Package ‘dcov’

June 25, 2020

Type Package
Title A Fast Implementation of Distance Covariance
Version 0.1.1
Author Hang Weiqiang <e0010758@u.nus.edu>
Maintainer Hang Weiqiang <e0010758@u.nus.edu>
License GPL-2
Encoding UTF-8
LazyData true
Imports Rcpp
LinkingTo Rcpp, RcppArmadillo
RoxygenNote 6.1.1
NeedsCompilation yes
Repository CRAN
Date/Publication 2020-06-25 21:30:02 UTC

R topics documented:

centering ... 2
dcor.test ... 2
dcor.t.test ... 3
dcov .. 4
dcov2d ... 5
mdcov .. 6
pcov .. 6
pdcov .. 7

Index 9
centering

Centering method This method implements the double centering and U-centering during computing distance covariance.

Description

Centering method This method implements the double centering and U-centering during computing distance covariance.

Usage

centering(D, type = c("V", "U"))
centering_from_data(x, type = c("V", "U"))

Arguments

D : the pairwise distance matrix

Type : "V" or "U". "V" for double centering. "U" for U-centering.

x : the matrix of x

Examples

x = matrix(rnorm(200),100,2)
D = as.matrix(dist(x))
A = centering(D, 'U')
A = centering_from_data(x)

dcor.test

Permutation test of distance correlation and partial distance correlation

Description

Simple independence test based on data permutation using distance correlation and partial distance correlation.

Usage

dcor.test(x, y, R = 500, type = c("V", "U"))
pdcor.test(x, y, z, R = 500, type = c("U", "V"))
Arguments

x the data of x
y the data of y
R the number of replicates
type "U" or "V"
z the data of controlling variables. Given z, pdcor between x and y is calculated.

Examples

```r
n = 200
z = rnorm(n)
x = rnorm(n)*z
y = rnorm(n)*z
res1 = dcor.ttest(x, y, R=500)
res2 = pdcor.ttest(x, y, z, R=500)
```

dcor.ttest

Distance correlation T-test It uses the result of U-statistic distance correlation to test independence for high dimensional data

Description

Distance correlation T-test It uses the result of U-statistic distance correlation to test independence for high dimensional data

Usage

dcor.ttest(x, y)

Arguments

x data of x
y data of y

Examples

```r
n = 200
x = rnorm(n)
y = rnorm(n)
res = dcor.ttest(x, y)
```
Description

This method implements the method to compute the value of distance covariance proposed by Székely et al. (2007) and Székely and Rizzo (2013) by Armadillo library. For distance covariance between two one dimensional variables, the fast algorithm proposed by Huo and Székely (2016) is used.

Usage

```r
dcov(x, y, type = c("V", "U"))
dcor(x, y, type = c("V", "U"))
```

Arguments

- `x`: the matrix of x
- `y`: the matrix of y
- `type`: "V" or "U", for V- or U-statistics of distance covariance or correlation. The default value is "V".

Note

Note that the result of `dcov(x,y,"V")` and `dcor(x,y,"V")` is same with the result of `energy::dcov(x,y)^2` and `energy::dcor(x,y)^2`. The result of `dcov(x,y,"U")` and `dcor(x,y,"U")` is same with the result of `energy::dcovU(x,y)` and `energy::bcdcor(x,y)`.

References

See Also

dcov2d
Examples

\[\text{x = matrix(rnorm(200), 100, 2)} \]
\[\text{y = matrix(rnorm(200), 100, 2)} \]
\[\text{dcov(x, y)} \]
\[\text{dcor(x, y)} \]

\hline
\text{dcov2d} & \text{Fast distance covariance for two bivariate variables} \\
\hline

Description

This method implements the fast algorithm proposed by Huo and Székely. The result of dcov2d and dcor2d is same with the result of energy::dcov2d and energy::dcor2d.

Usage

\[\text{dcov2d(x, y, type = c("V", "U")]} \]
\[\text{dcor2d(x, y, type = c("V", "U")]} \]

Arguments

\[\text{x} \quad \text{the vector of x} \]
\[\text{y} \quad \text{the vector of y} \]
\[\text{type} \quad \text{"V" or "U", for V- or U-statistics of distance covariance or correlation. The default value is "V".} \]

References

Examples

\[\text{x = rnorm(200)} \]
\[\text{y = rnorm(200)} \]
\[\text{dcov2d(x, y)} \]
\[\text{dcor2d(x, y)} \]
mdcov

Marginal distance covariance This function implements the method of calculating distance covariance between y and each column in x.

Description

Marginal distance covariance This function implements the method of calculating distance covariance between y and each column in x.

Usage

```r
mdcov(y, x, type = c("V", "U"))
mdcor(y, x, type = c("V", "U"))
```

Arguments

- **y**
 - the matrix of y
- **x**
 - the matrix of x, distance covariance is calculated for each variable in x with y.
- **type**
 - "V" or "U", for V- or U-statistics of distance covariance or correlation. The default value is "V".

Examples

```r
n = 200; p = 10
y = matrix(rnorm(n*2),n,2)
x = matrix(rnorm(n*p),n,p)
res1 = mdcov(y,x)
res2 = numeric(p)
for(j in 1:p){res2[j] = dcov::dcov(y,x[,j])}
# res1 is same with res2
res1 - res2
res3 = mdcor(y,x)
res4 = numeric(p)
for(j in 1:p){res4[j] = dcov::dcor(y,x[,j])}
# res3 is same with res4
res3 - res4
```

pcov

Projection covariance between two random vectors This function implements the projection correlation in Zhu et al.(2017).

Description

Projection covariance between two random vectors This function implements the projection correlation in Zhu et al.(2017).
Usage

pcov(x, y)

Arguments

x the matrix of x
y the matrix of y

References

Examples

x = matrix(rnorm(200), 100, 2)
y = matrix(rnorm(200), 100, 2)
pcov(x, y)

Description

This method implements the method to compute the value of partial distance covariance proposed by Székely and Rizzo, 2014.

Usage

pdcov(x, y, z, type = c("U", "V"))

Arguments

x the matrix of x
y the matrix of y
z the matrix of z. Given the value of z, pdcov or pdcor between x and y is calculated.
type "V" or "U", for V- or U-statistics of partial distance covariance or correlation. The default value is "U".

References

Examples
 z = matrix(rnorm(400),200,2)
 x = matrix(rnorm(400),200,2)*z
 y = matrix(rnorm(400),200,2)*z
 pdcov(x,y,z)
 pdcor(x,y,z)
Index

centering, 2
centering_from_data (centering), 2

dcor (dcov), 4
dcor.test, 2
dcor.ttest, 3
dcor2d (dcov2d), 5
dcov, 4
dcov2d, 5

mdcor (mdcov), 6
mdcov, 6

pcov, 6
pdcor (pdcov), 7
pdcor.test (dcor.test), 2
pdcov, 7