Package ‘dataMaid’

October 8, 2021

Type Package

Title A Suite of Checks for Identification of Potential Errors in a Data Frame as Part of the Data Screening Process

Version 1.4.1

Date 2021-10-07

Description Data screening is an important first step of any statistical analysis. dataMaid auto generates a customizable data report with a thorough summary of the checks and the results that a human can use to identify possible errors. It provides an extendable suite of test for common potential errors in a dataset.

BugReports https://github.com/ekstroem/dataMaid/issues

Imports ggplot2, gridExtra, haven, htmltools, magrittr, methods, pander, rmarkdown (>= 1.10), robustbase (>= 0.93-2), stringi, whoami

Suggests knitr, testthat

VignetteBuilder knitr

SystemRequirements pandoc (>= 2.0; https://pandoc.org), git, whoami

Encoding UTF-8

LazyData true

ByteCompile true

License GPL-2

RoxygenNote 7.1.1

R topics documented:

'countMissing.R' 'dataMaid-package.R' 'dataMaid_as_factor.R'
'description.R' 'identifyCaseIssues.R' 'identifyLoners.R'
'identifyNums.R' 'identifyOutliers.R'
'identifyOutliersTBStyle.R' 'identifyWhitespace.R' 'isCPR.R'
'isSingular.R' 'isEmpty.R' 'isKey.R' 'isSupported.R'
'makeCodebook.R' 'makeDataReport.R' 'misc.R' 'quartiles.R'
'refCat.R' 'render.R' 'setChecks.R' 'setSummaries.R'
'setVisuals.R' 'smartNum.R' 'standardVisual.R' 'summarize.R'
'summaryResult.R' 'tableVisual.R' 'uniqueValues.R'
'unpackLabelled.R' 'utility.R' 'variableType.R' 'visualize.R'

NeedsCompilation no

Author Anne Helby Petersen [aut],
Claus Thorn Ekstrøm [aut, cre]

Maintainer Claus Thorn Ekstrøm <ekstrom@sund.ku.dk>

Depends R (>= 3.5.0)

Repository CRAN

Date/Publication 2021-10-08 04:10:02 UTC
allCheckFunctions Overview of all available checkFunctions

Description

Produce an overview of all functions of class checkFunction available in the workspace or imported from packages. This overview includes the descriptions and a list of what classes the functions are each intended to be called on.

Usage

allCheckFunctions()

Value

An object of class functionSummary. This object has entries $name (the function names), $description (the function descriptions, as obtained from their description attributes) and $classes (the classes each function is intended to be called on, as obtained from their classes attributes).

See Also

checkFunction allVisualFunctions allSummaryFunctions

Examples

allCheckFunctions()

allClasses Vector of all variable classes in dataMaid

Description

Returns the names of the eight data classes for which dataMaid is implemented, namely "character", "Date", "factor", "integer", "labelled", "haven_labelled", "logical" and "numeric".

Usage

allClasses()

Examples

allClasses()
allSummaryFunctions

Overview of all available summaryFunctions

Description

Produce an overview of all functions of class summaryFunction available in the workspace or imported from packages. This overview includes the descriptions and a list of what classes the functions are each intended to be called on.

Usage

allSummaryFunctions()

Value

An object of class functionSummary. This object has entries $name (the function names), $description (the function descriptions, as obtained from their description attributes) and $classes (the classes each function is intended to be called on, as obtained from their classes attributes).

See Also

summaryFunction allVisualFunctions allCheckFunctions

Examples

allSummaryFunctions()

allVisualFunctions

Overview of all available visualFunctions

Description

Produce an overview of all functions of class visualFunction available in the workspace or imported from packages. This overview includes the descriptions and a list of what classes the functions are each intended to be called on.

Usage

allVisualFunctions()

Value

An object of class functionSummary. This object has entries $name (the function names), $description (the function descriptions, as obtained from their description attributes) and $classes (the classes each function is intended to be called on, as obtained from their classes attributes).
See Also

visualFunction allCheckFunctions allSummaryFunctions

Examples

allVisualFunctions()

| artData | Semi-artificial data about masterpieces of art |

Description

A dataset with information about 200 painting and their painters. Each observation in the dataset corresponds to a painting. A single artificial variable, namely an artist ID variable, has been included. Otherwise the information should be truthful.

Usage

artData

Format

A data frame with 200 rows and 11 variables.

- **ArtistID** A unique ID used for cataloging the artists (fictional).
- **ArtistName** The name of the artist.
- **NoOfMiddlenames** The number of middlenames the artist has.
- **Title** The title of the painting.
- **Year** The approximate year in which the painting was made.
- **Location** The current location of the painting.
- **Continent** The continent of the current location of the painting.
- **Width** The width of the painting, in centimeters.
- **Height** The height of the painting, in centimeters.
- **Media** The media/materials of the painting.
- **Movement** The artistic movement(s) the painting belongs to.

Source

Semi-artificial dataset constructed based on the Master Works of Art dataset available from Data Explorer.

Examples

data(artData)
Produce distribution plots in the base R (graphics) style using \texttt{plot} and \texttt{barplot}

Description

Plot the distribution of a variable, depending on its data class, using the base R plotting functions. Note that \texttt{basicVisual} is a \texttt{visualFunction}, compatible with the \texttt{visualize} and \texttt{makeDataReport} functions.

Usage

\texttt{basicVisual(v, vnam, doEval = TRUE)}

Arguments

- \texttt{v}
The variable (vector) to be plotted.
- \texttt{vnam}
The name of the variable which will appear as the title of the plot.
- \texttt{doEval}
If TRUE, the plot itself is returned. Otherwise, the function returns a character string containing standalone R code for producing the plot.

Details

For character, factor, logical and (haven_)labelled variables, a barplot is produced. For numeric, integer or Date variables, \texttt{basicVisual} produces a histogram instead. Note that for integer and numeric variables, all non-finite (i.e. NA, NaN, Inf) values are removed prior to plotting. For character, factor, (haven_)labelled and logical variables, only NA values are removed.

See Also

\texttt{visualize, standardVisual}

Examples

```r
## Not run:
#Save a variable
myVar <- c(1:10)
#Plot a variable
basicVisual(myVar, "MyVar")

#Produce code for plotting a variable
basicVisual(myVar, "MyVar", doEval = FALSE)

## End(Not run)
```
Description

importFrom stats na.omit

Usage

basicVisualCFLB(v, vnam, doEval = TRUE)

Arguments

v
The variable (vector) to be plotted.
vnam
The name of the variable which will appear as the title of the plot.
doEval
If TRUE, the plot itself is returned. Otherwise, the function returns a character string containing standalone R code for producing the plot.

bigPresidentData
Semi-artificial data about the US presidents (extended version)

Description

A dataset with information about the first 45 US presidents as well as a 46th person, who is not a US president, and a duplicate of one of the 45 actual presidents. The dataset was constructed to show the capabilities of dataMaid and therefore, it has been constructed to include errors and miscodings. Each observation in the dataset corresponds to a person. The dataset uses the non-standard class Name which is simply an attribute that has been added to two variables in order to show how dataMaid handles non-supported classes. Note that the dataset is an extended and more error-filled version of the dataset presidentData which is also included in the package.

Usage

bigPresidentData

Format

A data frame with 47 rows and 15 variables.

lastName A Name type variable containing the last name of the president.

firstName A Name type variable containing the first name of the president.

orderOfPresidency A factor variable indicating the order of the presidents (with George Washington as number 1 and Donald Trump as number 45).

birthday A Date variable with the birthday of the president.
dateOfDeath A Date variable with the date of the president’s death.

stateOfBirth A character variable with the state in which the president was born.

party A character variable with the party to which the president was associated.

dependencyBeginDate A Date variable with the date of inauguration of the president.

dependencyEndDate A Date variable with the date at which the presidency ends.

assassinationAttempt A numeric variable indicating whether there was an assassination attempt (1) or not (0) on the president.

sex A factor variable with the sex of the president.

ethnicity A factor variable with the ethnicity of the president.

dependencyYears A numeric variable with the duration of the presidency, in years.

ageAtInauguration A character variable with the age at inauguration.

favoriteNumber A complex type variable with a fictional favorite number for each president.

Source

Artificial dataset constructed based on the US president dataset available from Data Explorer.

References

Examples

data(bigPresidentData)

centralValue summaryFunction for central values

description

A summaryFunction, intended to be called from summarize, which returns the central value of a variable. For numeric and integer variables, this is the median. For character, factor, (have_)labelled, Date and logical variables, the central value is the mode (i.e. the value that occurs the largest number of times).

Usage

centralValue(v, ...)

Arguments

v A variable (vector).

... Extra arguments to be passed to class-specific functions. These include maxDecimals (default is 2) which controls the rounding of integer and numeric values.

Details

Note that NA, NaN and Inf values are ignored for numeric and integer variables, while only NA values are ignored for factor, character, Date and (haven_)labelled variables. No values are ignored for logical variables.

Value

An object of class summaryResult with the following entries: $feature (the mode/median), $result (the central value of v) and $value (identical to $result).

If the mode is returned and it is not uniquely determined, the first value qualifying as a mode is returned, when the variable is sorted according to sort.

See Also

summaryFunction, summarize, summaryResult, allSummaryFunctions

Examples

#central value of an integer variable:
centralValue(c(rep(1, 25), rep(2, 10), rep(3, 20)))

#central value of a character variable:
centralValue(as.character(c(rep(1, 20), rep(2, 10), rep(3, 20))))

check Perform checks of potential errors in variable/dataset

Description

Run a set of validation checks to check a variable vector or a full dataset for potential errors. Which checks are performed depends on the class of the variable and on user inputs.

Usage

check(v, nMax = 10, checks = setChecks(), ...)
Arguments

- **v**: the vector or the dataset (data.frame) to be checked.
- **nMax**: If a check is supposed to identify problematic values, this argument controls if all of these should be pasted onto the outputted message, or if only the first \(n_{\text{Max}} \) should be included. If set to \(\text{Inf} \), all problematic values are printed.
- **checks**: A list of checks to use on each supported variable type. We recommend using `setChecks` for creating this list and refer to the documentation of this function for more details.
- **...**: Other arguments that are passed on to the checking functions. These includes general parameters controlling how the check results are formatted (e.g. `maxDecimals`, which controls the number of decimals printed for numerical, problematic values).

Details

It should be noted that the default options for each variable type are returned by calling e.g. `defaultCharacterChecks()`, `defaultFactorChecks()`, `defaultNumericChecks()`, etc. A complete overview of all default options can be obtained by calling `setChecks()`. Moreover, all available `checkFunction`s (including both locally defined functions and functions imported from `dataMaid` or other packages) can be viewed by calling `allCheckFunctions()`.

Value

- If `v` is a variable, a list of objects of class `checkResult`, which each summarizes the result of a `checkFunction` call performed on `v`. See `checkResult` for more details. If `V` is a `data.frame`, a list of lists of the form above is returned instead with one entry for each variable in `v`.

