Package ‘distr6’

October 5, 2021

Title The Complete R6 Probability Distributions Interface

Version 1.6.2

License MIT + file LICENSE

BugReports https://github.com/alan-turing-institute/distr6/issues

Imports checkmate, data.table, param6 (>= 0.2.2), R6, Rcpp, set6 (>= 0.2.3), stats

Suggests actuar, cubature, extraDistr, GoFKernel, knitr, magrittr, plotly, pracma, R62S3 (>= 1.4.0), rmarkdown, testthat

LinkingTo Rcpp

VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.1.1

SystemRequirements C++11

Collate 'helpers.R' 'distr6_globals.R' 'Distribution.R' 'DistributionDecorator.R' 'DistributionDecorator_CoreStatistics.R'
'DistributionDecorator_ExoticStatistics.R'
'DistributionDecorator_FunctionImputation.R'
'Distribution_Kernel.R' 'Distribution_SDistribution.R'
'Kernel_Cosine.R' 'Kernel_Epanechnikov.R' 'Kernel_Logistic.R'
'Kernel_Normal.R' 'Kernel_Quartic.R' 'Kernel_Sigmoid.R'
'Kernel_Silverman.R' 'Kernel_Triangular.R' 'Kernel_Tricube.R'
'Kernel_Triweight.R' 'Kernel_Uniform.R' 'RcppExports.R'
'SDistribution_Arcsine.R' 'SDistribution_Bernoulli.R'
'SDistribution_Beta.R' 'SDistribution_BetaNoncentral.R'
'SDistribution_Binomial.R' 'SDistribution_Categorical.R'
'SDistribution_Cauchy.R' 'SDistribution_Chisquared.R'
'SDistribution_ChisquaredNoncentral.R'
'SDistribution_Degenerate.R' 'SDistribution_Dirichlet.R'
'SDistribution_DiscreteUniform.R' 'SDistribution_Empirical.R'
'SDistribution_EmpiricalMultivariate.R'
'SDistribution_Erlang.R' 'SDistribution_Exponential.R'
'SDistribution_FDistribution.R'
'SDistribution_FDistributionNoncentral.R'
'SDistribution_Frechet.R' 'SDistribution_Gamma.R'
'SDistribution_Geometric.R' 'SDistribution_Gompertz.R'
'SDistribution_Gumbel.R' 'SDistribution_Hypergeometric.R'
'SDistribution_InverseGamma.R' 'SDistribution_Laplace.R'
'SDistribution_Logistic.R' 'SDistribution_Lognormal.R'
'SDistribution_Loglogistic.R'
'SDistribution_Multinomial.R'
'SDistribution_MultivariateNormal.R'
'SDistribution_NegBinomial.R' 'SDistribution_Normal.R'
'SDistribution_Pareto.R' 'SDistribution_Poisson.R'
'SDistribution_Rayleigh.R' 'SDistribution_ShiftedLoglogistic.R'
'SDistribution_StudentT.R' 'SDistribution_StudentTNoncentral.R'
'SDistribution_Triangular.R' 'SDistribution_Uniform.R'
'SDistribution_Weibull.R'
'SDistribution_WeightedDiscrete.R' 'Wrapper.R'
'Wrapper_Convolution.R' 'Wrapper_HuberizedDistribution.R'
'Wrapper_MixtureDistribution.R' 'Wrapper_ProductDistribution.R'
'Wrapper_Scale.R' 'Wrapper_TruncatedDistribution.R'
'Wrapper_VectorDistribution.R' 'as.Distribution.R'
'assertions.R' 'c.Distribution.R' 'decomposeMixture.R'
'decorate.R' 'distr6-deprecated.R' 'distr6-package.R'
'distr6.news.R' 'distrSimulate.R' 'exkurtosisType.R'
'generalPNorm.R' 'get_ParameterSet.R' 'helpers_pdq.R'
'helpers_wrappers.R' 'isPdq.R' 'lines_continuous.R'
'lines_discrete.R' 'lines.R' 'listDecorators.R'
'listDistributions.R' 'listKernels.R' 'listWrappers.R'
'makeUniqueDistributions.R' 'measures.R' 'mixturiseVector.R'
'plot_continuous.R' 'plot_discrete.R' 'plot_distribution.R'
'plot_multivariate.R' 'plot_vectordistribution.R' 'qqplot.R'
'rep.Distribution.R' 'sets.R' 'simulateEmpiricalDistribution.R'
R topics documented:

'skewType.R' 'sugar.R' 'zzz.R'

NeedsCompilation yes

Author Raphael Sonabend [aut, cre] (<https://orcid.org/0000-0001-9225-4654>),
 Franz Kiraly [aut],
 Peter Ruckdeschel [ctb] (Author of distr),
 Matthias Kohl [ctb] (Author of distr),
 Nurul Ain Toha [ctb],
 Shen Chen [ctb],
 Jordan Deenichin [ctb],
 Chengyang Gao [ctb],
 Chloé Zhaoypuan Gu [ctb],
 Yunjie He [ctb],
 Xiaowen Huang [ctb],
 Shuhan Liu [ctb],
 Runlong Yu [ctb],
 Chijing Zeng [ctb],
 Qian Zhou [ctb]

Maintainer Raphael Sonabend <raphaelsonabend@gmail.com>

Repository CRAN

Date/Publication 2021-10-05 10:50:01 UTC

R topics documented:

distr6-package .. 6
Arcsine .. 7
as.Distribution .. 11
as.MixtureDistribution .. 12
as.ProductDistribution .. 12
as.VectorDistribution ... 13
Bernoulli ... 13
Beta .. 18
BetaNoncentral .. 22
Binomial .. 24
c.Distribution ... 28
Categorical ... 29
Cauchy ... 34
ChiSquared ... 39
ChiSquaredNoncentral ... 43
Convolution ... 47
CoreStatistics ... 48
Cosine .. 52
decorate .. 54
Degenerate ... 55
Dirichlet .. 59
DiscreteUniform .. 62
distr6News ... 67
R topics documented:

Distribution .. 67
DistributionDecorator ... 77
DistributionWrapper ... 78
distrSimulate .. 80
dstr .. 81
Empirical .. 82
EmpiricalMV ... 87
Epanechnikov ... 90
Erlang .. 92
exkurtoisType .. 96
ExoticStatistics .. 97
Exponential ... 101
FDistribution .. 106
FDistributionNoncentral 110
Frechet ... 113
FunctionImputation ... 117
Gamma .. 118
generalPNorm .. 123
Geometric .. 124
Gompertz ... 129
Gumbel .. 131
huberize ... 136
HuberizedDistribution 136
Hypergeometric ... 138
InverseGamma .. 142
Kernel .. 146
Laplace .. 148
length.VectorDistribution 153
lines.Distribution .. 153
listDecorators .. 154
listDistributions .. 155
listKernels ... 156
listWrappers .. 156
Logarithmic .. 157
Logistic ... 161
LogisticKernel .. 165
Loglogistic .. 167
Lognormal ... 171
makeUniqueDistributions 176
MixtureDistribution ... 177
mixturiseVector .. 182
Multinomial ... 183
MultivariateNormal .. 188
NegativeBinomial .. 192
Normal ... 197
NormalKernel .. 201
Pareto .. 203
plot.Distribution ... 207
R topics documented:

plot.VectorDistribution ... 209
Poisson ... 210
ProductDistribution .. 214
qqplot ... 220
Quartic ... 221
Rayleigh ... 223
rep.Distribution ... 227
SDistribution .. 227
ShiftedLoglogistic ... 228
Sigmoid ... 232
Silverman ... 234
simulateEmpiricalDistribution 236
skewType ... 236
StudentT ... 237
StudentTNoncentral ... 241
testContinuous ... 244
testDiscrete .. 245
testDistribution ... 245
testDistributionList .. 246
testLeptokurtic .. 247
testMatrixvariate .. 248
testMesokurtic .. 249
testMixture .. 250
testMultivariate ... 250
testNegativeSkew .. 251
testNoSkew .. 252
testParameterSet ... 253
testParameterSetList ... 254
testPlatykurtic .. 255
testPositiveSkew .. 256
testSymmetric .. 257
testUnivariate .. 257
Triangular .. 258
TriangularKernel ... 264
Tricube ... 265
Triweight .. 267
truncate ... 269
TruncatedDistribution ... 269
Uniform ... 271
UniformKernel ... 276
VectorDistribution ... 277
Wald ... 286
Weibull ... 290
WeightedDiscrete ... 294
[.VectorDistribution .. 299

