Package ‘densityClust’

March 6, 2022

Type Package
Title Clustering by Fast Search and Find of Density Peaks
Version 0.3.2
Maintainer Thomas Lin Pedersen <thomasp85@gmail.com>
Description An improved implementation (based on k-nearest neighbors) of the
density peak clustering algorithm, originally described by Alex Rodriguez
and Alessandro Laio (Science, 2014 vol. 344) <DOI:10.1126/science.1242072>.
It can handle large datasets (> 100,000 samples) very efficiently. It was
initially implemented by Thomas Lin Pedersen, with inputs from Sean Hughes
and later improved by Xiaojie Qiu to handle large datasets with kNNs.
License GPL (>= 2)
Suggests testthat, covr
LinkingTo Rcpp
Imports Rcpp, FNN, Rtsne, ggplot2, ggrepel, grDevices, gridExtra,
RColorBrewer
RoxygenNote 6.0.1
URL https://github.com/thomasp85/densityClust
BugReports https://github.com/thomasp85/densityClust/issues
NeedsCompilation yes
Author Thomas Lin Pedersen [aut, cre],
Sean Hughes [aut],
Xiaojie Qiu [aut]
Repository CRAN
Date/Publication 2022-03-06 19:10:02 UTC

R topics documented:

densityClust-package ... 2
clustered ... 3
clusters .. 4
densityClust-package

Cluster by fast search and find of density peaks

Description

This package implements the clustering algorithm described by Alex Rodriguez and Alessandro Laio (2014). It provides the user with tools for generating the initial rho and delta values for each observation as well as using these to assign observations to clusters. This is done in two passes so the user is free to reassign observations to clusters using a new set of rho and delta thresholds, without needing to recalculate everything.

Plotting

Two types of plots are supported by this package, and both mimics the types of plots used in the publication for the algorithm. The standard plot function produces a decision plot, with optional colouring of cluster peaks if these are assigned. Furthermore plotMDS() performs a multidimensional scaling of the distance matrix and plots this as a scatterplot. If clusters are assigned observations are coloured according to their assignment.

Cluster detection

The two main functions for this package are densityClust() and findClusters(). The former takes a distance matrix and optionally a distance cutoff and calculates rho and delta for each observation. The latter takes the output of densityClust() and make cluster assignment for each observation based on a user defined rho and delta threshold. If the thresholds are not specified the user is able to supply them interactively by clicking on a decision plot.

Author(s)

Maintainer: Thomas Lin Pedersen <thomasp85@gmail.com>

Authors:

• Sean Hughes
• Xiaojie Qiu <xqiu@uw.edu>

References

clustered

See Also
densityClust(), findClusters(), plotMDS()

Examples
irisDist <- dist(iris[,1:4])
irisClust <- densityClust(irisDist, gaussian=TRUE)
plot(irisClust) # Inspect clustering attributes to define thresholds

irisClust <- findClusters(irisClust, rho=2, delta=2)
plotMDS(irisClust)
split(iris[,5], irisClust$clusters)

clustered

Check whether a densityCluster object have been clustered

Description
This function checks whether findClusters() has been performed on the given object and returns a boolean depending on the outcome

Usage
clustered(x)

S3 method for class 'densityCluster'
clustered(x)

Arguments

x A densityCluster object

Value
TRUE if findClusters() have been performed, otherwise FALSE
clusters Extract cluster membership from a densityCluster object

Description

This function allows the user to extract the cluster membership of all the observations in the given densityCluster object. The output can be formatted in two ways as described below. Halo observations can be chosen to be removed from the output.

Usage

clusters(x, ...)

S3 method for class 'densityCluster'
clusters(x, as.list = FALSE, halo.rm = TRUE, ...)

Arguments

x The densityCluster object. findClusters() must have been performed prior to this call to avoid throwing an error.

... Currently ignored

as.list Should the output be in the list format. Defaults to FALSE

halo.rm Logical. should halo observations be removed. Defaults to TRUE

Details

Two formats for the output are available. Either a vector of integers denoting for each observation, which cluster the observation belongs to. If halo observations are removed, these are set to NA. The second format is a list with a vector for each group containing the index for the member observations in the group. If halo observations are removed their indexes are omitted. The list format correspond to the following transform of the vector format split(1:length(clusters),clusters), where clusters are the cluster information in vector format.