References

See Also

`setChecks`, `allCheckFunctions`, `checkResult`, `checkFunction`, `defaultCharacterChecks`, `defaultFactorChecks`, `defaultLabelledChecks`, `defaultHavenlabelledChecks`, `defaultNumericChecks`, `defaultIntegerChecks`, `defaultLogicalChecks`, `defaultDateChecks`

Examples

```r
x <- 1:5
cHECK(x)

#Annoyingly coded missing as 99
y <- c(rnorm(100), rep(99, 10))
cHECK(y)
```
#Check y for outliers and print 4 decimals for problematic variables
check(y, checks = setChecks(numeric = "identifyOutliers"), maxDecimals = 4)

#Change what checks are performed on a variable, now only identifyMissing is called
for numeric variables
check(y, checks = setChecks(numeric = "identifyMissing"))

#Check a full data.frame at once
data(cars)
check(cars)

#Check a full data.frame at once, while changing the standard settings for
#several data classes at once. Here, we omit the check of miscoded missing values for factors
#and we only do this check for numeric variables:
check(cars, checks = setChecks(factor = defaultFactorChecks(remove = "identifyMissing"),
 numeric = "identifyMissing"))

checkFunction

Create an object of class checkFunction

Description

Convert a function, f, into an S3 checkFunction object. This adds f to the overview list returned by an `allCheckFunctions()` call.

Usage

`checkFunction(f, description = NULL, classes = NULL)`

Arguments

- **f**: A function. See details and examples below for the exact requirements of this function.
- **description**: A character string describing the check performed by f. If NULL (the default), the name of f will be used instead.
- **classes**: The classes for which f is intended to be called. If NULL (the default), one of two things happens. If f is not a S3 generic function, the classes attribute of f will be an empty character string. If f is a S3 generic function, an automatic look-up for methods will be conducted, and the classes attribute will then be filled out automatically. Note that the function `allClasses` (listing all classes used in dataMaid) might be useful.

Details

`checkFunction` represents the functions used in `check` and `makeDataReport` for performing error checks and quality control on variables in dataset.
An example of defining a new checkFunction is given below. Note that the minimal requirements for such a function (in order for it to be compatible with check() and makeDataReport()) is the following input/output-structure: It must input at least two arguments, namely \(v \) (a vector variable) and \(\ldots \). Additional implemented arguments from check() and makeDataReport() include \(nMax \) and \(\text{maxDecimals} \), see e.g. the pre-defined checkFunction \text{identifyMissing} for more details about how these arguments should be used. The output must be a list with at least the two entries \$\text{problem} \) (a logical indicating whether a problem was found) and \$\text{message} \) (a character string message describing the problem). However, if the result of a checkFunction is furthermore appended with a \$\text{problemValues} \) entry (including the values from the variable that caused the problem, if relevant) and converted to a \text{checkResult} object, a print() method also becomes available for consistent formatting of checkFunction results.

Note that all available checkFunctions are listed by the call \text{allCheckFunctions()} \) and we recommend looking into these function, if more knowledge about checkFunctions is required.

Value

A function of class checkFunction which has two attributes, namely \text{classes} and \text{description}.

See Also

\text{allCheckFunctions}, \text{check}, \text{makeDataReport}, \text{messageGenerator}, \text{checkResult}

Examples

```r
# Define a minimal requirement checkFunction that can be called # from check() and makeDataReport(). This function checks whether all # values in a variable are of equal length and that this # length is then also larger than 10:
isID <- function(v, nMax = NULL, ...) {
  out <- list(problem = FALSE, message = "")
  if (class(v) %in% c("character", "factor", "labelled", "haven_labelled", "numeric", "integer")) {
    v <- as.character(v)
    lengths <- nchar(v)
    if (all(lengths > 10) & length(unique(lengths)) == 1) {
      out$problem <- TRUE
      out$message <- "Warning: This variable seems to contain ID codes!"
    }
  }
  out
}
# Convert it into a checkFunction
isID <- checkFunction(isID, description = "Identify ID variables (long, equal length values)",
  classes = allClasses())
# Call isID
isID(c("12345678901", "23456789012", "34567890123", "45678901234"))
# isID now appears in a allCheckFunctions() call:
allCheckFunctions()
```
Define a new checkFunction using messageGenerator() for generating the message and checkResult() for getting a printing method for its output. This function identifies values in a variable that include a colon, surrounded by alphanumeric characters. If at least one such value is found, the variable is flagged as having a problem:

```r
identifyColons <- function(v, nMax = Inf, ...) {
  v <- unique(na.omit(v))
  problemMessage <- "Note: The following values include colons:"
  problem <- FALSE
  problemValues <- NULL
  problemValues <- v[sapply(gregexpr("[:xdigit:\[\[\[:xdigit:\]\[\:xdigit:\]\]\]\]\]:\[\[:xdigit:\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\]\}\nif (length(problemValues) > 0) {
    problem <- TRUE
  }
  problemStatus <- list(problem = problem,
                         problemValues = problemValues)
  outMessage <- messageGenerator(problemStatus, problemMessage, nMax)
  checkResult(list(problem = problem,
                   message = outMessage,
                   problemValues = problemValues))
}
```

Make it a checkFunction:
```
identifyColons <- checkFunction(identifyColons,
                                description = "Identify non-suffixed nor -prefixed colons",
                                classes = c("character", "factor", "labelled", "haven_labelled"))
```

Call it:
```
identifyColons(1:100)
identifyColons(c("a:b", 1:10, ":b", "a:b:c:d"))
```

IdentifyColons now appears in a allCheckFunctions() call:
```
allCheckFunctions()
```

Define a checkFunction that looks for negative values in numeric or integer variables:
```
identifyNeg <- function(v, nMax = Inf, maxDecimals = 2, ...) {
  problem <- FALSE
  problemMessage <- "Note: The following negative values were found:"
  negOcc <- unique(v[v < 0])
  if (length(negOcc > 0)) {
    problemValues <- negOcc
    printProblemValues <- round(negOcc, maxDecimals)
    problem <- TRUE
  }
  outMessage <- messageGenerator(list(problem = problem,
                                    problemValues = printProblemValues),
                                 problemMessage, nMax)
  checkResult(list(problem = problem,
                   message = outMessage,
                   problemValues = printProblemValues))
}
```
checkResult

```r
message = outMessage,
problemValues = problemValues)
```

#Make it a checkFunction
identifyNeg <- checkFunction(identifyNeg, "Identify negative values",
 classes = c("integer", "numeric"))

#Call it:
identifyNeg(c(0:100))
identifyNeg(c(-20.1232323:20), nMax = 3, maxDecimals = 4)

#identifyNeg now appears in an allCheckFunctions() call:
allCheckFunctions()

checkResult

Create object of class checkResult

Description

Convert a list resulting from the checks performed in a `checkFunction` into a `checkResult` object, thereby supplying it with a `print()` method.

Usage

`checkResult(ls)`

Arguments

- **ls**: A list with entries `$problem` (logical indicating whether a problem was found), `$message` (a character string containing a message describing the problem) and `$problemValues` (the values in the checked variables that were marked as problematic). Note that `$message` and `$problemValues` can be left empty (i.e. "" and NULL, respectively), if they are not relevant.

Value

A S3 object of class `checkResult`, identical to the inputted list, `ls`, except for its class attribute.

See Also

`checkFunction`
classes Extract the contents of the attribute classes

Description

If the object, x, is itself of class checkFunction, summaryFunction or visualFunction, the contents of x’s attribute classes is returned. Otherwise, NULL is returned.

Usage

classes(x)

classes(x) <- value

Arguments

x The object for which the classes attribute should be extracted.
value New value

Value

The classes for which x is intended to be called, given as a vector of characters.

Examples

#Extract the classes of the checkFunction identifyMissing
classes(identifyMissing)

#Extract the classes of the summaryFunction minMax
classes(minMax)

#Extract the classes of the visualFunction basicVisual
classes(basicVisual)

countMissing Summary function for missing values

Description

A summaryFunction, intended to be called from summarize (and makeDataReport), which counts the number of missing (NA) values in a variable.

Usage

countMissing(v, ...)

defaultCharacterChecks

Arguments

v A variable (vector).
... Not in use.

Value

A summaryResult object with the following entries: $feature ("No. missing obs."), $result (the number and percentage missing observations) and $value (the number of missing observations).

See Also

summarize, allSummaryFunctions, summaryFunction, summaryResult

Examples

countMissing(c(1:100, rep(NA, 10)))

defaultCharacterChecks

Default checks for character variables

Description

Default options for which checks to perform on character type variables in check and makeDataReport, possibly user-modified by adding extra function names using add or removing default function names with remove.

Usage

defaultCharacterChecks(remove = NULL, add = NULL)

Arguments

remove Character vector of function names. Checks to remove from the returned vector
add Character vector of function names. Checks to add to the returned vector

Value

A vector of function names.
defaultCharacterSummaries

Default summary functions for character variables

Description

Default options for which summaries to apply on character type variables in `check` and `makeDataReport`, possibly user-modified by adding extra function names using `add` or removing default function names with `remove`.

Usage

```r
defaultCharacterSummaries(remove = NULL, add = NULL)
```

Arguments

- `remove` Character vector of function names. Checks to remove from the returned vector
- `add` Character vector of function names. Checks to add to the returned vector

Value

A list of function names (as character strings).

See Also

`variableType`, `countMissing`, `uniqueValues`, `centralValue`

Examples

```r
# remove "variableType" from the summaries:
defaultCharacterSummaries(remove = "variableType")
```

defaultDateChecks

Default checks for Date variables

Description

Default options for which checks to perform on Date type variables in `check` and `makeDataReport`, possibly user-modified by adding extra function names using `add` or removing default function names with `remove`.

Usage

```r
defaultDateChecks(remove = NULL, add = NULL)
```

Examples

```r
# remove "variableType" from the summaries:
defaultDateChecks(remove = NULL, add = NULL)
```
Arguments

remove Character vector of function names. Checks to remove from the returned vector
add Character vector of function names. Checks to add to the returned vector

Value

A vector of function names.

defaultDateSummaries Default summary functions for Date variables

Description

Default options for which summaries to apply on Date type variables in `check` and `makeDataReport`, possibly user-modified by adding extra function names using `add` or removing default function names with `remove`.

Usage

defaultDateSummaries(remove = NULL, add = NULL)

Arguments

remove Character vector of function names. Checks to remove from the returned vector
add Character vector of function names. Checks to add to the returned vector

Value

A list of function names (as character strings).

See Also

`variableType`, `countMissing`, `uniqueValues`, `centralValue`, `minMax`, `quartiles`

Examples

defaultDateSummaries()
defaultFactorChecks Default checks for factor variables

Description
Default options for which checks to perform on factor type variables in check and makeDataReport, possibly user-modified by adding extra function names using add or removing default function names with remove.

Usage
defaultFactorChecks(remove = NULL, add = NULL)

Arguments
remove Character vector of function names. Checks to remove from the returned vector
add Character vector of function names. Checks to add to the returned vector

Value
A vector of function names.

defaultFactorSummaries Default summary functions for factor variables

Description
Default options for which summaries to apply on factor type variables in check and makeDataReport, possibly user-modified by adding extra function names using add or removing default function names with remove.