Index 300
distr6-package

distr6: Object Oriented Distributions in R

Description

distr6 is an object oriented (OO) interface, primarily used for interacting with probability distributions in R. Additionally distr6 includes functionality for composite distributions, a symbolic representation for mathematical sets and intervals, basic methods for common kernels and numeric methods for distribution analysis. distr6 is the official R6 upgrade to the distr family of packages.

Details

The main features of distr6 are:

• Currently implements 45 probability distributions (and 11 Kernels) including all distributions in the R stats package. Each distribution has (where possible) closed form analytic expressions for basic statistical methods.
• Decorators that add further functionality to probability distributions including numeric results for useful modelling functions such as p-norms and k-moments.
• Wrappers for composite distributions including convolutions, truncation, mixture distributions and product distributions.

To learn more about distr6, start with the distr6 vignette:

vignette("distr6","distr6")

And for more advanced usage see the complete tutorials at https://alan-turing-institute.github.io/distr6/index.html #nolint

Author(s)

Maintainer: Raphael Sonabend <raphaelsonabend@gmail.com> (ORCID)
Authors:

• Franz Kiraly <f.kiraly@ucl.ac.uk>

Other contributors:

• Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de> (Author of distr) [contributor]
• Matthias Kohl <Matthias.Kohl@stamats.de> (Author of distr) [contributor]
• Nurul Ain Toha <nurul.toha.15@ucl.ac.uk> [contributor]
• Shen Chen <seanchen9832@icloud.com> [contributor]
• Jordan Deenichin <d.deenichin@gmail.com> [contributor]
• Chengyang Gao <garoc371@gmail.com> [contributor]
• Chloe Zhaoyuan Gu <guzhaoyuan@outlook.com> [contributor]
Arcsine Distribution Class

Description

Mathematical and statistical functions for the Arcsine distribution, which is commonly used in the study of random walks and as a special case of the Beta distribution.

Details

The Arcsine distribution parameterised with lower, \(a \), and upper, \(b \), limits is defined by the pdf,

\[
f(x) = \frac{1}{\pi \sqrt{(x - a)(b - x)}}
\]

for \(-\infty < a \leq b < \infty\).

Value

Returns an R6 object inheriting from class `SDistribution`.

Distribution support

The distribution is supported on \([a, b]\).

Default Parameterisation

\(\text{Arc}(\text{lower} = 0, \text{upper} = 1)\)

Omitted Methods

N/A
Also known as
N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> Arcsine

Public fields

name Full name of distribution.
short_name Short name of distribution for printing.
description Brief description of the distribution.

Active bindings

properties Returns distribution properties, including skewness type and symmetry.

Methods

Public methods:
• Arcsine$new()
• Arcsine$mean()
• Arcsine$mode()
• Arcsine$variance()
• Arcsine$skewness()
• Arcsine$kurtosis()
• Arcsine$entropy()
• Arcsine$pgf()
• Arcsine$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Arcsine$new(lower = NULL, upper = NULL, decorators = NULL)

Arguments:
lower (numeric(1))
 Lower limit of the Distribution, defined on the Reals.
upper (numeric(1))
 Upper limit of the Distribution, defined on the Reals.
decorators (character())
 Decorators to add to the distribution during construction.

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

$$E_X(X) = \sum p_X(x) * x$$

with an integration analogue for continuous distributions.
Usage:
Arcsine$mean(....)

Arguments:
... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).
Usage:
Arcsine$mode(which = "all")
Arguments:
which (character(1) | numeric(1))
Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies which mode to return.

Method variance(): The variance of a distribution is defined by the formula
\[\text{var}_X = E[X^2] - E[X]^2 \]
where \(E_X \) is the expectation of distribution \(X \). If the distribution is multivariate the covariance matrix is returned.
Usage:
Arcsine$variance(....)
Arguments:
... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised moment,
\[\text{sk}_X = E_X \left[\frac{x - \mu}{\sigma} \right]^3 \]
where \(E_X \) is the expectation of distribution \(X \), \(\mu \) is the mean of the distribution and \(\sigma \) is the standard deviation of the distribution.
Usage:
Arcsine$skewness(....)
Arguments:
... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised moment,
\[k_X = E_X \left[\frac{x - \mu}{\sigma} \right]^4 \]
where \(E_X \) is the expectation of distribution \(X \), \(\mu \) is the mean of the distribution and \(\sigma \) is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.
Usage:
Arcsine$kurtosis(excess = TRUE, ...)
Arguments:
excess (logical(1))
 If TRUE (default) excess kurtosis returned.

... Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

\[
- \sum (f_X) \log(f_X)
\]

where \(f_X \) is the pdf of distribution X, with an integration analogue for continuous distributions.

Usage:

Arcsine$entropy(base = 2, ...)

Arguments:

base (integer(1))
 Base of the entropy logarithm, default = 2 (Shannon entropy)

... Unused.

Method pgf(): The probability generating function is defined by

\[
pgf_X(z) = E_X[exp(z^x)]
\]

where X is the distribution and \(E_X \) is the expectation of the distribution X.

Usage:

Arcsine$pgf(z, ...)

Arguments:

z (integer(1))
 z integer to evaluate probability generating function at.

... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:

Arcsine$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

See Also

Other continuous distributions: BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral, ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal, MultivariateNormal, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull
Other univariate distributions: Bernoulli, BetaNoncentral, Beta, Binomial, Categorical, Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz, Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal, NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete

as.Distribution

Coerce matrix to vector of WeightedDiscrete

Description

Coerces matrices to a VectorDistribution containing WeightedDiscrete distributions. Number of distributions are the number of rows in the matrix, number of x points are number of columns in the matrix.

Usage

```r
as.Distribution(obj, fun, decorators = NULL)
```

Arguments

- **obj**
 - matrix. Column names correspond to x in WeightedDiscrete, so this method only works if all distributions (rows in the matrix) have the same points to be evaluated on. Elements correspond to either the pdf or cdf of the distribution (see below).

- **fun**
 - Either "pdf" or "cdf", passed to WeightedDiscrete and tells the constructor if the elements in obj correspond to the pdf or cdf of the distribution.

- **decorators**
 - Passed to VectorDistribution.

Value

A VectorDistribution

Examples

```r
pdf <- runif(200)
mat <- matrix(pdf, 20, 10)
mat <- t(apply(mat, 1, function(x) x / sum(x)))
colnames(mat) <- 1:10
as.Distribution(mat, fun = "pdf")
```
as.MixtureDistribution

Coercion to Mixture Distribution

Description

Helper functions to quickly convert compatible objects to a MixtureDistribution.

Usage

as.MixtureDistribution(object, weights = "uniform")

Arguments

object ProductDistribution or VectorDistribution
weights (character(1)|numeric())
Weights to use in the resulting mixture. If all distributions are weighted equally
then "uniform" provides a much faster implementation, otherwise a vector of
length equal to the number of wrapped distributions, this is automatically scaled
internally.

as.ProductDistribution

Coercion to Product Distribution

Description

Helper functions to quickly convert compatible objects to a ProductDistribution.

