Package ‘diffpriv’

July 18, 2017

Type Package
Title Easy Differential Privacy
Version 0.4.2
Date 2017-07-16

License MIT + file LICENSE
LazyData TRUE
Depends R (>= 3.4.0)
Imports gsl, methods, stats
URL https://github.com/brubinstein/diffpriv,
http://brubinstein.github.io/diffpriv
BugReports https://github.com/brubinstein/diffpriv/issues
RoxygenNote 6.0.1
VignetteBuilder knitr
Encoding UTF-8
Suggests randomNames, testthat, knitr, rmarkdown
Collate 'utils.R' 'bernstein_polynomials.R' 'privacy_params.R'
'mechanisms.R' 'bernstein_mechanism.R' 'diffpriv.R'
'exponential_mechanism.R' 'numeric_mechanism.R'
'gaussian_mechanism.R' 'laplace_mechanism.R'
'sensitivity_sampler.R'

NeedsCompilation no
bernstein

Fit a Bernstein polynomial approximation.

Description

Fits the basis of Bernstein polynomial functions to given real-valued function f of $[0, 1]^d$ where $d = \text{dims}$, against a regular lattice of $k + 1$ points in each dimension for given k. Note the approximation is not the iterated variant.

Usage

bernstein(f, dims, k = 10)
Arguments
- `f` a function to be approximated.
- `dims` the function `f`'s domain dimension.
- `k` the lattice resolution of approximation.

Value
- an S3 object of class `bernstein`.

References

See Also
- `predict.bernstein` for subsequent evaluation.

Examples
```r
f <- function(x) x * sin(x*10)
b <- bernstein(f, dims = 1)
xs <- seq(from=0, to=1, length=50)
mean((f(xs) - predict(b,xs))^2)
```

Description
The `diffpriv` package is a collection of generic tools for privacy-aware data science, under the formal framework of differential privacy. A differentially-private mechanism can release responses to untrusted third parties, models fit on privacy-sensitive data. Due to the formal worst-case nature of the framework, however, mechanism development typically requires theoretical analysis. `diffpriv` offers a turn-key approach to differential privacy.

General-purpose mechanisms
Differential privacy’s popularity is owed in part to a number of generic mechanisms for privatizing non-private target functions. Virtual S4 class `DPMech-class` captures common features of these mechanisms and is superclass to:

- `DPMechLaplace`: the Laplace mechanism of Dwork et al. (2006) for releasing numeric vectors;
• **DPMechExponential**: the exponential mechanism of McSherry and Talwar (2007) for releasing solutions to optimizations, over numeric or non-numeric sets; and

• More mechanisms coming soon. Users can also develop new mechanisms by subclassing **DPMech-class**.

DPMech-class-derived objects are initialized with a problem-specific non-private target function. Subsequently, the `releaseResponse` method can privatize responses of target on input datasets. The level of corresponding privatization depends on given privacy parameters `DPParamsEps` or derived parameters object.

Privatize anything with sensitivity measurement

diffpriv mechanisms have in common a reliance on the 'sensitivity' of target function to small changes to input datasets. This sensitivity must be provably bounded for an application’s target in order for differential privacy to be proved, and is used to calibrate privacy-preserving randomization. Unfortunately bounding sensitivity is often prohibitively complex, for example if target is an arbitrary computer program. All **DPMech-class** mechanisms offer a `sensitivitySampler` method due to Rubinstein and Aldà (2017) that repeatedly probes target to estimate sensitivity automatically. Mechanisms with estimated sensitivities achieve a slightly weaker form of random differential privacy due to Hall et al. (2013), but without any theoretical analysis necessary.

References

Examples

```r
## Not run:
## for full examples see the diffpriv vignette
vignette("diffpriv")
## End(Not run)
```
DPMech-class

An S4 class for differentially-private mechanisms.

Description

A base class for representing output-perturbing mechanisms in differential privacy. As this class is VIRTUAL it cannot be instantiated, but it can be subclassed.

Slots

- `sensitivity` non-negative scalar numeric target sensitivity. Defaults to Inf for use with `sensitivitySampler`.
- `target` the target non-private function to be privatized, takes lists. Defaults to a constant function.
- `gammaSensitivity` NA_real_ if inactive, or scalar in [0,1) indicating that responses must be RDP with specific confidence.