Usage
defaultFactorSummaries(remove = NULL, add = NULL)

Arguments
remove Character vector of function names. Checks to remove from the returned vector
add Character vector of function names. Checks to add to the returned vector

Value
A list of function names (as character strings).
defaultHavenlabelledChecks

Description

Default checks for haven_labelled variables

Usage

defaultHavenlabelledChecks(remove = NULL, add = NULL)

Arguments

remove Character vector of function names. Checks to remove from the returned vector
add Character vector of function names. Checks to add to the returned vector

Value

A vector of function names.

deafultHavenlabelledSummaries

Description

Default summary functions for haven_labelled variables

Usage

defaultHavenlabelledSummaries(remove = NULL , add = NULL)
defaultIntegerChecks

Arguments

 remove Character vector of function names. Checks to remove from the returned vector
 add Character vector of function names. Checks to add to the returned vector

Value

 A list of function names (as character strings).

See Also

 variableType, countMissing, uniqueValues, centralValue

Examples

 # remove "centralValue":
 defaultHavenlabelledSummaries(remov...
defaultIntegerSummaries

Default summary functions for integer variables

Description

Default options for which summaries to apply on integer type variables in `check` and `makeDataReport`, possibly user-modified by adding extra function names using `add` or removing default function names with `remove`.

Usage

```r
defaultIntegerSummaries(remove = NULL, add = NULL)
```

Arguments

- `remove` Character vector of function names. Checks to remove from the returned vector
- `add` Character vector of function names. Checks to add to the returned vector

Value

A list of function names (as character strings).

See Also

`variableType`, `countMissing`, `uniqueValues`, `centralValue`, `quartiles`, `minMax`

Examples

```r
#remove "countMissing":
defaultIntegerSummaries(remove = "countMissing")
```

defaultLabelledChecks *Default checks for labelled variables*

Description

Default options for which checks to perform on labelled type variables in `check` and `makeDataReport`, possibly user-modified by adding extra function names using `add` or removing default function names with `remove`.

Usage

```r
defaultLabelledChecks(remove = NULL, add = NULL)
```

Examples

```r
```
Arguments

- **remove**: Character vector of function names. Checks to remove from the returned vector.
- **add**: Character vector of function names. Checks to add to the returned vector.

Value

A vector of function names.

defaultLabelledSummaries

Default summary functions for labelled variables

Description

Default options for which summaries to apply on labelled type variables in `check` and `makeDataReport`, possibly user-modified by adding extra function names using `add` or removing default function names with `remove`.

Usage

```r
defaultLabelledSummaries(remove = NULL, add = NULL)
```

Arguments

- **remove**: Character vector of function names. Checks to remove from the returned vector.
- **add**: Character vector of function names. Checks to add to the returned vector.

Value

A list of function names (as character strings).

See Also

`variableType`, `countMissing`, `uniqueValues`, `centralValue`

Examples

```r
#remove "centralValue":
defaultLabelledSummaries(remove = "centralValue")
```
defaultLogicalChecks

Default checks for logical variables

Description

Default options for which checks to perform on logical type variables in `check` and `makeDataReport`, possibly user-modified by adding extra function names using `add` or removing default function names with `remove`.

Usage

`defaultLogicalChecks(remove = NULL, add = NULL)`

Arguments

- `remove` character vector of function names. Checks to remove from the returned vector
- `add` character vector of function names. Checks to add to the returned vector

Value

A vector of function names.

defaultLogicalSummaries

Default summary functions for logical variables

Description

Default options for which summaries to apply on logical type variables in `check` and `makeDataReport`, possibly user-modified by adding extra function names using `add` or removing default function names with `remove`.

Usage

`defaultLogicalSummaries(remove = NULL, add = NULL)`

Arguments

- `remove` character vector of function names. Checks to remove from the returned vector
- `add` character vector of function names. Checks to add to the returned vector

Value

A list of function names (as character strings).
defaultNumericSummaries

See Also

variableType, countMissing, uniqueValues, centralValue

Examples

#remove "uniqueValues":
defaultLogicalSummaries(remove = "uniqueValues")

defaultNumericChecks Default checks for numeric variables

Description

Default options for which checks to perform on numeric type variables in check and makeDataReport, possibly user-modified by adding extra function names using add or removing default function names with remove.

Usage

defaultNumericChecks(remove = NULL, add = NULL)

Arguments

remove Character vector of function names. Checks to remove from the returned vector
add Character vector of function names. Checks to add to the returned vector

Value

A vector of function names.

defaultNumericSummaries

Default summary functions for numeric variables

Description

Default options for which summaries to apply on numeric type variables in check and makeDataReport, possibly user-modified by adding extra function names using add or removing default function names with remove.

Usage

defaultNumericSummaries(remove = NULL, add = NULL)

description

Arguments
- remove: Character vector of function names. Checks to remove from the returned vector
- add: Character vector of function names. Checks to add to the returned vector

Value
A list of function names (as character strings).

See Also
- `variableType`
- `countMissing`
- `uniqueValues`
- `centralValue`
- `quartiles`
- `minMax`

Examples
```r
#remove "uniqueValues":
defaultNumericSummaries(remove = "uniqueValues")
```

description
Extract the contents of the attribute description

Description
If the object, x, is itself of class `checkFunction`, `summaryFunction` or `visualFunction`, the contents of x's attribute `description` is returned. Otherwise, NULL is returned.

Usage
```r
description(x)
description(x) <- value
```

Arguments
- `x`: The object for which the `description` attribute should be extracted.
- `value`: New value

Value
A description of what x does, given as a character string.
Description

An artificial dataset, intended for presenting the extended features of `dataMaid`, which is a toolset for identifying potential errors in a dataset.

Usage

`exampleData`

Format

A `data.frame` with 300 observations on the following 6 variables.

- `addresses` a factor with fictitious US addresses
- `binomial` a numeric vector with a binomial distributed variable
- `poisson` a numeric vector with a Poisson distributed variable
- `gauss` a numeric vector with a Gaussian distributed variable
- `zigauss` a numeric vector with a zero-inflated Gaussian distributed variable
- `bpinteraction` a factor with interactions between binomial and poisson values

Source

Artificial data

Examples

```r
## Not run:
isID <- function(v, nMax = NULL, ...) {
  out <- list(problem = FALSE, message = "")
  if (class(v) %in% c("character", "factor", "labelled", "numeric", "integer")) {
    v <- as.character(v)
    lengths <- nchar(v)
  }
  # More code here
}
```
if (all(lengths > 10) & length(unique(lengths)) == 1) {
 out$problem <- TRUE
 out$message <- "Warning: This variable seems to contain ID codes!"
}
}
out

countZeros <- function(v, ...) {
 res <- length(which(v == 0))
 summaryResult(list(feature = "No. zeros", result = res, value = res))
}
countZeros <- summaryFunction(countZeros, description = "Count number of zeros",
 classes = allClasses())
summarize(toyData, numericSummaries = c(defaultNumericSummaries()))

mosaicVisual <- function(v, vnam, doEval) {
 thisCall <- call("mosaicplot", table(v), main = vnam, xlab = "")
 if (doEval) {
 return(eval(thisCall))
 } else return(deparse(thisCall))
}
mosaicVisual <- visualFunction(mosaicVisual,
 description = "Mosaic plots using graphics",
 classes = allClasses())

identifyColons <- function(v, nMax = Inf, ...) {
 v <- unique(na.omit(v))
 problemMessage <- "Note: The following values include colons:"
 problem <- FALSE
 problemValues <- NULL

 problemValues <- v[sapply(grepl("[^:xdigit:]:[^:xdigit:]", v),
 function(x) all(x != -1))]

 if (length(problemValues) > 0) {
 problem <- TRUE
 }

 problemStatus <- list(problem = problem,
 problemValues = problemValues)
 outMessage <- messageGenerator(problemStatus, problemMessage, nMax)
 checkResult(list(problem = problem,
 message = outMessage,
 problemValues = problemValues))
}

identifyColons <- checkFunction(identifyColons,
 description = "Identify non-suffixed nor -prefixed colons",
 classes = c("character", "factor", "labelled"))
identifyCaseIssues

A checkFunction for identifying case issues

Description

A checkFunction to be called from check that identifies values in a vector that appear multiple times with different case settings.

Usage

identifyCaseIssues(v, nMax = 10)

Arguments

v A character, factor, haven_labelled or labelled variable to check.
nMax The maximum number of problematic values to report. Default is 10. Set to Inf if all problematic values are to be included in the outputted message, or to 0 for no output.

Value

A checkResult with three entries: $problem (a logical indicating whether case issues were found), $message (a message describing which values in v resulted in case issues) and $problemValues (the problematic values in their original format). Note that Only unique problematic values are listed and they are presented in alphabetical order.

See Also

check, allCheckFunctions, checkFunction, checkResult
identifyLoners

Examples

```r
identifyCaseIssues(c("val", "b", "1", "1", "vAl", "VAL", "oh", "OH"))
```

identifyLoners
A checkFunction for identifying sparsely represented values (loners)

Description

A checkFunction to be called from check that identifies values that only occur less than 6 times in factor, (haven_)labelled, or character variables (that is, loners).

Usage

```r
identifyLoners(v, nMax = 10)
```

Arguments

- `v`: A character, (haven_)labelled, or factor variable to check.
- `nMax`: The maximum number of problematic values to report. Default is 10. Set to Inf if all problematic values are to be included in the outputted message, or to 0 for no output.

Details

For character, (haven_)labelled, and factor variables, identify values that only have a very low number of observations, as these categories might be problematic when conducting an analysis. Unused factor levels are not considered "loners". "Loners" are defined as values with 5 or less observations, reflecting the commonly use rule of thumb for performing chi squared tests.

Value

A checkResult with three entries: $problem (a logical indicating whether case issues where found), $message (a message describing which values in v were loners) and $problemValues (the problematic values in their original format). Note that Only unique problematic values are listed and they are presented in alphabetical order.

See Also

check, allCheckFunctions, checkFunction, checkResult

Examples

```r
identifyLoners(c(rep(c("a", "b", "c"), 10), "d", "d"))
```
identifyMissing

A checkFunction for identifying miscoded missing values.

Description

A checkFunction to be called from check that identifies values that appear to be miscoded missing values.

Usage

identifyMissing(v, nMax = 10, ...)

Arguments

v
A variable to check.

nMax
The maximum number of problematic values to report. Default is 10. Set to Inf if all problematic values are to be included in the outputted message, or to 0 for no output.

...
Not in use.

Details

identifyMissing tries to identify common choices of missing values outside of the R standard (NA). These include special words (NaN and Inf (no matter the cases)), one or more -9/9's (e.g. 999, "99", -9, "-99"), one ore more -8/8's (e.g. -8, 888, -8888), Stata style missing values (commencing with ".") and other character strings ("", ",", ",", "NA" miscoded as character). If the variable is numeric/integer or a character/factor variable consisting only of numbers and with more than 11 different values, the numeric miscoded missing values (999, 888, -99, -8 etc.) are only recognized as miscoded missing if they are maximum or minimum, respectively, and the distance between the second largest/smallest value and this maximum/minimum value is greater than one.