Usage

as.ProductDistribution(object)

Arguments

object MixtureDistribution or VectorDistribution
as.VectorDistribution

Coercion to Vector Distribution

Description
Helper functions to quickly convert compatible objects to a VectorDistribution.

Usage
as.VectorDistribution(object)

Arguments

object MixtureDistribution or ProductDistribution

Bernoulli

Bernoulli Distribution Class

Description
Mathematical and statistical functions for the Bernoulli distribution, which is commonly used to model a two-outcome scenario.

Details
The Bernoulli distribution parameterised with probability of success, p, is defined by the pmf,

\[
 f(x) = p, \text{ if } x = 1 \\
 f(x) = 1 - p, \text{ if } x = 0
\]

for probability p.

Value
Returns an R6 object inheriting from class SDistribution.

Distribution support
The distribution is supported on \{0, 1\}.

Default Parameterisation
Bern(prob = 0.5)

Omitted Methods
N/A
Also known as
N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> Bernoulli

Public fields

name Full name of distribution.
short_name Short name of distribution for printing.
description Brief description of the distribution.
packages Packages required to be installed in order to construct the distribution.

Active bindings

properties Returns distribution properties, including skewness type and symmetry.

Methods

Public methods:
- Bernoulli$new()
- Bernoulli$mean()
- Bernoulli$mode()
- Bernoulli$median()
- Bernoulli$variance()
- Bernoulli$skewness()
- Bernoulli$kurtosis()
- Bernoulli$entropy()
- Bernoulli$mgf()
- Bernoulli$cf()
- Bernoulli$pgf()
- Bernoulli$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Bernoulli$new(prob = NULL, qprob = NULL, decorators = NULL)

Arguments:
prob (numeric(1))
 Probability of success.
qprob (numeric(1))
 Probability of failure. If provided then prob is ignored. qprob = 1 -prob.
decorators (character())
 Decorators to add to the distribution during construction.
Method `mean()`: The arithmetic mean of a (discrete) probability distribution X is the expectation
\[
E_X(X) = \sum p_X(x) \times x
\]
with an integration analogue for continuous distributions.

Usage:
Bernoulli$mean(...)

Arguments:
... Unused.

Method `mode()`: The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
Bernoulli$mode(which = "all")

Arguments:
which (character(1) | numeric(1))
 Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies which mode to return.

Method `median()`: Returns the median of the distribution. If an analytical expression is available returns distribution median, otherwise if symmetric returns `self$mean`, otherwise returns `self$quantile(0.5)`.

Usage:
Bernoulli$median()

Method `variance()`: The variance of a distribution is defined by the formula
\[
var_X = E[X^2] - E[X]^2
\]
where E_X is the expectation of distribution X. If the distribution is multivariate the covariance matrix is returned.

Usage:
Bernoulli$variance(...)

Arguments:
... Unused.

Method `skewness()`: The skewness of a distribution is defined by the third standardised moment,
\[
sk_X = E_X \left[\frac{x - \mu}{\sigma} \right]^3
\]
where E_X is the expectation of distribution X, μ is the mean of the distribution and σ is the standard deviation of the distribution.

Usage:
Bernoulli$skewness(...)

Arguments:
Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised moment,

\[k_X = E_X \left[\frac{x - \mu^4}{\sigma} \right] \]

where \(E_X \) is the expectation of distribution \(X \), \(\mu \) is the mean of the distribution and \(\sigma \) is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
Bernoulli$kurtosis(excess = TRUE, ...)

Arguments:
excess (logical(1))
 If TRUE (default) excess kurtosis returned.

Method entropy(): The entropy of a (discrete) distribution is defined by

\[-\sum (f_X) \log(f_X) \]

where \(f_X \) is the pdf of distribution \(X \), with an integration analogue for continuous distributions.

Usage:
Bernoulli$entropy(base = 2, ...)

Arguments:
base (integer(1))
 Base of the entropy logarithm, default = 2 (Shannon entropy)

Method mgf(): The moment generating function is defined by

\[mgf_X(t) = E_X[exp(xt)] \]

where \(X \) is the distribution and \(E_X \) is the expectation of the distribution \(X \).

Usage:
Bernoulli$mgf(t, ...)

Arguments:
t (integer(1))
 t integer to evaluate function at.

Method cf(): The characteristic function is defined by

\[cf_X(t) = E_X[exp(xti)] \]

where \(X \) is the distribution and \(E_X \) is the expectation of the distribution \(X \).

Usage:
Bernoulli$cf(t, ...)
Arguments:
t (integer(1))
 t integer to evaluate function at.
 ... Unused.

Method \texttt{pgf}(): The probability generating function is defined by

\[
pgf_X(z) = E_X[exp(z^t)]
\]

where X is the distribution and E_X is the expectation of the distribution X.

Usage:
\texttt{Bernoulli$pgf(z, \ldots)}$

Arguments:
z (integer(1))
 z integer to evaluate probability generating function at.
 ... Unused.

Method \texttt{clone}(): The objects of this class are cloneable with this method.

Usage:
\texttt{Bernoulli$clone(deep = FALSE)$}

Arguments:
deep Whether to make a deep clone.

References

See Also

Other discrete distributions: Binomial, Categorical, Degenerate, DiscreteUniform, EmpiricalMV, Empirical, Geometric, Hypergeometric, Logarithmic, Multinomial, NegativeBinomial, WeightedDiscrete

Other univariate distributions: Arcsine, BetaNoncentral, Beta, Binomial, Categorical, Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz, Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal, NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete
Beta Distribution Class

Description
Mathematical and statistical functions for the Beta distribution, which is commonly used as the prior in Bayesian modelling.

Details
The Beta distribution parameterised with two shape parameters, \(\alpha, \beta \), is defined by the pdf,

\[
f(x) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha, \beta)}
\]

for \(\alpha, \beta > 0 \), where \(B \) is the Beta function.

Value
Returns an R6 object inheriting from class SDistribution.

Distribution support
The distribution is supported on \([0, 1]\).

Default Parameterisation
Beta(shape1 = 1, shape2 = 1)

Omitted Methods
N/A

Also known as
N/A

Super classes
distr6::Distribution -> distr6::SDistribution -> Beta

Public fields
name Full name of distribution.
short_name Short name of distribution for printing.
description Brief description of the distribution.
packages Packages required to be installed in order to construct the distribution.
Active bindings

properties Returns distribution properties, including skewness type and symmetry.

Methods

Public methods:

• Beta$new()
• Beta$mean()
• Beta$mode()
• Beta$variance()
• Beta$skewness()
• Beta$kurtosis()
• Beta$entropy()
• Beta$pgf()
• Beta$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Beta$new(shape1 = NULL, shape2 = NULL, decorators = NULL)

Arguments:
shape1 (numeric(1))
 First shape parameter, shape1 > 0.
shape2 (numeric(1))
 Second shape parameter, shape2 > 0.
decorators (character())
 Decorators to add to the distribution during construction.

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

$$E_X(X) = \sum p_X(x) * x$$

with an integration analogue for continuous distributions.

Usage:
Beta$mean(...)

Arguments:
... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
Beta$mode(which = "all")

Arguments:
which (character(1) | numeric(1))
 Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies which mode to return.
Method variance(): The variance of a distribution is defined by the formula

\[\text{var}_X = E[X^2] - E[X]^2 \]

where \(E_X \) is the expectation of distribution \(X \). If the distribution is multivariate the covariance matrix is returned.