Value

A vector or list with cluster memberships for the observations in the initial distance matrix
densityClust

Calculate clustering attributes based on the densityClust algorithm

Description

This function takes a distance matrix and optionally a distance cutoff and calculates the values necessary for clustering based on the algorithm proposed by Alex Rodrigues and Alessandro Laio (see references). The actual assignment to clusters are done in a later step, based on user defined threshold values. If a distance matrix is passed into distance the original algorithm described in the paper is used. If a matrix or data.frame is passed instead it is interpreted as point coordinates and rho will be estimated based on k-nearest neighbors of each point (rho is estimated as exp(-mean(x)) where x is the distance to the nearest neighbors). This can be useful when data is so large that calculating the full distance matrix can be prohibitive.

Usage

densityClust(distance, dc, gaussian = FALSE, verbose = FALSE, ...)

Arguments

distance A distance matrix or a matrix (or data.frame) for the coordinates of the data. If a matrix or data.frame is used the distances and local density will be estimated using a fast k-nearest neighbor approach.
dc A distance cutoff for calculating the local density. If missing it will be estimated with estimateDc(distance)
gaussian Logical. Should a gaussian kernel be used to estimate the density (defaults to FALSE)
verbose Logical. Should the running details be reported
...
 Additional parameters passed on to get.knn

Details

The function calculates rho and delta for the observations in the provided distance matrix. If a distance cutoff is not provided this is first estimated using estimateDc() with default values.

The information kept in the densityCluster object is:

rho A vector of local density values
delta A vector of minimum distances to observations of higher density
distance The initial distance matrix
dc The distance cutoff used to calculate rho
threshold A named vector specifying the threshold values for rho and delta used for cluster detection
peaks A vector of indexes specifying the cluster center for each cluster
clusters A vector of cluster affiliations for each observation. The clusters are referenced as indexes in the peaks vector.
halo A logical vector specifying for each observation if it is considered part of the halo.
knn_graph kNN graph constructed. It is only applicable to the case where coordinates are used as input. Currently it is set as NA.
nearest_higher_density_neighbor index for the nearest sample with higher density. It is only applicable to the case where coordinates are used as input.
nn.index indices for each cell’s k-nearest neighbors. It is only applicable for the case where coordinates are used as input.
nn.dist distance to each cell’s k-nearest neighbors. It is only applicable for the case where coordinates are used as input.

Before running findClusters the threshold, peaks, clusters and halo data is NA.

Value

A densityCluster object. See details for a description.

References

See Also

estimateDc(), findClusters()

Examples

irisDist <- dist(iris[,1:4])
irisClust <- densityClust(irisDist, gaussian=TRUE)
plot(irisClust) # Inspect clustering attributes to define thresholds

irisClust <- findClusters(irisClust, rho=2, delta=2)
plotMDS(irisClust)
split(iris[,5], irisClust$clusters)

estimateDc
Estimate the distance cutoff for a specified neighbor rate

Description

This function calculates a distance cutoff value for a specific distance matrix that makes the average neighbor rate (number of points within the distance cutoff value) fall between the provided range. The authors of the algorithm suggests aiming for a neighbor rate between 1 and 2 percent, but also states that the algorithm is quite robust with regards to more extreme cases.
findClusters

Usage

estimateDc(distance, neighborRateLow = 0.01, neighborRateHigh = 0.02)

Arguments

distance A distance matrix
neighborRateLow The lower bound of the neighbor rate
neighborRateHigh The upper bound of the neighbor rate

Value

A numeric value giving the estimated distance cutoff value

Note

If the number of points is larger than 448 (resulting in 100,128 pairwise distances), 100,128 distance pairs will be randomly selected to speed up computation time. Use `set.seed()` prior to calling `estimateDc` in order to ensure reproducible results.

References

Examples

irisDist <- dist(iris[,1:4])
estimateDc(irisDist)

findClusters Detect clusters in a densityCluster object

Description

This function uses the supplied rho and delta thresholds to detect cluster peaks and assign the rest of the observations to one of these clusters. Furthermore core/halo status is calculated. If either rho or delta threshold is missing the user is presented with a decision plot where they are able to click on the plot area to set the threshold. If either rho or delta is set, this takes precedence over the value found by clicking.
Usage

findClusters(x, ...)

S3 method for class 'densityCluster'
findClusters(x, rho, delta, plot = FALSE,
 peaks = NULL, verbose = FALSE, ...)