Value

A checkResult with three entires: $problem (a logical indicating whether midcoded missing values where found), $message (a message describing which values in v were suspected to be miscoded missing values), and $problemValues (the problematic values in their original format). Note that Only unique problematic values are listed and that they are presented in alphabetical order.

See Also

ccheck, allCheckFunctions, checkFunction, checkResult
Examples

```r
##data(testData)
##testData$miscodedMissingVar
##identifyMissing(testData$miscodedMissingVar)

#Identify miscoded numeric missing values
v1 <- c(1:15, 99)
v2 <- c(v1, 98)
v3 <- c(-999, v2, 9999)
identifyMissing(v1)
identifyMissing(v2)
identifyMissing(v3)
identifyMissing(factor(v3))
```

identifyNums

A checkFunction

Description

A checkFunction to be called from check for identifying numeric variables that have been misclassified as categorical.

Usage

`identifyNums(v, nVals = 12, ...)`

Arguments

- `v` A character, factor, or (haven_)labelled variable to check.
- `nVals` An integer determining how many unique values a variable must have before it can potentially be determined to be a misclassified numeric variable. The default is 12.
- `...` Not in use.

Details

A categorical variable is suspected to be a misclassified numeric variable if it has the following two properties: First, it should consist exclusively of numbers (possibly including signs and decimals points). Secondly, it must have at least `nVals` unique values. The default values of `nVals` is 12, which means that e.g. variables including answers on a scale from 0-10 will not be recognized as misclassified numerics.

Value

A checkResult with three entries: `$problem` (a logical indicating the variable is suspected to be a misclassified numeric variable), `$message` (if a problem was found, the following message: "Note: The variable consists exclusively of numbers and takes a lot of different values. Is it perhaps a misclassified numeric variable?", otherwise """", otherwise """" and `$problemValues` (always NULL).
identifyOutliers

A checkFunction for identifying outliers

Description

A checkFunction to be called from check that identifies outlier values in a Date/numeric/integer variable.

Usage

identifyOutliers(v, nMax = 10, maxDecimals = 2)

Arguments

v A Date, numeric or integer variable to check.
nMax The maximum number of problematic values to report. Default is 10. Set to Inf if all problematic values are to be included in the outputted message, or to 0 for no output.
maxDecimals A positive integer or Inf. Number of decimals used when printing numerical values in the data summary and in problematic values from the data checks. If Inf, no rounding is performed.

Details

Outliers are identified based on an outlier rule that is appropriate for asymmetric data. Outliers are observations outside the range

\[Q1 - 1.5 \cdot e^{a \cdot MC} \cdot IQR; Q3 + 1.5 \cdot e^{b \cdot MC} \cdot IQR \]

where Q1, Q3, and IQR are the first quartile, third quartile, and inter-quartile range, MC is the 'medcouple', a robust concept and estimator of skewness, and a and b are appropriate constants (-4 and 3). The medcouple is defined as a scaled median difference of the left and right half of distribution, and hence not based on the third moment as the classical skewness.

See Also

check, allCheckFunctions, checkFunction, checkResult

Examples

Positive and negative numbers, saved as characters
identifyNums(c(as.character(-9:9)))

An ordinary character variable
identifyNums(c("a", "b", "c", "d", "e.f", "+a", 1:100))
When the data are symmetric, the measure reduces to the standard outlier rule also used in Tukey Boxplots (consistent with the `boxplot` function), i.e. as values that are smaller than the 1st quartile minus the inter quartile range (IQR) or greater than the third quartile plus the IQR.

For Date variables, the calculations are done on their raw numeric format (as obtained by using `unclass`), after which they are translated back to Dates. Note that no rounding is performed for Dates, no matter the value of `maxDecimals`.

Value

A `checkResult` with three entries: `$problem` (a logical indicating whether outliers were found), `$message` (a message describing which values are outliers) and `$problemValues` (the outlier values).

See Also

`check`, `allCheckFunctions`, `checkFunction`, `checkResult`, `mc`

Examples

```r
identifyOutliers(c(1:10, 200, 200, 700))
```

```r
identifyOutliersTBStyle

A checkFunction for identifying outliers Turkey Boxstole style

Description

A checkFunction to be called from `check` that identifies outlier values in a numeric/integer/Date variable by use of the Turkey Boxplot method (consistent with the `boxplot` function).

Usage

```r
identifyOutliersTBStyle(v, nMax = 10, maxDecimals = 2)
```

Arguments

- **v**: A numeric, integer or Date variable to check.
- **nMax**: The maximum number of problematic values to report. Default is 10. Set to `Inf` if all problematic values are to be included in the outputted message, or to 0 for no output.
- **maxDecimals**: A positive integer or `Inf`. Number of decimals used when printing numerical values in the data summary and in problematic values from the data checks. If `Inf`, no rounding is performed.
Details

Outliers are defined in the style of Turkey Boxplots (consistent with the `boxplot` function), i.e. as values that are smaller than the 1st quartile minus the inter quartile range (IQR) or greater than the third quartile plus the IQR.

For Date variables, the calculations are done on their raw numeric format (as obtained by using `unclass`), after which they are translated back to Dates. Note that no rounding is performed for Dates, no matter the value of `maxDecimals`.

Value

A `checkResult` with three entries: `$problem` (a logical indicating whether outliers were found), `$message` (a message describing which values are outliers) and `$problemValues` (the outlier values).

See Also

`check`, `allCheckFunctions`, `checkFunction`, `checkResult`

Examples

```r
identifyOutliersTBStyle(c(1:10, 200, 200, 700))
```

identifyWhitespace  A checkFunction for identifying whitespace

Description

A checkFunction to be called from `check` that identifies prefixed and suffixed whitespace(s) in character, (haven_)labelled or factor variables.

Usage

```r
identifyWhitespace(v, nMax = 10)
```

Arguments

- `v` A character, (haven_)labelled or factor variable to check.
- `nMax` The maximum number of problematic values to report. Default is 10. Set to Inf if all problematic values are to be included in the outputted message, or to 0 for no output.

Value

A `checkResult` with three entries: `$problem` (a logical indicating whether any whitespaces were found), `$message` (a message describing which values were prefixed or suffixed with whitespace) and `$problemValues` (the problematic values). Note that only unique values are printed in the message, and that they are sorted alphabetically.
isCPR

See Also

check, allCheckFunctions, checkFunction, checkResult

Examples

identifyWhitespace(c("a", " b", "c", "d ", "e "))

isCPR Check if a variable consists of Danish CPR numbers

Description

A checkFunction that checks if \( v \) consists exclusively of valid Danish civil registration (CPR) numbers, ignoring missing values. This function is intended for use as a precheck in makeDataReport, ensuring that CPR numbers are not included in a dataMaid output document.

Usage

isCPR(v, ...)

Arguments

v A variable (vector) to check. This variable is allowed to have any class.
...

Value

A checkResult with three entries: $problem (a logical indicating whether the variable consists of CPR numbers), $message (if a problem was found, the following message: "Warning: The variable seems to consist of Danish civil registration (CPR) numbers.", otherwise "") and $problemValues (always NULL).

See Also

check, allCheckFunctions, checkFunction, checkResult

Examples

CPRs <- sapply(c("01011988", "02011987", "04052006", "01021990", "01021991", 
"01021993", "01021994", "01021995", "01021996", "01021997", 
"01021970", "01021971", "01021972", "01021973", "01021974"), dataMaid:::makeCPR)
nonCPRs <- c(1:10)
mixedCPRs <- c(CPRs, nonCPRs)

#identify problem
isCPR(CPRs)
isKey

Check if a variable qualifies as a key

Description
A checkFunction that checks if \( v \) is a key, that is, if every observation has a unique value in \( v \) and \( v \) is not a numeric/integer nor a Date variable. This function is intended for use as a precheck in makeDataReport.

Usage
isKey(v)

Arguments
v A variable (vector) to check. All variable types are allowed.

Details
Note that numeric or integer variables are not considered candidates for keys, as truly continuous measurements will most likely result in unique values for each observation.

Value
A checkResult with three entries: $problem (a logical indicating whether \( v \) is a key), $message (if a problem was found, the following message: "The variable is a key (distinct values for each observation).", otherwise ") and $problemValues (always NULL).

See Also
check, allCheckFunctions, checkFunction, checkResult

Examples
keyVar <- c("a", "b", "c", "d", "e", "f")
notKeyVar <- c("a", "a", "b", "c", "d", "e", "f")

isKey(keyVar)
isKey(notKeyVar)
isSingular

Check if a variable only contains a single value

Description

A \texttt{checkFunction} that checks if \( v \) only contains a single unique value, aside from missing values. This function is intended for use as a precheck in \texttt{makeDataReport}.

Usage

\begin{verbatim}
isSingular(v)
isEmpty(v)
\end{verbatim}

Arguments

\( v \quad \text{A variable (vector) to check. All variable types are allowed.} \)

Value

A \texttt{checkResult} with three entries: \$problem (a logical indicating whether \( v \) contains only one value), \$message (if a problem was found, a message describing which single value the variable takes and how many missing observations it contains, otherwise ""), and \$problemValues (always NULL).

See Also

\texttt{check, allCheckFunctions, checkFunction, checkResult}

Examples

\begin{verbatim}
singularVar <- c(rep("a", 10), NA, NA)
notSingularVar <- c("a", "a", "b", "c", "d", "e", "f", NA, NA)

isSingular(singularVar)
isSingular(notSingularVar)
\end{verbatim}
isSupported

Check if a variable has a class supported by dataMaid

Description

A `checkFunction` that checks if v has one of the classes supported by dataMaid, namely character, factor, numeric, integer, labelled, haven_labelled, logical and Date (including other classes that inherits from any of these classes). A user supported list can be provided in the `treatXasY` argument, which will let the user decide how unsupported classes should be treated. This function is intended for use as a precheck in `makeDataReport`.

Usage

```r
isSupported(v)
```

Arguments

v A variable (vector) to check. All variable types are allowed.

Value

A `checkResult` with three entries: $problem (a logical indicating whether v contains only one value), $message (if a problem was found, a message describing which single value the variable takes and how many missing observations it contains, otherwise ""), and $problemValues (always NULL).

See Also

`check`, `allCheckFunctions`, `checkFunction`, `checkResult`

Examples