Usage:
\[\text{Beta}$\text{variance}(...) \]
Arguments:
... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised moment,

\[\text{sk}_X = E_X \left[\frac{x - \mu}{\sigma} \right]^3 \]

where \(E_X \) is the expectation of distribution \(X \), \(\mu \) is the mean of the distribution and \(\sigma \) is the standard deviation of the distribution.

Usage:
\[\text{Beta}$\text{skewness}(...) \]
Arguments:
... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised moment,

\[k_X = E_X \left[\frac{x - \mu}{\sigma} \right]^4 \]

where \(E_X \) is the expectation of distribution \(X \), \(\mu \) is the mean of the distribution and \(\sigma \) is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
\[\text{Beta}$\text{kurtosis}(\text{excess} = \text{TRUE}, ...) \]
Arguments:
excess (logical(1))
 If TRUE (default) excess kurtosis returned.
... Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

\[-\sum (f_X) \log(f_X) \]

where \(f_X \) is the pdf of distribution \(X \), with an integration analogue for continuous distributions.

Usage:
\[\text{Beta}$\text{entropy}(\text{base} = 2, ...) \]
Arguments:
base (integer(1))
 Base of the entropy logarithm, default = 2 (Shannon entropy)
Method \texttt{pgf()}: The probability generating function is defined by

\[pgf_X(z) = E_X[exp(z^x)] \]

where \(X \) is the distribution and \(E_X \) is the expectation of the distribution \(X \).

Usage:
\texttt{Beta$pgf(z, \ldots)}

Arguments:
\texttt{z (integer(1))}
\texttt{z integer to evaluate probability generating function at.}

... Unused.

Method \texttt{clone()}: The objects of this class are cloneable with this method.

Usage:
\texttt{Beta$clone(deep = FALSE)}

Arguments:
\texttt{deep Whether to make a deep clone.}

References

See Also
Other continuous distributions: \texttt{Arcsine, BetaNoncentral, Cauchy, ChiSquaredNoncentral, ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal, MultivariateNormal, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull}

Other univariate distributions: \texttt{Arcsine, Bernoulli, BetaNoncentral, Binomial, Categorical, Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz, Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal, NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete}
BetaNoncentral

Noncentral Beta Distribution Class

Description

Mathematical and statistical functions for the Noncentral Beta distribution, which is commonly used as the prior in Bayesian modelling.

Details

The Noncentral Beta distribution parameterised with two shape parameters, α, β, and location, λ, is defined by the pdf,

$$f(x) = \exp(-\lambda/2) \sum_{r=0}^{\infty} \frac{(\lambda/2)^r}{r!} \frac{(x^{\alpha+r-1}(1-x)^{\beta-1})}{B(\alpha+r,\beta)}$$

for $\alpha, \beta > 0, \lambda \geq 0$, where B is the Beta function.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on $[0, 1]$.

Default Parameterisation

BetaNC(shape1 = 1, shape2 = 1, location = 0)

Omitted Methods

N/A

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> BetaNoncentral

Public fields

name Full name of distribution.
short_name Short name of distribution for printing.
description Brief description of the distribution.
packages Packages required to be installed in order to construct the distribution.
Active bindings

properties Returns distribution properties, including skewness type and symmetry.

Methods

Public methods:

- BetaNoncentral$new()
- BetaNoncentral$clone()

Method new(): Creates a new instance of this R6 class.

Usage:

BetaNoncentral$new(
 shape1 = NULL,
 shape2 = NULL,
 location = NULL,
 decorators = NULL
)

Arguments:

- shape1 (numeric(1))
 First shape parameter, shape1 > 0.
- shape2 (numeric(1))
 Second shape parameter, shape2 > 0.
- location (numeric(1))
 Location parameter, defined on the non-negative Reals.
- decorators (character())
 Decorators to add to the distribution during construction.

Method clone(): The objects of this class are cloneable with this method.

Usage:

BetaNoncentral$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Jordan Deenichin

References

See Also

Other continuous distributions: Arcsine, Beta, Cauchy, ChiSquaredNoncentral, ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal, MultivariateNormal, Normal, Pareto, Poisson, Rayleigh, ShiftedLogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull

Other univariate distributions: Arcsine, Bernoulli, Beta, Binomial, Categorical, Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz, Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal, NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete

Binomial

Description

Mathematical and statistical functions for the Binomial distribution, which is commonly used to model the number of successes out of a number of independent trials.

Details

The Binomial distribution parameterised with number of trials, \(n \), and probability of success, \(p \), is defined by the pmf,

\[
f(x) = C(n, x) p^x (1 - p)^{n-x}
\]

for \(n = 0, 1, 2, \ldots \) and probability \(p \), where \(C(a, b) \) is the combination (or binomial coefficient) function.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on \(0, 1, \ldots, n \).

Default Parameterisation

```
Binom(size = 10, prob = 0.5)
```

Omitted Methods

N/A
Binomial

Also known as
N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> Binomial

Public fields

name Full name of distribution.
short_name Short name of distribution for printing.
description Brief description of the distribution.
packages Packages required to be installed in order to construct the distribution.

Active bindings

properties Returns distribution properties, including skewness type and symmetry.

Methods

Public methods:

• Binomial$new()
• Binomial$mean()
• Binomial$mode()
• Binomial$variance()
• Binomial$skewness()
• Binomial$kurtosis()
• Binomial$entropy()
• Binomial$mgf()
• Binomial$cf()
• Binomial$pgf()
• Binomial$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Binomial$new(size = NULL, prob = NULL, qprob = NULL, decorators = NULL)

Arguments:
size (integer(1))
 Number of trials, defined on the positive Naturals.
prob (numeric(1))
 Probability of success.
qprob (numeric(1))
 Probability of failure. If provided then prob is ignored. qprob = 1 - prob.
decorators (character())
 Decorators to add to the distribution during construction.
Method `mean()`: The arithmetic mean of a (discrete) probability distribution X is the expectation

$$E_X(X) = \sum p_X(x) * x$$

with an integration analogue for continuous distributions.

Usage:

`Binomial$mean(...)`

Arguments:

... Unused.

Method `mode()`: The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:

`Binomial$mode(which = "all")`

Arguments:

`which` (character(1) | numeric(1))

Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies which mode to return.

Method `variance()`: The variance of a distribution is defined by the formula

$$var_X = E[X^2] - E[X]^2$$

where E_X is the expectation of distribution X. If the distribution is multivariate the covariance matrix is returned.

Usage:

`Binomial$variance(...)`

Arguments:

... Unused.

Method `skewness()`: The skewness of a distribution is defined by the third standardised moment,

$$sk_X = E_X\left[\frac{x - \mu}{\sigma}\right]^3$$

where E_X is the expectation of distribution X, μ is the mean of the distribution and σ is the standard deviation of the distribution.

Usage:

`Binomial$skewness(...)`

Arguments:

... Unused.

Method `kurtosis()`: The kurtosis of a distribution is defined by the fourth standardised moment,

$$k_X = E_X\left[\frac{x - \mu}{\sigma}\right]^4$$

where E_X is the expectation of distribution X, μ is the mean of the distribution and σ is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.
Usage:
Binomial$kurtosis(excess = TRUE, ...)

Arguments:
excess (logical(1))
 If TRUE (default) excess kurtosis returned.
... Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

\[- \sum (f_X) \log(f_X)\]

where \(f_X\) is the pdf of distribution \(X\), with an integration analogue for continuous distributions.

Usage:
Binomial$entropy(base = 2, ...)

Arguments:
base (integer(1))
 Base of the entropy logarithm, default = 2 (Shannon entropy)
... Unused.

Method mgf(): The moment generating function is defined by

\[mgf_X(t) = E_X[exp(xt)]\]

where \(X\) is the distribution and \(E_X\) is the expectation of the distribution \(X\).