References

See Also

- `DPMechLaplace` subclass for the Laplace mechanism.

DPMechBernstein-class

An S4 class for the Bernstein mechanism of differential privacy.

Description

A class that implements the Bernstein mechanism (not iterated version) of differential privacy, for privatizing release of real-valued functions on [0, 1] based on arbitrary datasets. Approximates the target on a lattice.

Usage

```
## S4 method for signature 'DPMechBernstein'
show(object)

## S4 method for signature 'DPMechBernstein,DPParamsEps'
releaseResponse(mechanism, privacyParams, X)

## S4 method for signature 'DPMechBernstein'
sensitivityNorm(mechanism, X1, X2)
```
Arguments

- **object**: an instance of class `DPMech`.
- **mechanism**: an object of class `DPMechBernstein`.
- **privacyParams**: an object of class `DPParamsEps`.
- **X**: a privacy-sensitive dataset, if using sensitivity sampler a: list, matrix, data frame, numeric/character vector.
- **X1**: a privacy-sensitive dataset.
- **X2**: a privacy-sensitive dataset.

Value

A list with slots per argument, actual privacy parameter and response: mechanism response with length of target release: `privacyParams`, `sensitivity`, `latticeK`, `dims`, `target`, `response`. scalar numeric norm of non-private target on datasets. The L_∞ of the functions on a lattice.

Methods (by generic)

- `show`: automatically prints the object.
- `releaseResponse`: releases Bernstein mechanism responses.
- `sensitivityNorm`: measures target sensitivity.

Slots

- **sensitivity**: non-negative scalar numeric maximum absolute target sensitivity maximized over the lattice. Defaults to Inf for use with `sensitivitySampler()`.
- **target**: might be a closure that takes arbitrary dataset and returns a real-valued function on $[0, 1]^d$.
- **gammaSensitivity**: `NA_real_` if inactive, or scalar in $[0, 1)$ indicating that responses must be RDP with specific confidence.
- **latticeK**: positive scalar integer-valued numeric specifying the lattice resolution. Defaults to (invalid) `NA_integer_`
- **dims**: positive scalar integer-valued numeric specifying the dimension of released function domain. Defaults to (invalid) `NA_integer_`

References

Examples

```r
## See the bernstein vignette
```
An S4 class for the exponential mechanism of differential privacy.

Description

A class that implements the exponential mechanism of differential privacy, for privatizing releases from sets (not necessarily numeric as required by \texttt{DPMechLaplace}). Currently limited to responses from a finite sets - the most widely used case - as these induce easily computed sampling distributions from a uniform base measure.

Usage

```r
## S4 method for signature 'DPMechExponential'
show(object)

## S4 method for signature 'DPMechExponential,DPParamsEps'
releaseResponse(mechanism, 
privacyParams, X)

## S4 method for signature 'DPMechExponential'
sensitivityNorm(mechanism, X1, X2)
```

Arguments

- \texttt{object} an instance of class \texttt{DPMech}.
- \texttt{mechanism} an object of class \texttt{DPMechExponential}.
- \texttt{privacyParams} an object of class \texttt{DPParamsEps}.
- \texttt{X} a privacy-sensitive dataset, if using sensitivity sampler a: list, matrix, data frame, numeric/character vector.
- \texttt{X1} a privacy-sensitive dataset.
- \texttt{X2} a privacy-sensitive dataset.

Value

- list with slots per argument, actual privacy parameter and response: mechanism response with length of target release: \texttt{privacyParams}, \texttt{sensitivity}, \texttt{responseSet}, \texttt{target}, \texttt{response}.
- scalar numeric norm of non-private target on datasets.

Methods (by generic)

- \texttt{show}: automatically prints the object.
- \texttt{releaseResponse}: releases exponential mechanism responses.
- \texttt{sensitivityNorm}: measures target quality score sensitivity.
Slots

sensitivity non-negative scalar numeric quality function sensitivity. Defaults to Inf for use with
sensitivitySampler().

target the quality score function mapping dataset to a function on responses (elements of responseSet).
gammaSensitivity NA_real_ if inactive, or scalar in [0,1) indicating that responses must be RDP
with specific confidence.

responseSet a list of possible responses of the mechanism.