```r
integerVar <- 1:10 # supported
rawVar <- as.raw(1:10) # not supported

isSupported(integerVar)
isSupported(rawVar)
```
makeCodebook

Produce a data codebook

Description

Make a data codebook that summarizes the contents of a dataset. The result is saved to an R markdown file which can be rendered into an easy-to-read codebook in pdf, html or word formats.

Usage

makeCodebook(data, vol = "", reportTitle = NULL, file = NULL, ...)

Arguments

data

The dataset to be checked. This dataset should be of class data.frame, tibble or matrix. If it is of class matrix, it will be converted to a data.frame.

vol

Extra text string or numeric that is appended on the end of the output file name(s). For example, if the dataset is called "myData", no file argument is supplied and vol=2, the output file will be called "codebook_myData2.Rmd"

reportTitle

A text string. If supplied, this will be the printed title of the report. If left unspecified, the title with the name of the supplied dataset.

file

The filename of the outputted rmarkdown (.Rmd) file. If set to NULL (the default), the filename will be the name of data prefixed with "codebook_", if this qualifies as a valid file name (e.g. no special characters allowed). Otherwise, makeCodebook() tries to create a valid filename by substituting illegal characters. Note that a valid file is of type .Rmd, hence all filenames should have a ".Rmd"-suffix.

...

Additional parameters passed to makeDataReport.

References


makeDataReport

Produce a data report

Description

Make a data overview report that summarizes the contents of a dataset and flags potential problems. The potential problems are identified by running a set of class-specific validation checks, so that different checks are performed on different variables types. The checking steps can be customized according to user input and/or data type of the inputted variable. The checks are saved to an R markdown file which can rendered into an easy-to-read data report in pdf, html or word formats. This report also includes summaries and visualizations of each variable in the dataset.
Usage

makeDataReport(
  data,
  output = NULL,
  render = TRUE,
  useVar = NULL,
  ordering = c("asIs", "alphabetical"),
  onlyProblematic = FALSE,
  labelled_as = c("factor"),
  mode = c("summarize", "visualize", "check"),
  smartNum = TRUE,
  preChecks = c("isKey", "isSingular", "isSupported"),
  file = NULL,
  replace = FALSE,
  vol = "",
  standAlone = TRUE,
  twoCol = TRUE,
  quiet = TRUE,
  openResult = TRUE,
  summaries = setSummaries(),
  visuals = setVisuals(),
  checks = setChecks(),
  listChecks = TRUE,
  maxProbVals = 10,
  maxDecimals = 2,
  addSummaryTable = TRUE,
  codebook = FALSE,
  reportTitle = NULL,
  treatXasY = NULL,
  includeVariableList = TRUE,
  ...
)

Arguments

data  The dataset to be checked. This dataset should be of class data.frame, tibble or matrix. If it is of class matrix, it will be converted to a data.frame.

output Output format. Options are "pdf", "word" (.docx) and "html". If NULL (the default), the output format depends two sequential checks. First, whether a LaTeX installation is available, in which case pdf output is chosen. Secondly, if no LaTeX installation is found, then if the operating system is Windows, word output is used. Lastly, if neither of these checks are positive, html output is used.

render Should the output file be rendered (defaults to TRUE), i.e. should a pdf/word/html document be generated and saved to the disc?

useVar Variables to describe in the report. If NULL (the default), all variables in data are included. If a vector of variable names is supplied, only the variables in data that are also in useVar are included in the data report.
ordering
Choose the ordering of the variables in the variable presentation. The options are "asIs" (ordering as in the dataset) and "alphabetical" (alphabetical order).

onlyProblematic
A logical. If TRUE, only the variables flagged as problematic in the check step will be included in the variable list.

labelled_as
A string explaining the way to handle labelled and haven_labelled vectors. Currently "factor" (the default) is the only possibility. This means that labelled or haven_labelled variables that appear factor-like (by having a non-NULL labels.attribute) will be treated as factors, while other labelled or haven_labelled variables will be treated as whatever base variable class they inherit from.

mode
Vector of tasks to perform among the three categories "summarize", "visualize" and "check". The default, c("summarize","visualize","check"), implies that all three steps are performed. The steps selected in mode will be performed for each variable in data and their results are presented in the second part of the outputted data report. The "summarize" step is responsible for creating the summary table, the "visualize" step is responsible for creating the plot and the "check" step is responsible for performing checks on the variable and printing the results if any problems are found.

smartNum
If TRUE (the default), numeric and integer variables with less than 5 unique values are treated as factor variables in the checking, visualization and summary steps, and a message notifying the reader of this is printed in the data summary.

preChecks
Vector of function names for check functions used in the pre-check stage. The pre-check stage consists of variable checks that should be performed before the summary/visualization/checking step. If any of these checks find problems, the variable will not be summarized nor visualized nor checked.

file
The filename of the outputted rmarkdown (.Rmd) file. If set to NULL (the default), the filename will be the name of data prefixed with "dataMaid_", if this qualifies as a valid file name (e.g. no special characters allowed). Otherwise, makeDataReport() tries to create a valid filename by substituting illegal characters. Note that a valid file is of type .Rmd, hence all filenames should have a ".Rmd"-suffix.

replace
If FALSE (the default), an error is thrown if one of the files that we are about to be created (.Rmd overview file and possible also .html, .pdf or .docx file) already exist. If TRUE, no checks are performed and files on disc thus might be overwritten.

vol
Extra text string or numeric that is appended on the end of the output file name(s). For example, if the dataset is called "myData", no file argument is supplied and vol=2, the output file will be called "dataMaid_myData2.Rmd"

standAlone
A logical. If TRUE, the document begins with a markdown YAML preamble such that it can be rendered as a stand alone markdown file, e.g. by calling render. If FALSE, this preamble is removed. Moreover, no matter the input to the render argument, the document will now not be rendered, as it has no preamble.

twoCol
A logical. Should the results from the summarize and visualize steps be presented in two columns? Defaults to TRUE.

quiet
A logical. If TRUE (the default), only a few messages are printed to the screen as makeDataReport runs. If FALSE, no messages are suppressed. The third option,
makeDataReport

silent, renders the function completely silent, such that only fatal errors are printed.

openResult
A logical. If TRUE (the default), the last file produced by makeDataReport is automatically opened by the end of the function run. This means that if render = TRUE, the rendered pdf, word or html file is opened, while if render = FALSE, the .Rmd file is opened.

summaries
A list of summaries to use on each supported variable type. We recommend using setSummaries for creating this list and refer to the documentation of this function for more details.

visuals
A list of visual functions to use on each supported variable type. We recommend using setVisuals for creating this list and refer to the documentation of this function for more details.

checks
A list of checks to use on each supported variable type. We recommend using setChecks for creating this list and refer to the documentation of this function for more details.

listChecks
A logical. Controls whether what checks that were used for each possible variable type are summarized in the output. Defaults to TRUE.

maxProbVals
A positive integer or Inf. Maximum number of unique values printed from check-functions. In the case of Inf, all problematic values are printed. Defaults to 10.

maxDecimals
A positive integer or Inf. Number of decimals used when printing numerical values in the data summary and in problematic values from the data checks. If Inf, no rounding is performed.

addSummaryTable
A logical. If TRUE (the default), a summary table of the variable checks is added between the Data Cleaning Summary and the Variable List. Only one of addSummaryTable and addCodebookTable can be TRUE.

codebook
A logical. Defaults to FALSE. If TRUE then the document is tweaked to better represent a codebook.

reportTitle
A text string. If supplied, this will be the printed title of the report. If left unspecified, the title with the name of the supplied dataset.

treatXasY
A list that indicates how non-standard variable classes should be treated. This parameter allows you to include variables that are not of class factor, character, labelled, haven_labelled, numeric, integer, logical nor Date (or a class that inherits from any of these classes). The names of the list are the new classes and the entries are the names of the class, they should be treated as. If makeDataReport() should e.g. treat variables of class raw as characters and variables of class complex as numeric, you should put treatXasY = list(raw = "character", complex = "numeric").

includeVariableList
A logical indicating whether the results of the summarize/visualize/check-steps should be added to the report. Defaults to TRUE. Note that setting it to FALSE does currently not speed up computations, it just means that the information is not printed in the report.

... Other arguments that are passed on the to precheck, checking, summary and visualization functions.
Details

For each variable, a set of pre-check functions (controlled by the `preChecks` argument) are first run and then then a battery of functions are applied depending on the variable class. For each variable type the `summarize/visualize/check` functions are applied and and the results are written to an R markdown file.

Value

The function does not return anything. Its side effect (the production of a data report) is the reason for running the function.

References


Examples

data(testData)
data(toyData)

check(toyData)

## Not run:
DF <- data.frame(x = 1:15)
makeDataReport(DF)

## End(Not run)

## Not run:
data(testData)
makeDataReport(testData)

## End(Not run)

# Overwrite any existing files generated by makeDataReport
## Not run:
makeDataReport(testData, replace=TRUE)

## End(Not run)

# Change output format to Word/docx:
## Not run:
makeDataReport(testData, replace=TRUE, output = "word")

## End(Not run)

# Only include problematic variables in the output document
## Not run:
makeDataReport(testData, replace=TRUE, onlyProblematic=TRUE)
## End(Not run)

# Add user defined check-function to the checks performed on character variables:
# Here we add functionality to search for the string wally (ignoring case)
## Not run:
wheresWally <- function(v, ...) {
  res <- grepl("wally", v, ignore.case=TRUE)
  problem <- any(res)
  message <- "Wally was found in these data"
  checkResult(list(problem = problem,
      message = message,
      problemValues = v[res]))
}

wheresWally <- checkFunction(wheresWally,
      description = "Search for the string 'wally' ignoring case",
      classes = c("character")
)

# Add the newly defined function to the list of checks used for characters.
makeDataReport(testData,
      checks = setChecks(character = defaultCharacterChecks(with = "wheresWally")),
      replace=TRUE)

## End(Not run)

#Handle non-supported variable classes using treatXasY: treat raw as character and
treat complex as numeric. We also add a list variable, but as lists are not
#handled through treatXasY, this variable will be caught in the preChecks and skipped:
## Not run:
toyData$rawVar <- as.raw(c(1:14, 1))
toyData$compVar <- c(1:14, 1) + 2i
toyData$listVar <- as.list(c(1:14, 1))
makeDataReport(toyData, replace = TRUE,
      treatXasY = list(raw = "character", complex = "numeric"))

## End(Not run)

---

**messageGenerator**  
*Produce a message for the output of a checkFunction*

## Description

Helper function for producing output messages for `checkFunction` type functions.

## Usage

```r
messageGenerator(
 problemStatus,
)```

```r
```
messageGenerator

message = "Note that a check function found the following problematic values: ",
 nMax = 10
)

Arguments

problemStatus A list consisting of two entries:

$problem - logical indicating whether a problem was found by the checkFunction
 responsible for the making the messageGenerator() call,
$problemValues - a vector of values from the variable that were deemed prob-
 lematic (see details below).

message Optional, but recommended. A message describing what problem the problem
 values are related to. If NULL a standard message is added using the name of the
 function that called messageGenerator.

nMax Maximum number of problem values to be printed in the message. If the total
 number of problem values exceeds nMax, the number of omitted problem values
 are added to the message. Defaults to Inf, in which case all problem values are
 printed.

Details

This function is a tool for building checkFunctions for the dataMaid makeDataReport
function. checkFunctions will often identify a number of values in a variable that are somehow
problematic. messageGenerator takes these values, pastes them together with a problem description and makes
sure that the formatting is appropriate for being rendered in a rmarkdown document. We recom-
end writing short and precise problem descriptions (see examples), but if no message is supplied,
the following message is generated: "Note that a check function found the following problematic
values: [problem values]".

Value

A character string with a problem description.

