRylim Vector of min and max limits for cross regression plot. 'auto' is c(-1,1), and expands if necessary.

ylab Y axis label.

... Other options passed to plot().

Value

Examples

Examples set to 'donttest' because they take longer than 5s.

example from Driver, Oud, Voelkle (2015),
simulated happiness and leisure time with unobserved heterogeneity.

data(ctExample1)
traitmodel <- ctModel(n.manifest=2, n.latent=2, Tpoints=6, LAMBDA=diag(2),
 manifestNames=c('LeisureTime', 'Happiness'),
 latentNames=c('LeisureTime', 'Happiness'), TRAITVAR="auto")
traitfit <- ctFit(dat=ctExample1, ctmodelobj=traitmodel)
plot(traitfit, wait=FALSE)
summary.ctsemFit

Usage

S3 method for class 'ctsemMultigroupFit'
plot(x, group = "show chooser", ...)

Arguments

x ctsemMultigroupFit object as generated by ctMultigroupFit
group character string of subgroup to plot. Default of 'show chooser' displays list and lets you select.
...
additional parameters to pass to plot.ctsemFit function.

Value

summary.ctsemFit Summary function for ctsemFit object

Description

Provides summary details for ctsemFit objects.

Usage

S3 method for class 'ctsemFit'
summary(object, ridging = FALSE, timeInterval = 1, verbose = FALSE, ...)

Arguments

object ctsemFit object as generated by ctFit.
ridging if TRUE, adds a small amount of variance to diagonals when calculating standardised (correlation) matrices, should only be used if standardised matrices return NaN.
timeInterval positive numeric value specifying time interval to use for discrete parameter matrices, defaults to 1.
verbose Logical. If TRUE, displays the raw, internally transformed (when fitting with default arguments) OpenMx parameters and corresponding standard errors, as well as additional summary matrices. Parameter transforms are described in the vignette, vignette(`ctsem`). Additional summary matrices include: 'discrete' matrices – matrices representing the effect for the given time interval (default of 1); 'asymptotic' matrices – represents the effect as time interval approaches infinity (therefore asymCINT describes mean level of processes at the asymptote, asymDIFFUSION describes total within-subject variance at the asymptote, etc); 'standardised' matrices – transforms covariance matrices to correlation matrices, and transforms discreteDRIFT based on DIFFUSION, to give effect sizes.
...
additional parameters to pass.
Details

Important: Although `ctModel` takes cholesky decomposed variance-covariance matrices as input, the summary function displays the full variance-covariance matrices. These can be cholesky decomposed for comparison purposes using `t(chol(summary(ctfitobject)$covariancematrix))`. Standard errors are displayed in the $ctparameters section, however if `ctFit` was used with transformed-Params=TRUE (the default, and recommended) covariance matrix standard errors will have been approximated using the delta method. For inferential purposes, maximum likelihood confidence intervals may be estimated using the `ctCI` function.

Value

Summary of `ctsemFit` object

Examples

```r
### Examples set to 'donttest' because they take longer than 5s.

### example from Driver, Oud, Voelkle (2015),
### simulated happiness and leisure time with unobserved heterogeneity.
data(ctExample1)
traitmodel <- ctModel(n.manifest=2, n.latent=2, Tpoints=6, LAMBDA=diag(2),
  manifestNames=c("LeisureTime", "Happiness"),
  latentNames=c("LeisureTime", "Happiness"), TRAITVAR="auto")
traitfit <- ctFit(dat=ctExample1, ctmodelobj=traitmodel)
summary(traitfit, timeInterval=1)
```

summary.ctsemMultigroupFit

Summary function for ctsemMultigroupFit object

Description

Provides summary details for objects fitted with `ctMultigroupFit`.

Usage

```r
## S3 method for class 'ctsemMultigroupFit'
summary(object, group = "show chooser", ...)
```

Arguments

- **object**: `ctsemMultigroupFit` object as generated by `ctMultigroupFit`
- **group**: character string of subgroup to display summary parameters for. Default of 'show chooser' displays list and lets you select.
- **...**: additional parameters to pass to `summary.ctsemFit`.
Value

Summary of ctsemMultigroupFit object
Index

AnomAuth, 2

cpCl, 3, 9, 15, 24
cpCompareExpected, 4
cpExample1, 5
cpExample1TIpred, 5
cpExample2, 5
cpExample2level, 6
cpExample3, 6
cpExample4, 6
cpFit, 7, 9, 13–16, 18, 19, 21, 24
cpGenerateFromFit, 11
cpIndplot, 12
cpLongToWide, 14
cpModel, 7, 9, 13–15, 19, 24
cpModelFromFit, 13
cpMultigroupFit, 8, 9, 14, 22–24
cpPlot, 16, 21
cpPlotArray, 18
cpPostPredict, 17
cpRefineTo, 9, 18
cpsemOMX, 19
datastructure, 20

cpLongexample, 20

Oscillating, 20

par, 18
plot.ctsemFit, 9, 21, 23
plot.ctsemMultigroupFit, 22

summary.ctsemFit, 9, 23, 24
summary.ctsemMultigroupFit, 24