References

Frank McSherry and Kunal Talwar. "Mechanism design via differential privacy." In the 48th Annual

Examples

Sensitive data are strings of length at most UN
task is to release most frequent character present, hence quality function
is a closure that counts character frequencies for given candidate char.
Global sensitivity is max string length.
qualF <- function(X) { function(r) sum(r == unlist(strsplit(X, ""))) }
rs <- as.list(letters)
m <- DPMechExponential(sensitivity = 5, target = qualF, responseSet = rs)
X <- strsplit("the quick brown fox jumps over the lazy dog"," ")[[1]]
p <- DPParamsEps(epsilon = 1)
releaseResponse(m, p, X)

DPMechGaussian-class An S4 class for the Gaussian mechanism of differential privacy.

Description

A class that implements the Gaussian mechanism of differential privacy, for privatizing numeric
vector releases.

Usage

S4 method for signature 'DPMechGaussian'
show(object)

Arguments

 object an instance of class DPMech.

Methods (by generic)

 • show: automatically prints the object.
Slots

sensitivity non-negative scalar numeric L2 target sensitivity. Defaults to Inf for use with sensitivitySampler().
target the target non-private function to be privatized, takes lists. Defaults to a constant function.
Gaussian mechanism assumes functions that release numeric vectors of fixed dimension dims.
gammaSensitivity NA_real_ if inactive, or scalar in [0,1) indicating that responses must be RDP with specific confidence.
dims positive scalar numeric dimension of responses. Defaults to NA_integer_ for use with sensitivitySampler() which can probe target to determine dimension.

References

DPMechLaplace-class An S4 class for the Laplace mechanism of differential privacy.

Description

A class that implements the basic Laplace mechanism of differential privacy, for privatizing numeric vector releases.

Usage

S4 method for signature 'DPMechLaplace'
show(object)

Arguments

object an instance of class DPMech.

Methods (by generic)

- show: automatically prints the object.

Slots

sensitivity non-negative scalar numeric L1 target sensitivity. Defaults to Inf for use with sensitivitySampler().
target the target non-private function to be privatized, takes lists. Defaults to a constant function.
Laplace mechanism assumes functions that release numeric vectors of fixed dimension dims.
gammaSensitivity NA_real_ if inactive, or scalar in [0,1) indicating that responses must be RDP with specific confidence.
dims positive scalar numeric dimension of responses. Defaults to NA_integer_ for use with sensitivitySampler() which can probe target to determine dimension.
References

DPMechNumeric-class A virtual S4 class for differentially-private numeric mechanisms.

Description

A virtual class that implements common features of Laplace, Gaussian mechanisms from differential privacy, for privatizing numeric vector releases.

Usage

```r
## S4 method for signature 'DPMechNumeric'
sensitivityNorm(mechanism, x1, x2)
```

Arguments

- `object`: an instance of class `DPMech`.
- `mechanism`: an object of class `DPMechNumeric-class`.
- `x1`: a privacy-sensitive dataset.
- `x2`: a privacy-sensitive dataset.
- `privacyParams`: an object of class `DPParamsEps`.
- `X`: a privacy-sensitive dataset, if using sensitivity sampler a: list, matrix, data frame, numeric/character vector.

Value

- scalar numeric norm of non-private target on datasets.
- list with slots per argument, actual privacy parameter; mechanism response with length of target release: `privacyParams`, `sensitivity`, `dims`, `target`, `response`.

Methods (by generic)

- `show`: automatically prints the object.
- `sensitivityNorm`: measures sensitivity of non-private target.
- `releaseResponse`: releases mechanism responses.
Slots

- `sensitivity` non-negative scalar numeric target sensitivity. Defaults to `Inf` for use with `sensitivitySampler()`.
- `target` the target non-private function to be privatized, takes lists. Defaults to a constant function. Laplace mechanism assumes functions that release numeric vectors of fixed dimension `dims`.
- `gammaSensitivity` `NA_real_` if deactive, or scalar in `[0,1)` indicating that responses must be RDP with specific confidence.
- `dims` positive scalar numeric dimension of responses. Defaults to `NA_integer_` for use with `sensitivitySampler()` which can probe `target` to determine dimension.