See Also

check, checkFunction, makeDataReport

Examples

Variables with/without underscores
noUSVar <- c(1:10)
USVar <- c("_a", "n_b", "b_", "_", 1:10)

Define a checkFunction using messageGenerator with a manual
problem description:
identifyUnderscores <- function(v, nMax = Inf) {
 v <- as.character(v)
 underscorePlaces <- regexpr("_", v) > 0
 problemValues <- unique(v[underscorePlaces])
problem <- any(underscorePlaces)
message <- messageGenerator(list(problemValues = problemValues, problem = problem),
 "The following values contain underscores: ",
 nMax = nMax)
checkResult(list(problem = problem, message = message,
 problemValues = problemValues))}

identifyUnderscores(noUSVar) # no problem
identifyUnderscores(USVar) # problems

Only print the first two problem values in the message:
identifyUnderscores(USVar, nMax = 2)

Define same function, but without a manual problem description in
the messageGenerator-call:
identifyUnderscores2 <- function(v, nMax = Inf) {
v <- as.character(v)
underscorePlaces <- regexpr("_", v) > 0
problemValues <- unique(v[underscorePlaces])
problem <- any(underscorePlaces)
message <- messageGenerator(list(problemValues = problemValues,
 problem = problem), nMax = nMax)
checkResult(list(problem = problem, message = message,
 problemValues = problemValues))
}

identifyUnderscores2(noUSVar) # no problem
identifyUnderscores2(USVar) # problems

minMax

summaryFunction for minimum and maximum

Description

A `summaryFunction`, intended to be called from `summarize`, which returns the minimum and maximum values of a variable. NA, NaN and Inf values are removed prior to the computations.

Usage

`minMax(v, maxDecimals = 2)`

Arguments

- `v` A variable (vector) of type numeric or integer.
- `maxDecimals` A positive integer or Inf. Number of decimals used when printing numerical values in the data summary and in problematic values from the data checks. If Inf, no rounding is performed.
Value

An object of class summaryResult with the following entries: $feature ("Min. and max."), $result (the minimum and maximum of v), and $value (minimum and maximum in their original format).

See Also

summaryFunction, summarize, summaryResult, allSummaryFunctions

Examples

minMax(c(1:100))

presidentData Semi-artificial data about the US presidents

Description

A dataset with information about the first 45 US presidents as well as a 46th person, who is not a US president. The dataset was constructed to show the capabilities of dataMaid and therefore, it has been constructed to include errors and miscodings. Each observation in the dataset corresponds to a person. The dataset uses the non-standard class Name which is simply an attribute that has been added to two variables in order to show how dataMaid handles non-supported classes.

Usage

presidentData

Format

A data frame with 46 rows and 11 variables.

lastName A Name type variable containing the last name of the president.

firstName A Name type variable containing the first name of the president.

orderOfPresidency A factor variable indicating the order of the presidents (with George Washington as number 1 and Donald Trump as number 45).

birthday A Date variable with the birthday of the president

stateOfBirth A character variable with the state in which the president was born.

assassinationAttempt A numeric variable indicating whether there was an assassination attempt (1) or not (0) on the president.

sex A factor variable with the sex of the president.

ethnicity A factor variable with the ethnicity of the president.

presidencyYears A numeric variable with the duration of the presidency, in years.

ageAtInauguration A character variable with the age at inauguration.

favoriteNumber A complex type variable with a fictional favorite number for each president.
Source

Artificial dataset constructed based on the US president dataset available from Data Explorer.

References

Examples

data(presidentData)

quartiles summaryFunction for quartiles

Description

A summaryFunction, intended to be called from summarize, which calculates the 1st and 3rd quartiles of a variable. NA, NaN and Inf values are removed prior to the computations.

Usage

quartiles(v, maxDecimals = 2)

Arguments

v A variable (vector) of type numeric or integer.

maxDecimals A positive integer or Inf. Number of decimals used when printing numerical values in the data summary and in problematic values from the data checks. If Inf, no rounding is performed.

Details

The quartiles are computed using the quantile function from stats, using type 7 quantiles for integer and numeric variables and type 1 quantiles for Date variables.

Value

An object of class summaryResult with the following entries: $feature ("1st and 3rd quartiles"), $result (the 1st and 3rd quartiles of v) and $value (the quartiles in their original format).

See Also

summaryFunction, summarize, summaryResult, allSummaryFunctions
Examples

quartiles(c(1:100))

quartiles(rnorm(1000), maxDecimals = 4)

refCat summaryFunction that finds reference level for factor variables

Description

A summaryFunction, intended to be called from `summarize`, which returns the reference level of a factor variable, i.e. the first category as returned by `levels(v)`. This level will serve as the reference category and get absorbed into the intercept for most standard model fitting procedures and therefore, it may be convenient to know.

Usage

`refCat(v, ...)`

Arguments

- `v` A variable (vector) of type factor.
- `...` Not in use.

Value

An object of class `summaryResult` with the following entries: `$feature` ("Reference level"), `$result` (the reference level of `v`), and `$value` (identical to `result`).

See Also

`summaryFunction`, `summarize`, `summaryResult`, `allSummaryFunctions`

Examples

`refCat(factor(letters))`
render

Simplified Rmarkdown rendering

Description

Render a Rmarkdown (.Rmd) file, file, to the output format specified in its preamble. If no output format is specified, it will be rendered to html.

Usage

`render(file, quiet)`

Arguments

- **file**: A character string path to the file that is to be rendered. This file must be of type Rmarkdown (.Rmd)
- **quiet**: A logical. Should messages during rendering be suppressed?

Details

This function is merely a simplified version (in terms of possible arguments) of the rendering function from the `rmarkdown` package. Therefore, we refer to this function for more details: `render`. We have included this simplified version in `dataMaid` in order to help new R users with rendering their output documents as generated by `makeDataReport`.

See Also

`render`.

setChecks

Set check arguments for makeDataReport

Description

This function is a tool for easily specifying the checks argument of `makeDataReport`. Note that all available check function options can be inspected by calling `allCheckFunctions()`.

Usage

```r
setChecks(
  character = defaultCharacterChecks(),
  factor = defaultFactorChecks(),
  labelled = defaultLabelledChecks(),
  haven_labelled = defaultHavenlabelledChecks(),
  numeric = defaultNumericChecks(),
)```

setChecks

integer = defaultIntegerChecks(),
logical = defaultLogicalChecks(),
Date = defaultDateChecks(),
all = NULL
)

Arguments

character A character vector of function names to be used as checks for character variables. The default options are available by calling defaultCharacterChecks()

factor A character vector of function names to be used as checks for factor variables. The default options are available by calling defaultFactorChecks()

labelled A character vector of function names to be used as checks for labelled variables. The default options are available by calling defaultLabelledChecks()

haven_labelled A character vector of function names to be used as checks for haven_labelled variables. The default options are available by calling defaultHavenlabelledChecks()

numeric A character vector of function names to be used as checks for numeric variables. The default options are available by calling defaultNumericChecks()

integer A character vector of function names to be used as checks for integer variables. The default options are available by calling defaultIntegerChecks()

logical A character vector of function names to be used as checks for logical variables. The default options are available by calling defaultLogicalChecks()

Date A character vector of function names to be used as checks for Date variables. The default options are available by calling defaultDateChecks()

all A character vector of function names to be used as checks for all variables. Note that this overrules the choices made for specific variable types by using the other arguments.

Value

A list with one entry for each data class supported by makeDataReport. Each entry then contains a character vector of function names that are to be called as checks for that variable type.

See Also

makeDataReport, allCheckFunctions, defaultCharacterChecks, defaultFactorChecks, defaultLabelledChecks, defaultHavenlabelledChecks, defaultNumericChecks, defaultIntegerChecks, defaultLogicalChecks, defaultDateChecks

Examples

#Only identify missing values for characters, logica ls and labelled variables:
setChecks(character = "identifyMissing", factor = "identifyMissing",
labelled = "identifyMissing")

#Used in a call to makeDataReport():
## Not run:
setSummaries(data(toyData)
makeDataReport(toyData, checks = setChecks(character = "identifyMissing",
    factor = "identifyMissing", labelled = "identifyMissing"), replace = TRUE)
## End(Not run)

setSummaries  Set summary arguments for makeDataReport

Description

This function is a tool for easily specifying the summaries argument of makeDataReport. Note that all available summary function options can be inspected by calling allSummaryFunctions().

Usage

setSummaries(
    character = defaultCharacterSummaries(),
    factor = defaultFactorSummaries(),
    labelled = defaultLabelledSummaries(),
    haven_labelled = defaultHavenlabelledSummaries(),
    numeric = defaultNumericSummaries(),
    integer = defaultIntegerSummaries(),
    logical = defaultLogicalSummaries(),
    Date = defaultDateSummaries(),
    all = NULL
)

Arguments

character  A character vector of function names to be used as summaries for character variables. The default options are available by calling defaultCharacterSummaries().

factor  A character vector of function names to be used as summaries for factor variables. The default options are available by calling defaultFactorSummaries().

labelled  A character vector of function names to be used as summaries for labelled variables. The default options are available by calling defaultLabelledSummaries().

haven_labelled  A character vector of function names to be used as summaries for haven_labelled variables. The default options are available by calling defaultHavenlabelledSummaries().

numeric  A character vector of function names to be used as summaries for numeric variables. The default options are available by calling defaultNumericSummaries().

integer  A character vector of function names to be used as summaries for integer variables. The default options are available by calling defaultIntegerSummaries().

logical  A character vector of function names to be used as summaries for logical variables. The default options are available by calling defaultLogicalSummaries().
Date A character vector of function names to be used as summaries for Date variables. The default options are available by calling defaultDateSummaries().

all A character vector of function names to be used as summaries for all variables. Note that this overrules the choices made for specific variable types by using the other arguments.

Value A list with one entry for each data class supported by makeDataReport. Each entry then contains a character vector of function names that are to be called as summaries for that variable type.

See Also

makeDataReport, allSummaryFunctions, defaultCharacterSummaries, defaultFactorSummaries, defaultLabelledSummaries, defaultHavenlabelledSummaries, defaultNumericSummaries, defaultIntegerSummaries, defaultLogicalSummaries, defaultDateSummaries

Examples

#Don't include central value (median/mode) summary for numerical and integer variables:
setSummaries(numeric = defaultNumericSummaries(remove = "centralValue"),
             integer = defaultIntegerSummaries(remove = "centralValue"))

#Used in a call to makeDataReport():
## Not run:
data(toyData)
makeDataReport(toyData,
              setSummaries(numeric = defaultNumericSummaries(remove = "centralValue"),
                           integer = defaultIntegerSummaries(remove = "centralValue"),
                           replace = TRUE)
## End(Not run)
Usage

setVisuals(
  character = NULL,
  factor = NULL,
  labelled = NULL,
  haven_labelled = NULL,
  numeric = NULL,
  integer = NULL,
  logical = NULL,
  Date = NULL,
  all = "standardVisual"
)

Arguments

character A function name (character string) to be used as the visual function for character variables. If NULL (the default) the argument is ignored and the contents of the all argument is used instead.

factor A function name (character string) to be used as the visual function for factor variables. If NULL (the default) the argument is ignored and the contents of the all argument is used instead.

labelled A function name (character string) to be used as the visual function for labelled variables. If NULL (the default) the argument is ignored and the contents of the all argument is used instead.

haven_labelled A function name (character string) to be used as the visual function for haven_labelled variables. If NULL (the default) the argument is ignored and the contents of the all argument is used instead.

numeric A function name (character string) to be used as the visual function for numeric variables. If NULL (the default) the argument is ignored and the contents of the all argument is used instead.

integer A function name (character string) to be used as the visual function for integer variables. If NULL (the default) the argument is ignored and the contents of the all argument is used instead.

logical A function name (character string) to be used as the visual function for logical variables. If NULL (the default) the argument is ignored and the contents of the all argument is used instead.

Date A function name (character string) to be used as the visual function for Date variables. If NULL (the default) the argument is ignored and the contents of the all argument is used instead.

all A function name (character string) to be used as the visual function for all variables.

Value

A list with one entry for each data class supported by makeDataReport. Each entry then contains a character string with a function name that is to be called as the visual function for that variable type.
standardVisual

Produce distribution plots using ggplot from ggplot2.

Description

Plot the distribution of a variable, depending on its data class, by use of ggplot2. Note that standardVisual is a visualFunction, compatible with the visualize and makeDataReport functions.

Usage

standardVisual(v, vnam, doEval = TRUE)

Arguments

v
  The variable (vector) to be plotted.

vnam
  The name of the variable which will appear as the title of the plot.

doEval
  If TRUE, the plot itself is returned. Otherwise, the function returns a character string containing standalone R code for producing the plot.

Details

For character, factor, logical and (haven_)labelled variables, a barplot is produced. For numeric, integer or Date variables, standardVisual produces a histogram instead. Note that for integer and numeric variables, all non-finite (i.e. NA, NaN, Inf) values are removed prior to plotting. For character, Date, factor, (haven_)labelled and logical variables, only NA values are removed.

See Also

visualize, basicVisual
summarize

summarize a variable/dataset

Description

Generic shell function that produces a summary of a variable (or for each variable in an entire dataset), given a number of summary functions and depending on its data class.

Usage

summarize(v, reportstyleOutput = FALSE, summaries = setSummaries(), ...)

Arguments

v

The variable (vector) or dataset (data.frame) to be summarized.

reportstyleOutput

Logical indicating whether the output should be formatted for inclusion in the report (escaped matrix) or not. Defaults to not.

summaries

A list of summaries to use on each supported variable type. We recommend using setSummaries for creating this list and refer to the documentation of this function for more details.

... Additional argument passed to data class specific methods.

Details

Summary functions are supplied using their names (in character strings) in the class-specific argument, e.g. characterSummaries = c("countMissing","uniqueValues") for character variables and similarly for the remaining 7 data classes (factor, Date, labelled, haven_labelled, numeric, integer, logical). Note that an overview of all available summaryFunctions can be obtained by calling allSummaryFunctions.

The default choices of summaryFunctions are available in data class specific functions, e.g. defaultCharacterSummaries() and defaultNumericSummaries(). A complete overview of all default options can be obtained by calling setSummaries()
A user defined summary function can be supplied using its function name. Note however that it should take a vector as argument and return a list on the form `list(feature="Feature name",result="The result")`. More details on how to construct valid summary functions are found in `summaryFunction`.

### Value

The return value depends on the value of `reportstyleOutput`.

If `reportstyleOutput = FALSE` (the default): If `v` is a variable, a list of `summaryResult` objects, one `summaryResult` for each summary function called on `v`. If `v` is a dataset, then `summarize()` returns a list of lists of `summaryResult` objects instead; one list for each variable in `v`.

If `reportstyleOutput = TRUE`: If `v` is a single variable: A matrix with two columns, `feature` and `result` and one row for each summary function that was called. Character strings in this matrix are escaped such that they are ready for Rmarkdown rendering.

If `v` is a full dataset: A list of matrices as described above, one for each variable in the dataset.

### References


### See Also

`setSummaries`, `summaryFunction`, `allSummaryFunctions`, `summaryResult`, `defaultCharacterSummaries`, `defaultFactorSummaries`, `defaultLabelledSummaries`, `defaulthavenlabelledSummaries`, `defaultNumericSummaries`, `defaultIntegerSummaries`, `defaultLogicalSummaries`

### Examples