Usage:
Binomial$mgf(t, ...)

Arguments:
t (integer(1))
 t integer to evaluate function at.
... Unused.

Method cf(): The characteristic function is defined by

\[cf_X(t) = E_X[exp(xti)]\]

where \(X\) is the distribution and \(E_X\) is the expectation of the distribution \(X\).

Usage:
Binomial$cf(t, ...)

Arguments:
t (integer(1))
 t integer to evaluate function at.
... Unused.

Method pgf(): The probability generating function is defined by

\[pgf_X(z) = E_X[exp(z^x)]\]

where \(X\) is the distribution and \(E_X\) is the expectation of the distribution \(X\).
Usage:
Binomial$pgf(z, ...)

Arguments:
z (integer(1))
 z integer to evaluate probability generating function at.
 ... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Binomial$clone(deep = FALSE)

Arguments:
 deep Whether to make a deep clone.

References
Michael P. McLaughlin.

See Also
Other discrete distributions: Bernoulli, Categorical, Degenerate, DiscreteUniform, EmpiricalMV, Empirical, Geometric, Hypergeometric, Logarithmic, Multinomial, NegativeBinomial, WeightedDiscrete
Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Categorical, Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz, Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal, NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete

c.Distribution

Combine Distributions into a VectorDistribution

Description
Helper function for quickly combining distributions into a VectorDistribution.

Usage
S3 method for class 'Distribution'
c(..., name = NULL, short_name = NULL, decorators = NULL)

Arguments
...
distributions to be concatenated.
name, short_name, decorators
 See VectorDistribution
Categorical Distribution Class

Description

Mathematical and statistical functions for the Categorical distribution, which is commonly used in classification supervised learning.

Details

The Categorical distribution parameterised with a given support set, \(x_1, \ldots, x_k\), and respective probabilities, \(p_1, \ldots, p_k\), is defined by the pmf,

\[f(x_i) = p_i \]

for \(p_i, i = 1, \ldots, k; \sum p_i = 1\).

Sampling from this distribution is performed with the \texttt{sample} function with the elements given as the support set and the probabilities from the \texttt{probs} parameter. The \texttt{cdf} and quantile assumes that the elements are supplied in an indexed order (otherwise the results are meaningless).

The number of points in the distribution cannot be changed after construction.

Value

Returns an R6 object inheriting from class SDistribution.

Examples

```r
# Construct and combine
c(Binomial$new(), Normal$new())

# More complicated distributions
b <- truncate(Binomial$new(), 2, 6)
n <- huberize(Normal$new(), -1, 1)
c(b, n)

# Concatenate VectorDistributions
v1 <- VectorDistribution$new(list(Binomial$new(), Normal$new()))
v2 <- VectorDistribution$new(
  distribution = "Gamma",
  params = data.table::data.table(shape = 1:2, rate = 1:2)
)
c(v1, v2)
```
Distribution support
The distribution is supported on x_1, \ldots, x_k.

Default Parameterisation
Cat(elements = 1, probs = 1)

Omitted Methods
N/A

Also known as
N/A

Super classes
\texttt{distr6::Distribution} \rightarrow \texttt{distr6::SDistribution} \rightarrow \texttt{Categorical}

Public fields

name Full name of distribution.
short_name Short name of distribution for printing.
description Brief description of the distribution.

Active bindings

properties Returns distribution properties, including skewness type and symmetry.

Methods

Public methods:

• \texttt{Categorical$new}$()
• \texttt{Categorical$mean}$()
• \texttt{Categorical$mode}$()
• \texttt{Categorical$variance}$()
• \texttt{Categorical$skewness}$()
• \texttt{Categorical$kurtosis}$()
• \texttt{Categorical$entropy}$()
• \texttt{Categorical$mgf}$()
• \texttt{Categoricalcf}()
• \texttt{Categoricalpgf}()
• \texttt{Categorical$clone$}()

Method \texttt{new}(): Creates a new instance of this \texttt{R6} class.

Usage:
\texttt{Categorical$new(elements = NULL, probs = NULL, decorators = NULL)
Arguments:

- elements list()
 - Categories in the distribution, see examples.
- probs numeric()
 - Probabilities of respective categories occurring.
- decorators (character())
 - Decorators to add to the distribution during construction.

Examples:

```r
# Note probabilities are automatically normalised (if not vectorised)
x <- Categorical$new(elements = list("Bapple", "Banana", 2), probs = c(0.2, 0.4, 1))

# Length of elements and probabilities cannot be changed after construction
x$setParameterValue(probs = c(0.1, 0.2, 0.7))

# d/p/q/r
x$pdf(c("Bapple", "Carrot", 1, 2))
x$cdf("Banana") # Assumes ordered in construction
x$quantile(0.42) # Assumes ordered in construction
x$rand(10)

# Statistics
x$mode()

summary(x)
```

Method **mean()**: The arithmetic mean of a (discrete) probability distribution \(X \) is the expectation

\[
E_X(X) = \sum p_X(x) * x
\]

with an integration analogue for continuous distributions.

Usage:

Categorical$mean(...)

Arguments:

- ... unused.

Method **mode()**: The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:

Categorical$mode(which = "all")

Arguments:

- which (character(1) | numeric(1))
 - Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies which mode to return.

Method **variance()**: The variance of a distribution is defined by the formula

\[
\text{var}_X = E[X^2] - E[X]^2
\]
where E_X is the expectation of distribution X. If the distribution is multivariate the covariance matrix is returned.

Usage:
Categorical\cdotvariance(...)

Arguments:
... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised moment,

$$sk_X = E_X\left[\frac{x - \mu^3}{\sigma}\right]$$

where E_X is the expectation of distribution X, μ is the mean of the distribution and σ is the standard deviation of the distribution.

Usage:
Categorical\cdotskewness(...)

Arguments:
... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised moment,

$$k_X = E_X\left[\frac{x - \mu^4}{\sigma}\right]$$

where E_X is the expectation of distribution X, μ is the mean of the distribution and σ is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
Categorical\cdotkurtosis(excess = TRUE, ...)

Arguments:
excess (logical(1))
 If TRUE (default) excess kurtosis returned.
... Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

$$-\sum (f_X)\log(f_X)$$

where f_X is the pdf of distribution X, with an integration analogue for continuous distributions.

Usage:
Categorical\cdotentropy(base = 2, ...)

Arguments:
base (integer(1))
 Base of the entropy logarithm, default = 2 (Shannon entropy)
... Unused.
Method `mgf()`: The moment generating function is defined by

\[mgf_X(t) = E_X[exp(xt)] \]

where \(X \) is the distribution and \(E_X \) is the expectation of the distribution \(X \).

Usage:
```r
Categorical$mgf(t, ...)
```

Arguments:
- `t` (integer(1))
 - \(t \) integer to evaluate function at.
- ... Unused.

Method `cf()`: The characteristic function is defined by

\[cf_X(t) = E_X[exp(xti)] \]

where \(X \) is the distribution and \(E_X \) is the expectation of the distribution \(X \).

Usage:
```r
Categorical$cf(t, ...)
```

Arguments:
- `t` (integer(1))
 - \(t \) integer to evaluate function at.
- ... Unused.

Method `pgf()`: The probability generating function is defined by

\[pgf_X(z) = E_X[exp(z^x)] \]

where \(X \) is the distribution and \(E_X \) is the expectation of the distribution \(X \).

Usage:
```r
categorical$pgf(z, ...)
```

Arguments:
- `z` (integer(1))
 - \(z \) integer to evaluate probability generating function at.
- ... Unused.

Method `clone()`: The objects of this class are cloneable with this method.

