Package ‘cvGEE’

July 23, 2019

Title Cross-Validated Predictions from GEE
Version 0.3-0
Date 2019-07-20
Maintainer Dimitris Rizopoulos <d.rizopoulos@erasmusmc.nl>
BugReports https://github.com/drizopoulos/cvGEE/issues
Suggests geepack, lattice, knitr, rmarkdown, pkgdown
Encoding UTF-8
LazyLoad yes
LazyData yes
License GPL (>= 3)
VignetteBuilder knitr
RoxygenNote 6.1.1
NeedsCompilation no
Author Dimitris Rizopoulos [aut, cre]
 (<https://orcid.org/0000-0001-9397-0900>)
Repository CRAN
Date/Publication 2019-07-23 14:52:05 UTC

R topics documented:

 aids ... 2
cvGEE ... 3
cv_gee ... 3
pbc2 ... 5
Didanosine versus Zalcitabine in HIV Patients

Description

A randomized clinical trial in which both longitudinal and survival data were collected to compare the efficacy and safety of two antiretroviral drugs in treating patients who had failed or were intolerant of zidovudine (AZT) therapy.

Format

A data frame with 1408 observations on the following 9 variables.

- **patient**: patients identifier; in total there are 467 patients.
- **Time**: the time to death or censoring.
- **death**: a numeric vector with 0 denoting censoring and 1 death.
- **CD4**: the CD4 cells count.
- **obstime**: the time points at which the CD4 cells count was recorded.
- **drug**: a factor with levels `ddC` denoting zalcitabine and `ddI` denoting didanosine.
- **gender**: a factor with levels `female` and `male`.
- **prevOI**: a factor with levels `AIDS` denoting previous opportunistic infection (AIDS diagnosis) at study entry, and `noAIDS` denoting no previous infection.
- **AZT**: a factor with levels `intolerance` and `failure` denoting AZT intolerance and AZT failure, respectively.

Note

The data frame `aids.id` contains the first CD4 cell count measurement for each patient. This data frame is used to fit the survival model.

References

Description

Calculates the logarithmic, quadratic/Brier and spherical scoring rules based on generalized estimation equations.

Details

Package: cvGEE
Type: Package
Version: 0.3-0
Date: 2019-07-20
License: GPL (>=3)

The package provides the estimated values of the scoring rules for each observation of the original dataset. These values can be summarized/averaged or used in figures to evaluate how the GEE performs in different ranges of the data.

Author(s)

Dimitris Rizopoulos
Maintainer: Dimitris Rizopoulos <d.rizopoulos@erasmusmc.nl>

References

Usage

cv_gee(object, rule = c("all", "quadratic", "logarithmic", "spherical"), max_count = 500, K = 5L, M = 10L, seed = 1L, return_data = FALSE)
Arguments

- **object**
 - an object inheriting from class "geeglm" of the **geepack**.

- **rule**
 - character string indicating the type of scoring rule to be used.

- **max_count**
 - numeric scalar or vector denoting the maximum count up to which to calculate probabilities; this is relevant for count response data.

- **K**
 - numeric scalar indicating the number of folds used in the cross-validation procedure.

- **M**
 - numeric scalar denoting how many times the split of the data in K folds will be performed. The reported scoring rules values are the average over the M replicates.

- **seed**
 - numeric scalar providing the seed used in the procedure.

- **return_data**
 - logical; if TRUE the values of the scoring rules are returned as extra columns of the data behind object.

Value

A list or a data.frame with elements or (extra) columns the values of the logarithmic, quadratic and spherical scoring rules calculated based on the GEE object.

Author(s)

Dimitris Rizopoulos <d.rizopoulos@erasmusmc.nl>

References

Examples

```r
library("geepack")
library("lattice")

pbc2$serBilirD <- as.numeric(pbc2$serBilir > 1.2)

fm1 <- geeglm(serBilirD ~ year, family = binomial(), data = pbc2,
              id = id, corstr = "exchangeable")

fm2 <- geeglm(serBilirD ~ year * drug, family = binomial(), data = pbc2,
              id = id, corstr = "exchangeable")

plot_data <- cv_gee(fm1, return_data = TRUE, M = 5)
plot_data$model_year <- plot_data$.score
plot_data$model_year_drug <- unlist(cv_gee(fm2, M = 5))

xyplot(model_year + model_year_drug ~ year | .rule, data = plot_data,
```
Mayo Clinic Primary Biliary Cirrhosis Data

Description

Followup of 312 randomised patients with primary biliary cirrhosis, a rare autoimmune liver disease, at Mayo Clinic.

Format

A data frame with 1945 observations on the following 20 variables.

- **id**: patients identifier; in total there are 312 patients.
- **years**: number of years between registration and the earlier of death, transplantation, or study analysis time.
- **status**: a factor with levels alive, transplanted and dead.
- **drug**: a factor with levels placebo and D-penicil.
- **age**: at registration in years.
- **sex**: a factor with levels male and female.
- **year**: number of years between enrollment and this visit date, remaining values on the line of data refer to this visit.
- **ascites**: a factor with levels No and Yes.
- **hepatomegaly**: a factor with levels No and Yes.
- **spiders**: a factor with levels No and Yes.
- **edema**: a factor with levels No edema (i.e., no edema and no diuretic therapy for edema), edema no diuretics (i.e., edema present without diuretics, or edema resolved by diuretics), and edema despite diuretics (i.e., edema despite diuretic therapy).
- **serBilir**: serum bilirubin in mg/dl.
- **serChol**: serum cholesterol in mg/dl.
- **albumin**: albumin in gm/dl.
- **alkaline**: alkaline phosphatase in U/liter.
- **SGOT**: SGOT in U/ml.
- **platelets**: platelets per cubic ml / 1000.
- **prothrombin**: prothrombin time in seconds.
- **histologic**: histologic stage of disease.
- **status2**: a numeric vector with the value 1 denoting if the patient was dead, and 0 if the patient was alive or transplanted.
Note

The data frame \texttt{pbc2.id} contains the first measurement for each patient. This data frame is used to fit the survival model.

References