Examples

```r
define_function <- function(xs) mean(xs)
define_target <- function() 1/n
lambda <- DPMechLaplace(sensitivity = 1/n, target = f, dims = 1)
x <- runif(n)
y <- runif(n)
sensitivityNorm(lambda, x1, y)
define_function <- function(xs) mean(xs)
define_target <- function() 1/n
lambda <- DPMechLaplace(sensitivity = 1/n, target = f, dims = 1)
x <- runif(n)
y <- DPParamsEps(epsilon = 1)
releaseResponse(lambda, x, y)
```

Description

An S4 base class representing the privacy parameters in (ϵ, δ)-differential privacy.

Usage

```r
## S4 method for signature 'DPParamsDel'
show(object)

## S4 method for signature 'DPParamsDel'
getDelta(object)

## S4 replacement method for signature 'DPParamsDel'
setDelta(object) <- value

## S4 method for signature 'DPParamsDel,numeric'
toGamma(object, gamma)
```
Arguments

object an object of class `DPParmsDel`.
value a scalar numeric \(\delta \).
gamma a scalar numeric \(\gamma \).

Methods (by generic)

- show: automatically prints the object.
- getDelta: getter for slot delta.
- setDelta<-: setter for slot delta.
- toGamma: returns object to corresponding instance of subclass `DPParmsGam`.

Slots

epsilon positive scalar numeric privacy level.
delta a scalar numeric privacy level in interval \([0,1)\).

See Also

`DPParmsEps` superclass, `DPParmsGam` subclass for random relaxation.

Description

An S4 base class representing the basic privacy parameter \(\epsilon \) in differential privacy.

Usage

```r
## S4 method for signature 'DPParmsEps'
show(object)

## S4 method for signature 'DPParmsEps'
getEpsilon(object)

## S4 replacement method for signature 'DPParmsEps'
setEpsilon(object) <- value

## S4 method for signature 'DPParmsEps,numeric'
toGamma(object, gamma)
```
Arguments

- **object**: an object of class `DPParamsEps`.
- **value**: a scalar numeric ϵ.
- **gamma**: a scalar numeric γ.

Methods (by generic)

- `show`: automatically prints the object.
- `getEpsilon`: getter for slot `epsilon`.
- `setEpsilon`: setter for slot `epsilon`.
- `toGamma`: returns object to corresponding instance of subclass `DPParamsGam`.

Slots

- `epsilon`: positive scalar numeric privacy level.

See Also

- `DPParamsDel` subclass for (ϵ, δ) relaxation, `DPParamsGam` subclass for random relaxation.

DPParamsGam-class

An S4 class for random differential privacy parameters.

Description

An S4 base class representing the privacy parameters in $(\epsilon, \delta, \gamma)$-random differential privacy.

Usage

```r
## S4 method for signature 'DPParamsGam'
show(object)

## S4 method for signature 'DPParamsGam'
getGamma(object)

## S4 replacement method for signature 'DPParamsGam'
setGamma(object) <- value

## S4 method for signature 'DPParamsGam,numeric'
toGamma(object, gamma)
```

Arguments

- **object**: an object of class `DPParamsGam`.
- **value**: a scalar numeric γ.
- **gamma**: scalar numeric γ.
Methods (by generic)

- show: automatically prints the object.
- getGamma: getter for slot gamma.
- setGamma: setter for slot gamma.
- toGamma: returns object with set gamma; generic for use with superclasses DPParamsEps and DPParamsDel.

Slots

- epsilon: a positive scalar numeric privacy level.
- delta: a scalar numeric privacy level in interval [0,1).
- gamma: a scalar numeric privacy level in [0,1).

See Also

DPParamsEps, DPParamsDel superclasses.

predict.bernstein

Evaluate Bernstein approximations on data.

Description

Evaluates a given S3 object of type bernstein on given data D.

Usage

```r
## S3 method for class 'bernstein'
predict(object, D, ...)  
```

Arguments

- **object**: an S3 object of type bernstein.
- **D**: either a numeric vector or matrix, all values in [0,1]. If numeric then length should be object$dims unless the latter is 1 in which case the length can be arbitrary. If a matrix then the number of columns should match object$dims.
- **...**: additional arguments.