Usage:
```r
Categorical$clone(deep = FALSE)
```

Arguments:
- `deep` Whether to make a deep clone.

References

See Also

Other discrete distributions: Bernoulli, Binomial, Degenerate, DiscreteUniform, EmpiricalMV, Empirical, Geometric, Hypergeometric, Logarithmic, Multinomial, NegativeBinomial, WeightedDiscrete

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz, Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal, NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete

Examples

```r
# Method `Categorical$new`
# Note probabilities are automatically normalised (if not vectorised)
x <- Categorical$new(elements = list("Bapple", "Banana", 2), probs = c(0.2, 0.4, 1))

# Length of elements and probabilities cannot be changed after construction
x$setParameterValue(probs = c(0.1, 0.2, 0.7))

# d/p/q/r
x$pdf(c("Bapple", "Carrot", 1, 2))
x$cdf("Banana") # Assumes ordered in construction
x$quantile(0.42) # Assumes ordered in construction
x$rand(10)

# Statistics
x$mode()

summary(x)
```

Description

Mathematical and statistical functions for the Cauchy distribution, which is commonly used in physics and finance.

Details

The Cauchy distribution parameterised with location, \(\alpha\), and scale, \(\beta\), is defined by the pdf,

\[
f(x) = \frac{1}{\pi \beta (1 + ((x - \alpha)/\beta)^2)}
\]

for \(\alpha \in \mathbb{R}\) and \(\beta > 0\).
Cauchy

Value
Returns an R6 object inheriting from class SDistribution.

Distribution support
The distribution is supported on the Reals.

Default Parameterisation
Cauchy(location = 0, scale = 1)

Omitted Methods
N/A

Also known as
N/A

Super classes
distr6::Distribution -> distr6::SDistribution -> Cauchy

Public fields
name Full name of distribution.
short_name Short name of distribution for printing.
description Brief description of the distribution.
packages Packages required to be installed in order to construct the distribution.

Methods
Public methods:
• Cauchy$new()
• Cauchy$mean()
• Cauchy$mode()
• Cauchy$variance()
• Cauchy$skewness()
• Cauchy$kurtosis()
• Cauchy$entropy()
• Cauchy$mgf()
• Cauchy$cf()
• Cauchy$pgf()
• Cauchy$clone()

Method new(): Creates a new instance of this R6 class.
Usage:
Cauchy$new(location = NULL, scale = NULL, decorators = NULL)

Arguments:
location (numeric(1))
 Location parameter defined on the Reals.
scale (numeric(1))
 Scale parameter defined on the positive Reals.
decorators (character(1))
 Decorators to add to the distribution during construction.

Method mean(): The arithmetic mean of a (discrete) probability distribution \(X \) is the expectation

\[
E_X(X) = \sum p_X(x) \cdot x
\]

with an integration analogue for continuous distributions.

Usage:
Cauchy$mean(...)

Arguments:
... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
Cauchy$mode(which = "all")

Arguments:
which (character(1) | numeric(1))
 Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies which mode to return.

Method variance(): The variance of a distribution is defined by the formula

\[
var_X = E[X^2] - E[X]^2
\]

where \(E_X \) is the expectation of distribution \(X \). If the distribution is multivariate the covariance matrix is returned.

Usage:
Cauchy$variance(...)

Arguments:
... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised moment,

\[
sk_X = E_X \left[\frac{x - \mu^3}{\sigma} \right]
\]

where \(E_X \) is the expectation of distribution \(X \), \(\mu \) is the mean of the distribution and \(\sigma \) is the standard deviation of the distribution.
Cauchy

Usage:
Cauchy$skewness(...)

Arguments:
... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised moment,

\[k_X = E_X \frac{x - \mu}{\sigma^4} \]

where \(E_X \) is the expectation of distribution \(X \), \(\mu \) is the mean of the distribution and \(\sigma \) is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
Cauchy$kurtosis(excess = TRUE, ...)

Arguments:
excess (logical(1))
 If TRUE (default) excess kurtosis returned.
... Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

\[- \sum (f_X) \log(f_X)\]

where \(f_X \) is the pdf of distribution \(X \), with an integration analogue for continuous distributions.

Usage:
Cauchy$entropy(base = 2, ...)

Arguments:
base (integer(1))
 Base of the entropy logarithm, default = 2 (Shannon entropy)
... Unused.

Method mgf(): The moment generating function is defined by

\[mgf_X(t) = E_X[exp(xt)] \]

where \(X \) is the distribution and \(E_X \) is the expectation of the distribution \(X \).

Usage:
Cauchy$mgf(t, ...)

Arguments:
t (integer(1))
 t integer to evaluate function at.
... Unused.

Method cf(): The characteristic function is defined by

\[cf_X(t) = E_X[exp(xti)] \]

where \(X \) is the distribution and \(E_X \) is the expectation of the distribution \(X \).
Usage:
Cauchy\$cf(t, \ldots)

Arguments:
t (integer(1))
 t integer to evaluate function at.

Method \(pgf()\): The probability generating function is defined by

\[pgf_X(z) = E_X[exp(z^t)] \]

where \(X\) is the distribution and \(E_X\) is the expectation of the distribution \(X\).

Usage:
Cauchy\$pgf(z, \ldots)

Arguments:
z (integer(1))
 z integer to evaluate probability generating function at.

Method \(clone()\): The objects of this class are cloneable with this method.

Usage:
Cauchy\$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)
Chijing Zeng

References

See Also
Other continuous distributions: Arcsine, BetaNoncentral, Beta, ChiSquaredNoncentral, ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal, MultivariateNormal, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz, Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal, NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete
ChiSquared

Chi-Squared Distribution Class

Description
Mathematical and statistical functions for the Chi-Squared distribution, which is commonly used to model the sum of independent squared Normal distributions and for confidence intervals.

Details
The Chi-Squared distribution parameterised with degrees of freedom, \(\nu \), is defined by the pdf,

\[
f(x) = \frac{(x^{\nu/2} - 1 \exp(-x/2))}{(2^{\nu/2} \Gamma(\nu/2))} \]

for \(\nu > 0 \).

Value
Returns an R6 object inheriting from class \(\text{SDistribution} \).

Distribution support
The distribution is supported on the Positive Reals.

Default Parameterisation
ChiSq(df = 1)

Omitted Methods
N/A

Also known as
N/A

Super classes
\(\text{distr6::Distribution} \rightarrow \text{distr6::SDistribution} \rightarrow \text{ChiSquared} \)

Public fields

- name Full name of distribution.
- short_name Short name of distribution for printing.
- description Brief description of the distribution.
- packages Packages required to be installed in order to construct the distribution.
Active bindings

properties Returns distribution properties, including skewness type and symmetry.

Methods

Public methods:

• ChiSquared$new()
• ChiSquared$mean()
• ChiSquared$mode()
• ChiSquared$variance()
• ChiSquared$skewness()
• ChiSquared$kurtosis()
• ChiSquared$entropy()
• ChiSquared$mgf()
• ChiSquared$cf()
• ChiSquared$pgf()
• ChiSquared$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
ChiSquared$new(df = NULL, decorators = NULL)

Arguments:
 df (integer(1))
 Degrees of freedom of the distribution defined on the positive Reals.
 decorators (character())
 Decorators to add to the distribution during construction.

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

\[E_X(X) = \sum p_X(x) \cdot x \]

with an integration analogue for continuous distributions.

Usage:
ChiSquared$mean(...)

Arguments:
 ... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local
maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
ChiSquared$mode(which = "all")

Arguments:
 which (character(1) | numeric(1))
 Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies
 which mode to return.
Method variance(): The variance of a distribution is defined by the formula

$$\text{var}_X = E[X^2] - E[X]^2$$

where E_X is the expectation of distribution X. If the distribution is multivariate the covariance matrix is returned.