Arguments

x A densityCluster object as produced by `densityClust()`
...
 rho The threshold for local density when detecting cluster peaks
delta The threshold for minimum distance to higher density when detecting cluster
 peaks
plot Logical. Should a decision plot be shown after cluster detection
peaks A numeric vector indicates the index of density peaks used for clustering. This
 vector should be retrieved from the decision plot with caution. No checking
 involved.
verbose Logical. Should the running details be reported

Value

A densityCluster object with clusters assigned to all observations

References

Examples

```r
irisDist <- dist(iris[,1:4])
irisClust <- densityClust(irisDist, gaussian=TRUE)
plot(irisClust) # Inspect clustering attributes to define thresholds

irisClust <- findClusters(irisClust, rho=2, delta=2)
plotMDS(irisClust)
split(iris[,5], irisClust$clusters)
```
Description

Generate a single panel of up to three diagnostic plots for a densityClust object.

Usage

plotDensityClust(x, type = "all", n = 20, mds = NULL, dim.x = 1, dim.y = 2, col = NULL, alpha = 0.8)

Arguments

x
A densityCluster object as produced by densityClust

type
A character vector designating which figures to produce. Valid options include "dg" for a decision graph of δ vs. ρ, "gg" for a gamma graph depicting the decrease of $\gamma (= \delta \ast \rho)$ across samples, and "mds", for a Multi-Dimensional Scaling (MDS) plot of observations. Any combination of these three can be included in the vector, or to produce all plots, specify type = "all".

n
Number of observations to plot in the gamma graph.

mds
A matrix of scores for observations from a Principal Components Analysis or MDS. If omitted, and a MDS plot has been requested, one will be calculated.

dim.x, dim.y
The numbers of the dimensions to plot on the x and y axes of the MDS plot.

col
Vector of colors for clusters.

alpha
Value in $0:1$ controlling transparency of points in the decision graph and MDS plot.

Value

A panel of the figures specified in type are produced. If designated, clusters are color-coded and labelled. If present in x, the rho and delta thresholds are designated in the decision graph by a set of solid black lines.

Author(s)

Eric Archer <eric.archer@noaa.gov>

Examples

data(iris)
data.dist <- dist(iris[, 1:4])
pca <- princomp(iris[, 1:4])

Run initial density clustering
dens.clust <- densityClust(data.dist)
plotMDS

Plot observations using multidimensional scaling and colour by cluster

Description

This function produces an MDS scatterplot based on the distance matrix of the densityCluster object (if there is only the coordinates information, a distance matrix will be calculate first), and, if clusters are defined, colours each observation according to cluster affiliation. Observations belonging to a cluster core is plotted with filled circles and observations belonging to the halo with hollow circles. This plotting is not suitable for running large datasets (for example datasets with > 1000 samples). Users are suggested to use other methods, for example tSNE, etc. to visualize their clustering results too.

Usage

plotMDS(x, ...)

Arguments

x
A densityCluster object as produced by densityClust()

...
Additional parameters. Currently ignored

See Also

densityClust() for creating densityCluster objects, and plotTSNE() for an alternative plotting approach.
Examples

```r
irisDist <- dist(iris[,1:4])
irisClust <- densityClust(irisDist, gaussian=TRUE)
plot(irisClust) # Inspect clustering attributes to define thresholds

irisClust <- findClusters(irisClust, rho=2, delta=2)
plotMDS(irisClust)
split(iris[,5], irisClust$clusters)
```

Description

This function produces a t-SNE scatterplot based on the distance matrix of the densityCluster object (if there is only the coordinates information, a distance matrix will be calculated first), and, if clusters are defined, colours each observation according to cluster affiliation. Observations belonging to a cluster core is plotted with filled circles and observations belonging to the halo with hollow circles.

Usage

```r
plotTSNE(x, ...)
```

Arguments

- `x`: A densityCluster object as produced by `densityClust()`
- `...`: Additional parameters. Currently ignored

See Also

- `densityClust()` for creating densityCluster objects, and `plotMDS()` for an alternative plotting approach.

Examples

```r
irisDist <- dist(iris[,1:4])
irisClust <- densityClust(irisDist, gaussian=TRUE)
plot(irisClust) # Inspect clustering attributes to define thresholds

irisClust <- findClusters(irisClust, rho=2, delta=2)
plotTSNE(irisClust)
split(iris[,5], irisClust$clusters)
```
Index

clustered, 3
clusters, 4
densityClust, 5, 9
densityClust(), 2, 3, 8, 10, 11
densityClust-package, 2
estimateDc, 6
estimateDc(), 5, 6
findClusters, 7
findClusters(), 2–4, 6
get.knn, 5
plotDensityClust, 9
plotMDS, 10
plotMDS(), 2, 3, 11
plotTSNE, 11
plotTSNE(), 10
set.seed(), 7