Value

- a numeric vector of scalar real evaluations.

References

releaseResponse

Examples

```r
f <- function(x) x * sin(x*10)
b <- bernstein(f, dims = 1)
xs <- seq(from=0, to=1, length=50)
mean((f(xs) - predict(b,xs))^2)
```

Description

Runs the differentially-private mechanism on given data.

Usage

`releaseResponse(mechanism, privacyParams, x)`

Arguments

- `mechanism`: an object of class `DPMech-class`.
- `privacyParams`: an object of class `DPParamsEps` or subclass.
- `x`: a privacy-sensitive dataset, if using sensitivity sampler a: list, matrix, data frame, numeric/character vector.

Value

list with slots per argument, including at least: actual privacy parameters `privacyParams`, and response `response`.

sensitivityNorm

Description

Norm of a `DP Mech-class`'s non-private target function evaluated on two given databases X1, X2.

Usage

`sensitivityNorm(mechanism, X1, X2)`

Arguments

- `mechanism`: an object of class `DPMech-class`.
- `X1`: a privacy-sensitive dataset.
- `X2`: a privacy-sensitive dataset.
sensitivitySampler

Sensitivity sampler for DPMech-class's.

Description

Given a constructed `DPMech-class`, complete with target function and sensitivityNorm, and an oracle for producing records, samples the sensitivity of the target function to set the mechanism’s sensitivity.

Usage

```r
sensitivitySampler(object, oracle, n, m = NA_integer_, gamma = NA_real_)
```

Arguments

- **object**: an object of class `DPMech-class`.
- **oracle**: a source of random databases. A function returning: list, matrix/data.frame (data in rows), numeric/character vector of records if given desired length > 1; or single record given length 1, respectively a list element, a row/named row, a single numeric/character. Whichever type is used should be expected by `object@target`.
- **n**: database size scalar positive numeric, integer-valued.
- **m**: sensitivity sample size scalar positive numeric, integer-valued.
- **gamma**: RDP privacy confidence level.

Value

`object` with updated `gammaSensitivity` slot.

References

Examples

```r
## Simple example with unbounded data hence no global sensitivity.
f <- function(xs) mean(xs)
m <- DPMechLaplace(target = f, dims = 1)
m@sensitivity # Inf
m@gammaSensitivity # NA as Laplace is naturally eps-DP
P <- function(n) rnorm(n)
m <- sensitivitySampler(m, oracle = P, n = 100, gamma = 0.33)
m@sensitivity # small like 0.03...
m@gammaSensitivity # 0.33 as directed, now m is (eps,gam)-DP.
```
Description

Given a constructed `DPMech-class`, complete with target function and sensitivityNorm, and an oracle for producing records, samples the sensitivity of the target function to set the mechanism’s sensitivity.

Usage

```r
## S4 method for signature 'DPMech,\'function\',numeric'
sensitivitySampler(object, oracle, n,
  m = NA_integer_, gamma = NA_real_)
```

Arguments

- `object`: an object of class `DPMech-class`.
- `oracle`: a source of random databases. A function returning: list, matrix/data.frame (data in rows), numeric/character vector of records if given desired length > 1; or single record given length 1, respectively a list element, a row/named row, a single numeric/character. Whichever type is used should be expected by `object@target`.
- `n`: database size scalar positive numeric, integer-valued.
- `m`: sensitivity sample size scalar positive numeric, integer-valued.
- `gamma`: RDP privacy confidence level.

Value

`object` with updated `gammaSensitivity` slot.

References

Examples

```r
## Simple example with unbounded data hence no global sensitivity.
f <- function(xs) mean(xs)
m <- DPMechLaplace(target = f, dims = 1)
m@sensitivity ## Inf
m@gammaSensitivity ## NA as Laplace is naturally eps-DP
P <- function(n) rnorm(n)
m <- sensitivitySampler(m, oracle = P, n = 100, gamma = 0.33)
```
sensitivitySamplerManual

Sensitivity sampler for DPMech-class.