Usage:
ChiSquared$variance(...)

Arguments:
... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised moment,

$$sk_X = E_X \left[\frac{x - \mu}{\sigma} \right]^3$$

where E_X is the expectation of distribution X, μ is the mean of the distribution and σ is the standard deviation of the distribution.

Usage:
ChiSquared$skewness(...)

Arguments:
... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised moment,

$$k_X = E_X \left[\frac{x - \mu}{\sigma} \right]^4$$

where E_X is the expectation of distribution X, μ is the mean of the distribution and σ is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
ChiSquared$kurtosis(excess = TRUE, ...)

Arguments:
excess (logical(1))
 If TRUE (default) excess kurtosis returned.
... Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

$$- \sum (f_X) \log(f_X)$$

where f_X is the pdf of distribution X, with an integration analogue for continuous distributions.

Usage:
ChiSquared$entropy(base = 2, ...)

Arguments:
base (integer(1))
 Base of the entropy logarithm, default = 2 (Shannon entropy)
... Unused.

Method mgf(): The moment generating function is defined by

\[mgf_X(t) = E_X[exp(xt)] \]

where \(X \) is the distribution and \(E_X \) is the expectation of the distribution \(X \).

Usage:
ChiSquared$mgf(t, ...)

Arguments:
- \(t \) (integer(1))
 - \(t \) integer to evaluate function at.
... Unused.

Method cf(): The characteristic function is defined by

\[cf_X(t) = E_X[exp(xiti)] \]

where \(X \) is the distribution and \(E_X \) is the expectation of the distribution \(X \).

Usage:
ChiSquared$cf(t, ...)

Arguments:
- \(t \) (integer(1))
 - \(t \) integer to evaluate function at.
... Unused.

Method pgf(): The probability generating function is defined by

\[pgf_X(z) = E_X[exp(zx)] \]

where \(X \) is the distribution and \(E_X \) is the expectation of the distribution \(X \).

Usage:
ChiSquared$pgf(z, ...)

Arguments:
- \(z \) (integer(1))
 - \(z \) integer to evaluate probability generating function at.
... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
ChiSquared$clone(deep = FALSE)

Arguments:
- deep Whether to make a deep clone.

References

ChiSquaredNoncentral

See Also

Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral, Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal, MultivariateNormal, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical, Cauchy, ChiSquaredNoncentral, Degenerate, DiscreteUniform, Empirical, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz, Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal, NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete

ChiSquaredNoncentral Noncentral Chi-Squared Distribution Class

Description

Mathematical and statistical functions for the Noncentral Chi-Squared distribution, which is commonly used to model the sum of independent squared Normal distributions and for confidence intervals.

Details

The Noncentral Chi-Squared distribution parameterised with degrees of freedom, ν, and location, λ, is defined by the pdf,

$$f(x) = \exp(-\lambda/2) \sum_{r=0}^{\infty} \left(\frac{\lambda/2}{r!}\right)(x^{\nu+2r}/2-1) \exp(-x/2)/(2^{(\nu+2r)/2}\Gamma((\nu+2r)/2))$$

for $\nu \geq 0, \lambda \geq 0$.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on the Positive Reals.

Default Parameterisation

ChiSqNC(df = 1, location = 0)

Omitted Methods

N/A
Also known as
N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> ChiSquaredNoncentral

Public fields

name Full name of distribution.
short_name Short name of distribution for printing.
description Brief description of the distribution.
packages Packages required to be installed in order to construct the distribution.

Active bindings

properties Returns distribution properties, including skewness type and symmetry.

Methods

Public methods:

• ChiSquaredNoncentral$new()
• ChiSquaredNoncentral$mean()
• ChiSquaredNoncentral$variance()
• ChiSquaredNoncentral$skewness()
• ChiSquaredNoncentral$kurtosis()
• ChiSquaredNoncentral$mgf()
• ChiSquaredNoncentral$cf()
• ChiSquaredNoncentral$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
ChiSquaredNoncentral$new(df = NULL, location = NULL, decorators = NULL)

Arguments:
df (integer(1))
 Degrees of freedom of the distribution defined on the positive Reals.
location (numeric(1))
 Location parameter, defined on the non-negative Reals.
decorators (character())
 Decorators to add to the distribution during construction.

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

\[E_X(X) = \sum p_X(x) * x \]

with an integration analogue for continuous distributions.
Usage:
ChiSquaredNoncentral$mean(...)

Arguments:
... Unused.

Method variance(): The variance of a distribution is defined by the formula

$$var_X = E[X^2] - E[X]^2$$

where E_X is the expectation of distribution X. If the distribution is multivariate the covariance matrix is returned.

Usage:
ChiSquaredNoncentral$variance(...)

Arguments:
... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised moment,

$$sk_X = E_X\left[\frac{x - \mu}{\sigma}\right]^3$$

where E_X is the expectation of distribution X, μ is the mean of the distribution and σ is the standard deviation of the distribution.

Usage:
ChiSquaredNoncentral$skewness(...)

Arguments:
... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised moment,

$$k_X = E_X\left[\frac{x - \mu}{\sigma}\right]^4$$

where E_X is the expectation of distribution X, μ is the mean of the distribution and σ is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
ChiSquaredNoncentral$kurtosis(excess = TRUE, ...)

Arguments:
excess (logical(1))
 If TRUE (default) excess kurtosis returned.
... Unused.

Method mgf(): The moment generating function is defined by

$$mgf_X(t) = E_X[exp(xt)]$$

where X is the distribution and E_X is the expectation of the distribution X.

Usage:
ChiSquaredNoncentral$mgf(t, ...)

Arguments:
t (integer(1))
 t integer to evaluate function at.
... Unused.

Method cf(): The characteristic function is defined by

\[
\phi_X(t) = \mathbb{E}[\exp(tX)]
\]

where \(X \) is the distribution and \(\mathbb{E}[X] \) is the expectation of the distribution \(X \).

Usage:
ChiSquaredNoncentral$cf(t, ...)

Arguments:
t (integer(1))
 t integer to evaluate function at.
...Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
ChiSquaredNoncentral$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)
Jordan Deenichin

References

See Also
Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal, MultivariateNormal, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical, Cauchy, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz, Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal, NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete
Description
Calculates the convolution of two distribution via numerical calculations.

Usage
```r
## S3 method for class 'Distribution'
x + y
## S3 method for class 'Distribution'
x - y
```

Arguments
- `x`, `y`: Distribution

Details
The convolution of two probability distributions X, Y is the sum

$$Z = X + Y$$

which has a pmf,

$$P(Z = z) = \sum_x P(X = x)P(Y = z - x)$$

with an integration analogue for continuous distributions.
Currently distr6 supports the addition of discrete and continuous probability distributions, but only subtraction of continuous distributions.

Value
Returns an R6 object of class Convolution.

Super classes
distr6::Distribution -> distr6::DistributionWrapper -> Convolution

Methods
Public methods:
- `Convolution$new()`
- `Convolution$clone()`

Method `new()`: Creates a new instance of this R6 class.
Usage:
Convolution$new(dist1, dist2, add = TRUE)

Arguments:
dist1 ([Distribution])
 First Distribution in convolution, i.e. dist1 ± dist2.
dist2 ([Distribution])
 Second Distribution in convolution, i.e. dist1 ± dist2.
add (logical(1))
 If TRUE (default) then adds the distributions together, otherwise subtracts.