```r
#Default summary for a character vector:
charV <- c("a", "b", "c", "a", "a", NA, "b", "0")
summarize(charV)

#Inspect default character summary functions:
defaultCharacterSummaries()

#Define a new summary function and add it to the summary for character vectors:
countZeros <- function(v, ...) {
 res <- length(which(v == 0))
 summaryResult(list(feature="No. zeros", result = res, value = res))
}
summarize(charV,
 summaries = setSummaries(character = defaultCharacterSummaries(add = "countZeros")))

#Does nothing, as intV is not affected by characterSummaries
intV <- c(0:10)
summarize(intV,
 summaries = setSummaries(character = defaultCharacterSummaries(add = "countZeros")))

#But supplying the argument for integer variables changes the summary:
```
```r
summaryFunction(intV, summaries = setSummaries(integer = "countZeros"))

Summarize a full dataset:
data(cars)
summarize(cars)

Summarize a variable and obtain report-style output (formatted for markdown)
summarize(charV, reportstyleOutput = TRUE)
```

---

**summaryFunction**

Create an object of class summaryFunction

**Description**

Convert a function, f, into an S3 summaryFunction object. This adds f to the overview list returned by an `allSummaryFunctions()` call.

**Usage**

```r
summaryFunction(f, description, classes = NULL)
```

**Arguments**

- **f**: A function. See details and examples below for the exact requirements of this function.
- **description**: A character string describing the summary returned by f. If NULL (the default), the name of f will be used instead.
- **classes**: The classes for which f is intended to be called. If NULL (the default), one of two things happens. If f is not a S3 generic function, the classes attribute of f will be an empty character string. If f is a S3 generic function, an automatic look-up for methods will be conducted, and the classes attribute will then be filled out automatically. Note that the function `allClasses` (listing all classes used in `dataMaid`) might be useful.

**Details**

`summaryFunction` represents the functions used in `summarize` and `makeDataReport` for summarizing the features of variables in a dataset.

An example of defining a new `summaryFunction` is given below. Note that the minimal requirements for such a function (in order for it to be compatible with `summarize()` and `makeDataReport()`) is the following input/output-structure: It must input at least two arguments, namely v (a vector variable) and .... Additional implemented arguments from `summarize()` and `makeDataReport()` include `maxDecimals`, see e.g. the pre-defined `summaryFunction minMax` for more details about how this arguments should be used. The output must be a list with at least the two entries `$feature` (a short character string describing what was summarized) and `$result` (a value or a character string with the result of the summarization). However, if the result of a `summaryFunction` is furthermore
converted to a `summaryResult` object, a `print()` method also becomes available for consistent formatting of `summaryFunction` results.

Note that all available `summaryFunction`s are listed by the call `allSummaryFunctions()` and we recommend looking into these function, if more knowledge about `summaryFunction` is required.

**Value**

A function of class `summaryFunction` which has to attributes, namely `classes` and `description`.

**See Also**

`allSummaryFunctions`, `summarize`, `makeDataReport`, `checkResult`

**Examples**

```r
#Define a valid summaryFunction that can be called from summarize()
#and makeDataReport(). This function counts how many zero entries a given
#variable has:
countZeros <- function(v, ...) {
 res <- length(which(v == 0))
 summaryResult(list(feature = "No. zeros", result = res, value = res))
}

#Convert it to a summaryFunction object. We don't count zeros for
#logical variables, as they have a different meaning here (FALSE):
countZeros <- summaryFunction(countZeros, description = "Count number of zeros",
classes = setdiff(allClasses(), "logical"))

#Call it directly :
countZeros(c(0, 0, 0, 1:100))

#Call it via summarize():
data(cars)
summarize(cars, numericSummaries = c(defaultNumericSummaries(),
 "countZeros"))

#Note that countZeros now appears in a allSummaryFunctions() call:
allSummaryFunctions()
```

**summaryResult**

Create object of class `summaryResult`

**Description**

Convert a list resulting from the summaries performed in a `summaryFunction` into a `summaryResult` object, thereby supplying it with a `print()` method.
Usage

```r
summaryResult(ls)
```

Arguments

- **ls**
  A list with entries $feature (a character string describing what summary was obtained), $result (the result of the summary, either a value from the variable, a numeric or a character string) and $value (the result in its most raw format, often identical to the $result input).

Value

A S3 object of class `summaryResult`, identical to the inputted list, `ls`, except for its class attribute.

See Also

- `summaryFunction`

---

### tableVisual

#### Produce tables for the `makeDataReport` visualizations.

**Description**

Produce a table of the distribution of a categorical (character, labelled, haven_labelled or factor) variable. Note that `tableVisual` is a `visualFunction`, compatible with the `visualize` and `makeDataReport` functions.

#### Usage

```r
tableVisual(v, vnam, doEval = TRUE)
```

#### Arguments

- **v**
  The variable (vector) to be plotted.

- **vnam**
  The name of the variable.

- **doEval**
  If TRUE, the table itself is returned. Otherwise, the function returns a character string containing standalone R code for producing the table.

#### See Also

- `visualize`, `basicVisual`, `standardVisual`
testData

Examples

```r
Not run:
#Save a variable
myVar <- c("red", "blue", "red", "red", NA)

#Plot a variable
tableVisual(myVar, "MyVar")

#Produce code for plotting a variable
tableVisual(myVar, "MyVar", doEval = FALSE)

End(Not run)
```

---

**testData**  
*Extended example data to test the features of dataMaid*

**Description**

A dataset of constructed data used as test bed when using dataMaid for identifying potential errors in a dataset.

**Usage**

testData

**Format**

A data frame with 15 rows and 14 variables.

- **charVar**  A character vector with a single missing observation.
- **factorVar**  A factor vector with a miscoded missing observation, 999.
- **numVar**  A numeric vector
- **intVar**  An integer vector
- **boolVar**  A logical vector with three missing observations.
- **keyVar**  A character vector with unique codes for each observation.
- **emptyVar**  A numeric vector where all entries are identical.
- **numOutlierVar**  A numeric vector with a possible outlier (100).
- **smartNumVar**  A numeric vector that takes only two different values.
- **cprVar**  A character vector with levels in the format of Danish CPR numbers (social security numbers).
- **cprKeyVar**  A character vector with levels in the format of Danish CPR numbers (social security numbers) with unique levels for each observation.
- **miscodedMissingVar**  A character vector with levels corresponding to various miscoded (non-NA) missing codes.
misclassifiedNumVar  A misclassified factor variable, where every level is a number and a many
(12) different levels are in use.

dateVar  A Date vector.

labelledVar  A labelled vector with two missing observations.

Source

Artificial data

Examples

data(testData)

toyData  *Small example data to show the features of dataMaid*

Description

An artificial dataset, intended for presenting the key features of dataMaid, which is a toolset for
identifying potential errors in a dataset.

Usage

toyData

Format

A data.frame with 15 rows and 6 variables.

pill  A factor variable with two levels ("red" and "blue") and a few (correctly coded) missing
observations. This represents the colour of a pill.

events  A numeric variable with one obvious outlier value (82), two miscoded missing values (999
and NaN) and a few correctly coded missing values. The number of previous events.

region  A factor variable where two of the levels ("other" and "OTHER" are the same word with
different case settings. Moreover, the variable includes a Stata-style miscoded missing value
("."). Used to represent geographical regions or treatment centers.

change  A numeric variable (random draws from a standard normal distribution). Representing a
change in a measured variable.

id  A factor variable with unique codes for each observation (a character string with a number
between 1 and 15), i.e. a key variable.

spotifysong  A factor variable that has the same level ("Irrelevant") for all observations, i.e. a
empty variable. The latest song played on Spotify.

Source

Artificial data
uniqueValues

References


Examples

data(toyData)

uniqueValues

summaryFunction for unique values

Description

A summaryFunction type function, intended to be called from summarize to be called from summarize, which counts the number of unique (excluding NAs) values in a variable.

Usage

uniqueValues(v, ...)

Arguments

v A variable (vector).
...
Not in use.

Value

An object of class summaryResult with the following entries: $feature ("No. unique values") and $result (the number of unique values in v).

See Also

summaryFunction, summarize, summaryResult, allSummaryFunctions

Examples

uniqueValues(c(1:3, rep(NA, 10), Inf, NaN))
variableType  

Summary function for original class

Description

A **summaryFunction** type function, intended to be called from `summarize`, which finds the original class of a variable. This is just the class for all objects but those of class `smartNum`.

Usage