Description

Given a constructed DPMech-class, complete with target function and sensitivityNorm, and an oracle for producing records, samples the sensitivity of the target function to set the mechanism’s sensitivity. Typically the method sensitivitySampler should be used instead; NOTE this method does not properly set the gammaSensitivity slot of DPMech-class unlike the preferred method.

Usage

sensitivitySamplerManual(object, oracle, n, m, k)

Arguments

- **object**: an object of class DPMech-class.
- **oracle**: a source of random databases. A function returning: list, matrix/data.frame (data in rows), numeric/character vector of records if given desired length > 1; or single record given length 1, respectively a list element, a row/named row, a single numeric/character. Whichever type is used should be expected by object@target.
- **n**: database size scalar positive numeric, integer-valued.
- **m**: sensitivity sample size scalar positive numeric, integer-valued.
- **k**: order statistic index in 1,...,m.

Value

object with updated sensitivity parameter.

References

See Also

sensitivitySampler preferred method for sensitivity sampling.
Examples

```r
## Simple example with unbounded data hence no global sensitivity.
f <- function(xs) mean(xs)
m <- DPMechLaplace(target = f, dims = 1)
P <- function(n) rnorm(n)
m <- sensitivitySamplerManual(m, oracle = P, n = 100, m = 10, k = 10)
m@sensitivity
```

Description

Given a constructed `DPMech-class`, complete with target function and sensitivityNorm, and an oracle for producing records, samples the sensitivity of the target function to set the mechanism’s sensitivity. Typically the method `sensitivitySampler` should be used instead; NOTE this method does not properly set the gammaSensitivity slot of `DPMech-class` unlike the preferred method.

Usage

```r
## S4 method for signature 'DPMech,'function',numeric,numeric,numeric'
sensitivitySamplerManual(object,
oracle, n, m, k)
```

Arguments

- **object**: an object of class `DPMech-class`.
- **oracle**: a source of random databases. A function returning: list, matrix/data.frame (data in rows), numeric/character vector of records if given desired length > 1; or single record given length 1, respectively a list element, a row/named row, a single numeric/character. Whichever type is used should be expected by object@target.
- **n**: database size scalar positive numeric, integer-valued.
- **m**: sensitivity sample size scalar positive numeric, integer-valued.
- **k**: order statistic index in 1,...,m.

Value

object with updated sensitivity parameter.
References

See Also

sensitivitySampler preferred method for sensitivity sampling.

Examples

```r
## Simple example with unbounded data hence no global sensitivity.
f <- function(xs) mean(xs)
m <- DPMechLaplace(target = f, dims = 1)
P <- function(n) rnorm(n)
m <- sensitivitySamplerManual(m, oracle = P, n = 100, m = 10, k = 10)
m@sensitivity
```

Description

Given a constructed `DPMechNumeric-class`, complete with target function and sensitivityNorm, and an oracle for producing records, samples the sensitivity of the target function to set the mechanism's sensitivity. Typically the method `sensitivitySampler` should be used instead; NOTE this method does not properly set the gammaSensitivity slot of `DPMech-class` unlike the preferred method. This method can probe target to determine response dimension when the corresponding object@dims is NA.

Usage

```r
## S4 method for signature 'DPMechNumeric,\'function\',numeric,numeric,numeric'
sensitivitySamplerManual(object, oracle, n, m, k)
```

Arguments

- `object` an object of class `DPMechNumeric-class`.
- `oracle` a source of random databases. A function returning: list, matrix/data.frame (data in rows), numeric/character vector of records if given desired length > 1; or single record given length 1, respectively a list element, a row/named row, a single numeric/character. Whichever type is used should be expected by `object@target`.
setDelta<-

n database size scalar positive numeric, integer-valued.
m sensitivity sample size scalar positive numeric, integer-valued.
k order statistic index in 1, ..., m.

Value

object with updated sensitivity parameter, and (potentially) dims.

References

See Also

sensitivitySampler preferred method for sensitivity sampling.

Examples

Simple example with unbounded data hence no global sensitivity.
f <- function(xs) mean(xs)
m <- DPMechLaplace(target = f, dims = 1)
P <- function(n) rnorm(n)
m <- sensitivitySamplerManual(m, oracle = P, n = 100, m = 10, k = 10)
m@sensitivity

setDelta<-

Setter for slot delta.

Description

Use this method instead of slot delta.

