Package ‘didimputation’

August 2, 2021

Type Package
Title Imputation Estimator from Borusyak, Jaravel, and Spiess (2021)
Version 0.1.0
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
LinkingTo Rcpp, RcppArmadillo
Depends R (>= 2.10), fixest (>= 0.9.0)
Imports Matrix, magrittr, Rcpp, broom, dplyr, glue, methods, rlang, stringr
Suggests haven, testthat (>= 3.0.0)
Config/testthat/edition 3
License MIT + file LICENSE
NeedsCompilation yes
Author Kyle Butts [aut, cre] (<https://orcid.org/0000-0002-9048-8059>)
Maintainer Kyle Butts <kyle.butts@colorado.edu>
Repository CRAN
Date/Publication 2021-08-02 08:10:07 UTC

R topics documented:

 df_het 2
 df_hom 3
 did_imputation 4

Index 7
df_het

Simulated data with two treatment groups and heterogenous effects

Generated using the following call: did2s::gen_data(panel = c(1990, 2020), g1 = 2000, g2 = 2010, g3 = 0, te1 = 2, te2 = 1, te3 = 0, te_m1 = 0.05, te_m2 = 0.15, te_m3 = 0)

Description

Simulated data with two treatment groups and heterogenous effects

Generated using the following call: did2s::gen_data(panel = c(1990, 2020), g1 = 2000, g2 = 2010, g3 = 0, te1 = 2, te2 = 1, te3 = 0, te_m1 = 0.05, te_m2 = 0.15, te_m3 = 0)

Usage

df_het

Format

A data frame with 31000 rows and 15 variables:

- **unit**: individual in panel data
- **year**: time in panel data
- **g**: the year that treatment starts
- **dep_var**: outcome variable
- **treat**: T/F variable for when treatment is on
- **rel_year**: year relative to treatment start. Inf = never treated.
- **rel_year_binned**: year relative to treatment start, but <=-6 and >=6 are binned.
- **unit_fe**: Unit FE
- **year_fe**: Year FE
- **error**: Random error component
- **te**: Static treatment effect = te
- **te_dynamic**: Dynamic treatment effect = te_m
- **state**: State that unit is in
- **group**: String name for group
Simulated data with two treatment groups and homogenous effects
Generated using the following call: did2s::gen_data(panel = c(1990, 2020), g1 = 2000, g2 = 2010, g3 = 0, te1 = 2, te2 = 2, te3 = 0, te_m1 = 0, te_m2 = 0, te_m3 = 0)

Description

Simulated data with two treatment groups and homogenous effects
Generated using the following call: did2s::gen_data(panel = c(1990, 2020), g1 = 2000, g2 = 2010, g3 = 0, te1 = 2, te2 = 2, te3 = 0, te_m1 = 0, te_m2 = 0, te_m3 = 0)

Usage
df_hom

Format

A data frame with 31000 rows and 15 variables:

- **unit**: individual in panel data
- **year**: time in panel data
- **g**: the year that treatment starts
- **dep_var**: outcome variable
- **treat**: T/F variable for when treatment is on
- **rel_year**: year relative to treatment start. Inf = never treated.
- **rel_year_binned**: year relative to treatment start, but <=-6 and >=6 are binned.
- **unit_fe**: Unit FE
- **year_fe**: Year FE
- **error**: Random error component
- **te**: Static treatment effect = te
- **te_dynamic**: Dynamic treatment effect = te_m
- **group**: String name for group
- **state**: State that unit is in
- **weight**: Weight from runif()
did_imputation
Borusyak, Jaravel, and Spiess (2021) Estimator

Description

Treatment effect estimation and pre-trend testing in staggered adoption diff-in-diff designs with an imputation approach of Borusyak, Jaravel, and Spiess (2021)

Usage

```r
did_imputation(
  data,  
yname,  
gname,  
tname,  
idname,  
first_stage = NULL,  
weights = NULL,  
wtr = NULL,  
horizon = NULL,  
pretrends = NULL
)
```

Arguments

- **data**: A data.frame
- **yname**: String. Variable name for outcome.
- **gname**: String. Variable name for unit-specific date of treatment (never-treated should be zero or NA)
- **tname**: String. Variable name for calendar period
- **idname**: String. Variable name for unique unit id
- **first_stage**: Formula for Y(0). Formula following `fixest::feols`. Fixed effects specified after "|". If not specified, then just unit and time fixed effects will be used.
- **weights**: String. Variable name for estimation weights of observations. This is used in estimating Y(0) and also augments treatment effect weights.
- **wtr**: Character vector of treatment weight names (see horizon for standard static and event-study weights)
- **horizon**: Integer vector of event_time or TRUE. This only applies if wtr is left as NULL. If specified, weighted averages/sums of treatment effects will be reported for each of these horizons separately (i.e. tau0 for the treatment period, tau1 for one period after treatment, etc.). If TRUE, all horizons are used. If wtr and horizon are null, then the static treatment effect is calculated.
- **pretrends**: Integer vector or TRUE. Which pretrends to estimate. If TRUE, all pretrends are used.
Details

The imputation-based estimator is a method of calculating treatment effects in a difference-in-
differences framework. The method estimates a model for Y(0) using untreated/not-yet-treated
observations and predicts Y(0) for the treated observations hat(Y_{it}(0)). The difference between
treated and predicted untreated outcomes Y_{it}(1) - hat(Y_{it}(0)) serves as an estimate for the treat-
ment effect for unit i in period t. These are then averaged to form average treatment effects for
groups of it.

Value

A data.frame containing treatment effect term, estimate, standard error and confidence interval.
This is in tidy format.

Examples

Load example dataset which has two treatment groups and homogeneous treatment effects

Load Example Dataset
data("df_hom", package="did2s")

Static TWFE:
You can run a static TWFE fixed effect model for a simple treatment indicator
did_imputation(data = df_hom, yname = "dep_var", gname = "g",
 tname = "year", idname = "unit")
#> # A tibble: 1 × 5
#> term estimate std.error conf.low conf.high
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 treat 2.02 0.0324 1.96 2.09

Event Study:
Or you can use relative-treatment indicators to estimate an event study estimate
did_imputation(data = df_hom, yname = "dep_var", gname = "g",
 tname = "year", idname = "unit", horizon=TRUE)
#> # A tibble: 21 × 5
#> term estimate std.error conf.low conf.high
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 0 2.12 0.0737 1.97 2.26
#> 2 1 1.86 0.0841 1.69 2.02
#> 3 2 1.99 0.0810 1.83 2.15
#> 4 3 2.00 0.0855 1.84 2.17
#> 5 4 1.95 0.0856 1.78 2.12
#> 6 5 2.04 0.0835 1.87 2.20
#> 7 6 2.03 0.0807 1.87 2.19
#> 8 7 2.03 0.0865 1.86 2.19
#> 9 8 1.98 0.0826 1.81 2.14
#> 10 9 2.12 0.0842 1.96 2.29
#> # ... with 11 more rows
Example from Cheng and Hoekstra (2013):
Here's an example using data from Cheng and Hoekstra (2013)

```r
# Castle Data
castle <- haven::read_dta("https://github.com/scunning1975/mixtape/raw/master/castle.dta")

did_imputation(data = castle, yname = "l_homicide", gname = "effyear",
               first_stage = ~ 0 | sid + year,
               tname = "year", idname = "sid")

# A tibble: 1 × 5
#  term  estimate std.error conf.low  conf.high
#1 treat  0.0798  0.0531  -0.0243   0.184
```
Index

* datasets
 df_het, 2
 df_hom, 3

df_het, 2
df_hom, 3
did_imputation, 4
fixest::feols, 4