```r
variableType(v, ...)
```

Arguments

- `v`  
  A variable (vector).
- `...`  
  Not in use.

Value

An object of class `summaryResult` with the following entries: `$feature` ("Variable type"), `$result` (the (original) class of `v`) and `$value` (identical to `$result`).

See Also

`summarize`

Examples

```r
For standard variables:
varX <- c(rep(c(1,2,3), each=10))
class(varX)
variableType(varX)

For smartNum variables:
smartX <- dataMaid:::smartNum(varX)
class(smartX)
variableType(smartX)
```
visualFunction

Create an object of class visualFunction

Description

Convert a function, \( f \), into an S3 visualFunction object. This adds \( f \) to the overview list returned by an \texttt{allVisualFunctions()} call.

Usage

\texttt{visualFunction(f, description, classes = NULL)}

Arguments

- \texttt{f}: A function. See details and examples below for the exact requirements of this function.
- \texttt{description}: A character string describing the visualization returned by \( f \). If \texttt{NULL} (the default), the name of \( f \) will be used instead.
- \texttt{classes}: The classes for which \( f \) is intended to be called. If \texttt{NULL} (the default), one of two things happens. If \( f \) is not a S3 generic function, the \texttt{classes} attribute of \( f \) will be an empty character string. If \( f \) is a S3 generic function, an automatic look-up for methods will be conducted, and the \texttt{classes} attribute will then be filled out automatically. Note that the function \texttt{allClasses} (listing all classes used in \texttt{dataMaid}) might be useful.

Details

\texttt{visualFunction} represents the functions used in \texttt{visualize} and \texttt{makeDataReport} for plotting the distributions of the variables in a dataset.

An example of defining a new \texttt{visualFunction} is given below. Note that the minimal requirements for such a function (in order for it to be compatible with \texttt{visualize()} and \texttt{makeDataReport()}) is the following input/output-structure: It must input exactly the following three arguments, namely \( v \) (a vector variable), \( v\text{nam} \) (a character string with the name of the variable) and \( doEval \) (logical). The last argument is supposed to control whether the function produces a plot in the graphic device (if \texttt{doEval = TRUE}) or instead returns a character string including \texttt{R} code for generating such a plot. In the latter setting, the code must be stand-alone, that is, it cannot depend on object available in an environment. In practice, this will typically imply that the data variable is included in the code snip. It is not strictly necessary to implement the \texttt{doEval = TRUE} setting for the \texttt{visualFunction} to be compatible with \texttt{makeDataReport}, but we recommend doing it anyway such that the function can also be used interactively.

Note that all available \texttt{visualFunction}s are listed by the call \texttt{allVisualFunctions()} and we recommend looking into these function, if more knowledge about \texttt{visualFunction}s is required.

Value

A function of class \texttt{visualFunction} which has to attributes, namely \texttt{classes} and \texttt{description}.
See Also

`allVisualFunctions`, `visualize`, `makeDataReport`

Examples

```r
Defining a new visualFunction:
mosaicVisual <- function(v, vnam, doEval) {
 thisCall <- call("mosaicplot", table(v), main = vnam, xlab = "")
 if (doEval) {
 return(eval(thisCall))
 } else return(deparse(thisCall))
}
mosaicVisual <- visualFunction(mosaicVisual, description = "Mosaicplots from graphics",
 classes = allClasses())

mosaicVisual is now included in a allVisualFunctions() call:
allVisualFunctions()

Create a mosaic plot:
ABCvar <- c(rep("a", 10), rep("b", 20), rep("c", 5))
mosaicVisual(ABCvar, "ABCvar", TRUE)

Create a character string with the code for a mosaic plot:
mosaicVisual(ABCvar, "ABCVar", FALSE)

Extract or set description of a visualFunction:
description(mosaicVisual)
description(mosaicVisual) <- "A cubist version of a pie chart"
description(mosaicVisual)
```

visualize  Produce distribution plots

Description

Generic shell function that calls a plotting function in order to produce a marginal distribution plot for a variable (or for each variable in a dataset). What type of plot is made might depend on the data class of the variable.

Usage

`visualize(v, vnam = NULL, visuals = setVisuals(), doEval = TRUE, ...)"
Arguments

- **v**
  The variable (vector) or dataset (data.frame) which is to be plotted.

- **vnam**
  The name of the variable. This name might be printed on the plots, depending on the choice of plotting function. If not supplied, it will default to the name of `v`.

- **visuals**
  A list of visual functions to use on each supported variable type. We recommend using `setVisuals` for creating this list and refer to the documentation of this function for more details. This function allows for choosing variable-type dependent visuals. However, if `visualize()` is called on a full dataset, all visualizations must be of the same type and therefore, the `all` argument of `setVisuals` is used.

- **doEval**
  A logical. If `TRUE` (the default), `visualize` has the side effect of producing a plot (or multiple plots, if `v` is a data.frame). Otherwise, `visualize` returns a character string containing R-code for producing the plot (or, when `v` is a data.frame, a list of such character strings).

- ... Additional arguments used for class-specific choices of visual functions (see details).

Details

Visual functions can be supplied using their names (in character strings) using `setVisuals`. Note that only a single visual function is allowed for each variable class. The default visual settings can be inspected by calling `setVisuals()`. An overview of all available `visualFunction` can be obtained by calling `allVisualFunctions`.

A user defined visual function can be supplied using its function name. Details on how to construct valid visual functions are found in `visualFunction`.

References


See Also

- `setVisuals`, `allVisualFunctions`, `standardVisual`, `basicVisual`

Examples

# Standard use: Return standalone code for plotting a function:
visualize(c(1:10), "Variable 1", doEval = FALSE)

# Define a new visualization function and call it using `visualize` either
# using `allVisual` or a class specific argument:
mosaicVisual <- function(v, vnam, doEval) {
  thisCall <- call("mosaicplot", table(v), main = vnam, xlab = "")
  if (doEval) {
    return(eval(thisCall))
  } else {
    thisCall
  }
}

# Call it using `allVisual` or a class specific argument:
mosaicVisual(c(1:10), "Variable 1", doEval = FALSE)
whoami_available

Find out if the whoami package binaries is installed (git + whoami)

Description

Find out if the whoami package binaries is installed (git + whoami)
whoami_available

Usage

whoami_available()

Value

logical that is TRUE if whoami and git can be found
Index

* datasets
  artData, 6
  bigPresidentData, 8
  exampleData, 28
  presidentData, 49
  testData, 63
  toyData, 64

* misc
  check, 10

allCheckFunctions, 4, 5, 6, 11, 13, 30–32, 34–40, 53
allClasses, 4, 12, 60, 67
allSummaryFunctions, 4, 5, 6, 10, 17, 49–51, 55, 58, 59, 61, 63
allVisualFunctions, 4, 5, 57, 68, 69
artData, 6
barplot, 7
basicVisual, 7, 57, 62, 69
basicVisualCFLB, 8
bigPresidentData, 8
boxplot, 35, 36

centralValue, 9, 18, 19, 21–24, 26, 27
check, 10, 12, 13, 17–26, 30–40, 47
checkFunction, 4, 11, 12, 15, 16, 27, 30–40, 46, 47
checkResult, 11, 13, 15, 30–40, 61
classes, 16
classes<- (classes), 16
countMissing, 16, 18, 19, 21–24, 26, 27
defaultCharacterChecks, 11, 17, 53
defaultCharacterSummaries, 18, 55, 59
defaultDateChecks, 11, 18, 53
defaultDateSummaries, 19, 55
defaultFactorChecks, 11, 20, 53
defaultFactorSummaries, 20, 55, 59
defaultHavenlabelledChecks, 11, 21, 53
defaultHavenlabelledSummaries, 21, 55, 59
defaultIntegerChecks, 11, 22, 53
defaultIntegerSummaries, 23, 55, 59
defaultLabelledChecks, 11, 23, 53
defaultLabelledSummaries, 24, 55, 59
defaultLogicalChecks, 11, 25, 53
defaultLogicalSummaries, 25, 55, 59
defaultNumericChecks, 11, 26, 53
defaultNumericSummaries, 26, 55, 59
description, 27
description<- (description), 27

e.exampleData, 28
identifyCaseIssues, 30
identifyLoners, 31
identifyMissing, 13, 32
identifyNums, 33
identifyOutliers, 34
identifyOutliersTBStyle, 35
identifyWhitespace, 36
isCPR, 37
isNotEmpty (isSingular), 39
isKey, 38
isSingular, 39
isSupported, 40

makeCodebook, 41
makeDataReport, 7, 12, 13, 16–26, 37–40, 41, 47, 52–55, 57, 60–62, 67, 68
mc, 35
messageGenerator, 13, 46
minMax, 19, 23, 27, 48, 60
plot, 7
presidentData, 49
quantile, 50
quartiles, 19, 23, 27, 50

72
INDEX

refCat, 51
render, 43, 52, 52

setChecks, 11, 44, 52
setSummaries, 44, 54, 58, 59
setVisuals, 44, 55, 69
sort, 10
standardVisual, 7, 57, 62, 69
summarize, 9, 10, 16, 17, 48–51, 58, 60, 61, 65, 66
summaryFunction, 5, 10, 16, 17, 27, 49–51, 59, 60, 61, 62, 65, 66
summaryResult, 10, 17, 49–51, 59, 61, 61, 65

tableVisual, 62
testData, 63
toyData, 64

unclass, 35, 36
uniqueValues, 18, 19, 21–24, 26, 27, 65

variableType, 18, 19, 21–24, 26, 27, 66
visualFunction, 6, 7, 16, 27, 57, 62, 67, 69
visualize, 7, 57, 62, 67, 68, 68

whoami_available, 70