Usage

setDelta(object) <- value

Arguments

object the instance of DPParamsDel.
value positive numeric δ value.

See Also

DPParamsDel.
setEpsilon<-
Setter for slot epsilon.

Description
Use this method instead of slot epsilon.

Usage
```r
setEpsilon(object) <- value
```

Arguments
- `object` the instance of DPParamsEps.
- `value` positive numeric ϵ value.

See Also
- `DPParamsEps`

setGamma<-
Setter for slot gamma.

Description
Use this method instead of slot gamma.

Usage
```r
setGamma(object) <- value
```

Arguments
- `object` the instance of DPParamsGam.
- `value` positive numeric γ value.

See Also
- `DPParamsGam`
Index

bernstein, 2

diffpriv, 3
diffpriv-package (diffpriv), 3
DPMech-class, 5, 16–19
DPMechBernstein, 6
DPMechBernstein (DPMechBernstein-class), 5
DPMechBernstein-class, 5
DPMechExponential, 4, 7
DPMechExponential (DPMechExponential-class), 7
DPMechExponential-class, 7
DPMechGaussian (DPMechGaussian-class), 8
DPMechGaussian-class, 8
DPMechLaplace, 3, 5, 7
DPMechLaplace (DPMechLaplace-class), 9
DPMechLaplace-class, 9
DPMechNumeric (DPMechNumeric-class), 10
DPMechNumeric-class, 10, 20
DPParamsDel, 12–14, 21
DPParamsDel (DPParamsDel-class), 11
DPParamsDel-class, 11
DPParamsEps, 4, 6, 7, 10, 12–15, 22
DPParamsEps (DPParamsEps-class), 12
DPParamsEps-class, 12
DPParamsGam, 12, 13, 22
DPParamsGam (DPParamsGam-class), 13
DPParamsGam-class, 13

getDelta, DPParamsDel-method (DPParamsDel-class), 11
getEpsilon, DPParamsEps-method (DPParamsEps-class), 12
getGamma, DPParamsGam-method (DPParamsGam-class), 13

predict.bernstein, 3, 14

releaseResponse, 4, 15

releaseResponse, DPMechBernstein, DPParamsEps-method
(DPMechBernstein-class), 5
releaseResponse, DPMechExponential, DPParamsEps-method
(DPMechExponential-class), 7
releaseResponse, DPMechNumeric, DPParamsEps-method
(DPMechNumeric-class), 10

sensitivityNorm, 15
sensitivityNorm, DPMechBernstein-method
(DPMechBernstein-class), 5
sensitivityNorm, DPMechExponential-method
(DPMechExponential-class), 7
sensitivityNorm, DPMechNumeric-method
(DPMechNumeric-class), 10
sensitivitySampler, 4, 16, 18–21
sensitivitySampler, DPMech, function, numeric-method, 17
sensitivitySamplerManual, 18
sensitivitySamplerManual, DPMech, function, numeric, numeric, numeric, numeric
sensitivitySamplerManual, 19
sensitivitySamplerManual, DPMechNumeric, function, numeric, numeric, numeric
setDelta<-, 21
setDelta<-, DPParamsDel-method (DPParamsDel-class), 11
setEpsilon<-, 22
setEpsilon<-, DPParamsEps-method (DPParamsEps-class), 12
setGamma<-, 22
setGamma<-, DPParamsGam-method (DPParamsGam-class), 13

show, DPMechBernstein-method
(DPMechBernstein-class), 5
show, DPMechExponential-method
(DPMechExponential-class), 7
show, DPMechGaussian-method
(DPMechGaussian-class), 8
show, DPMechLaplace-method
(DPMechLaplace-class), 9
show, DPMechNumeric-method
 (DPMechNumeric-class). 10
show, DPParamsDel-method
 (DPParamsDel-class). 11
show, DPParamsEps-method
 (DPParamsEps-class). 12
show, DPParamsGam-method
 (DPParamsGam-class). 13
toGamma, DPParamsDel, numeric-method
 (DPParamsDel-class). 11
toGamma, DPParamsEps, numeric-method
 (DPParamsEps-class). 12
toGamma, DPParamsGam, numeric-method
 (DPParamsGam-class). 13