Package ‘dfadjjust’

August 10, 2021

Title Degrees of Freedom Adjustment for Robust Standard Errors
Version 1.0.3
Description Computes small-sample degrees of freedom adjustment for heteroskedasticity robust standard errors, and for clustered standard errors in linear regression. See Imbens and Kolesár (2016) <doi:10.1162/REST_a_00552> for a discussion of these adjustments.
Depends R (>= 3.6.0)
License MIT + file LICENSE
Encoding UTF-8
Suggests testthat (>= 2.1.0), sandwich, knitr, rmarkdown, spelling, formatR
RoxygenNote 7.1.1
URL https://github.com/kolesarm/Robust-Small-Sample-Standard-Errors
BugReports https://github.com/kolesarm/Robust-Small-Sample-Standard-Errors/issues
Language en-US
VignetteBuilder knitr
NeedsCompilation no
Author Michal Kolesár [aut, cre] (<https://orcid.org/0000-0002-2482-7796>)
Maintainer Michal Kolesár <kolesarmi@googlemail.com>
Repository CRAN
Date/Publication 2021-08-10 12:40:02 UTC

R topics documented:

 dfadjjustSE .. 2

Index 4
dfadjustSE

Standard Errors with adjusted degrees of freedom

Description

Standard Errors with adjusted degrees of freedom

Usage

```r
dfadjustSE(
  model,
  clustervar = NULL,
  ell = NULL,
  IK = TRUE,
  tol = 1e-09,
  rho0 = FALSE
)
```

Arguments

- `model`: Fitted model returned by the `lm` function
- `clustervar`: Factor variable that defines clusters. If `NULL` (or not supplied), the command computes heteroscedasticity-robust standard errors, rather than cluster-robust standard errors.
- `ell`: A vector of the same length as the dimension of covariates, specifying which linear combination $\ell'\beta$ of coefficients β to compute. If `NULL`, compute standard errors for each regressor coefficient.
- `IK`: Only relevant for cluster-robust standard errors. Specifies whether to compute the degrees-of-freedom adjustment using the Imbens-Kolesár (2016) method (if `TRUE`), or the Bell-McCaffrey (2002) method (if `FALSE`).
- `tol`: Numerical tolerance for determining whether an eigenvalue equals zero.
- `rho0`: Impose positive ρ when estimating the Moulton (1986) model when implementing the IK method?

Value

Returns a list with the following components

- `vcov`: Variance-covariance matrix estimator. For independent errors, it corresponds to the HC2 estimator (see MacKinnon and White, 1985 and the reference manual for the `sandwich` package). For clustered errors, it corresponds to a version the generalization of the HC2 estimator, called LZ2 in Imbens and Kolesár.
- `coefficients`: Matrix of estimated coefficients, along with HC1, and HC2 standard errors, Adjusted standard errors, and effective degrees of freedom. Adjusted standard error is HC2 standard error multiplied by $\frac{qt(0.975, df=dof)/qnorm(0.975)}{\sqrt{\text{effective dof}}}$ so that one can construct 95% confidence intervals by adding and subtracting 1.96 times the adjusted standard error.
rho, sig Estimates of ρ and σ of the Moulton (1986) model for the regression errors. Only computed if I1K method is used.

References

Examples

```r
## No clustering:
set.seed(42)
x <- sin(1:100)
y <- rnorm(100)
fm <- lm(y ~ x + I(x^2))
dfadjustSE(fm)
## Clustering, with 5 clusters
clustervar <- as.factor(c(rep(1, 40), rep(1, 20),
                        rep(2, 20), rep(3, 10), rep(4, 10)))
dfadjustSE(fm, clustervar)
```
Index

dfadjustSE, 2