Method clone(): The objects of this class are cloneable with this method.
Usage:
Convolution$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also
Other wrappers: DistributionWrapper, HuberizedDistribution, MixtureDistribution, ProductDistribution, TruncatedDistribution, VectorDistribution

Examples
binom <- Bernoulli$new() + Bernoulli$new()
binom$pdf(2)
Binomial$new(size = 2)$pdf(2)
norm <- Normal$new(mean = 3) - Normal$new(mean = 2)
norm$pdf(1)
Normal$new(mean = 1, var = 2)$pdf(1)
Super class

\texttt{distr6::DistributionDecorator} \rightarrow \texttt{CoreStatistics}

Methods

\textbf{Public methods:}

- \texttt{CoreStatistics$mgf()}
- \texttt{CoreStatistics$cf()}
- \texttt{CoreStatistics$pgf()}
- \texttt{CoreStatistics$entropy()}
- \texttt{CoreStatistics$skewness()}
- \texttt{CoreStatistics$kurtosis()}
- \texttt{CoreStatistics$variance()}
- \texttt{CoreStatistics$kthmoment()}
- \texttt{CoreStatistics$genExp()}
- \texttt{CoreStatistics$mode()}
- \texttt{CoreStatistics$mean()}
- \texttt{CoreStatistics$clone()}

\textbf{Method mgf()}: Numerically estimates the moment-generating function.

\textit{Usage:}
\texttt{CoreStatistics$mgf(t, \ldots)}

\textit{Arguments:}
- \texttt{t \ (integer(1))}
 - \texttt{t} integer to evaluate function at.
- \texttt{\ldots \ ANY}
 - Passed to \texttt{$genExp}.}

\textbf{Method cf()}: Numerically estimates the characteristic function.

\textit{Usage:}
\texttt{CoreStatistics$cf(t, \ldots)}

\textit{Arguments:}
- \texttt{t \ (integer(1))}
 - \texttt{t} integer to evaluate function at.
- \texttt{\ldots \ ANY}
 - Passed to \texttt{$genExp}.}

\textbf{Method pgf()}: Numerically estimates the probability-generating function.

\textit{Usage:}
\texttt{CoreStatistics$pgf(z, \ldots)}

\textit{Arguments:}
- \texttt{z \ (integer(1))}
 - \texttt{z} integer to evaluate probability generating function at.
Method entropy(): Numerically estimates the entropy function.

Usage:
CoreStatistics$entropy(base = 2, ...)

Arguments:
base (integer(1))
 Base of the entropy logarithm, default = 2 (Shannon entropy)
... ANY
 Passed to $genExp.

Method skewness(): Numerically estimates the distribution skewness.

Usage:
CoreStatistics$skewness(...)

Arguments:
... ANY
 Passed to $genExp.

Method kurtosis(): Numerically estimates the distribution kurtosis.

Usage:
CoreStatistics$kurtosis(excess = TRUE, ...)

Arguments:
excess (logical(1))
 If TRUE (default) excess kurtosis returned.
... ANY
 Passed to $genExp.

Method variance(): Numerically estimates the distribution variance.

Usage:
CoreStatistics$variance(...)

Arguments:
... ANY
 Passed to $genExp.

Method kthmoment(): The kth central moment of a distribution is defined by

\[CM(k)_X = E_X[(x - \mu)^k] \]

the kth standardised moment of a distribution is defined by

\[SM(k)_X = \frac{CM(k)}{\sigma^k} \]

the kth raw moment of a distribution is defined by

\[RM(k)_X = E_X[x^k] \]

where \(E_X \) is the expectation of distribution \(X \), \(\mu \) is the mean of the distribution and \(\sigma \) is the standard deviation of the distribution.
Usage:
CoreStatistics$kthmoment(k, type = c("central", "standard", "raw"), ...)

Arguments:
k integer(1)
 The k-th moment to evaluate the distribution at.
type character(1)
 Type of moment to evaluate.
... ANY
 Passed to $genExp.

Method genExp(): Numerically estimates $E[f(X)]$ for some function f.

Usage:
CoreStatistics$genExp(trafo = NULL, cubature = FALSE, ...)

Arguments:
trafo function()
 Transformation function to define the expectation, default is distribution mean.
cubature logical(1)
 If TRUE uses cubature::cubintegrate for approximation, otherwise integrate.
... ANY
 Passed to cubature::cubintegrate.

Method mode(): Numerically estimates the distribution mode.

Usage:
CoreStatistics$mode(which = "all")

Arguments:
which (character(1) | numeric(1)
 Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies which mode to return.

Method mean(): Numerically estimates the distribution mean.

Usage:
CoreStatistics$mean(...)

Arguments:
... ANY
 Passed to $genExp.

Method clone(): The objects of this class are cloneable with this method.

Usage:
CoreStatistics$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Other decorators: ExoticStatistics, FunctionImputation
Cosine

Examples

```r
decorate(Exponential$new(), "CoreStatistics")
Exponential$new(decorators = "CoreStatistics")
CoreStatistics$new()$decorate(Exponential$new())
```

Cosine

Cosine Kernel

Description

Mathematical and statistical functions for the Cosine kernel defined by the pdf,

\[f(x) = (\pi/4) \cos(x\pi/2) \]

over the support \(x \in (-1, 1) \).

Super classes

\[\text{distr6::Distribution} \rightarrow \text{distr6::Kernel} \rightarrow \text{Cosine} \]

Public fields

- `name` Full name of distribution.
- `short_name` Short name of distribution for printing.
- `description` Brief description of the distribution.

Methods

Public methods:

- `Cosine$pdfSquared2Norm()`
- `Cosine$cdfSquared2Norm()`
- `Cosine$variance()`
- `Cosine$clone()`

Method pdfSquared2Norm(): The squared 2-norm of the pdf is defined by

\[\int_a^b (f_X(u))^2 du \]

where \(X \) is the Distribution, \(f_X \) is its pdf and \(a, b \) are the distribution support limits.

Usage:

`Cosine$pdfSquared2Norm(x = 0, upper = Inf)`

Arguments:

- `x` (numeric(1))
 - Amount to shift the result.
upper (numeric(1))
 Upper limit of the integral.

Method `cdfSquared2Norm()`: The squared 2-norm of the cdf is defined by

\[\int_a^b (F_X(u))^2 du \]

where \(X \) is the Distribution, \(F_X \) is its pdf and \(a, b \) are the distribution support limits.

Usage:

```r
Cosine$cdfSquared2Norm(x = 0, upper = 0)
```

Arguments:

- `x` (numeric(1))
 - Amount to shift the result.
- `upper` (numeric(1))
 - Upper limit of the integral.

Method `variance()`: The variance of a distribution is defined by the formula

\[var_X = E[X^2] - E[X]^2 \]

where \(E_X \) is the expectation of distribution \(X \). If the distribution is multivariate the covariance matrix is returned.

Usage:

```r
Cosine$variance(...)```

*Arguments:*

... Unused.

**Method** `clone()`: The objects of this class are cloneable with this method.

*Usage:*

```r
Cosine$clone(deep = FALSE)
```

*Arguments:*

- `deep` Whether to make a deep clone.

**See Also**

Other kernels: Epanechnikov, LogisticKernel, NormalKernel, Quartic, Sigmoid, Silverman, TriangularKernel, Tricube, Triweight, UniformKernel
**decorate**

---

**Decorate Distributions**

**Description**

Functionality to decorate R6 Distributions (and child classes) with extra methods.

**Usage**

`decorate(distribution, decorators, ...)`

**Arguments**

- `distribution` ([Distribution])
  - Distribution to decorate.
- `decorators` (character())
  - Vector of DistributionDecorator names to decorate the Distribution with.
- `...` ANY
  - Extra arguments passed down to specific decorators.

**Details**

Decorating is the process of adding methods to classes that are not part of the core interface (Gamma et al. 1994). Use `listDecorators` to see which decorators are currently available. The primary use-cases are to add numeric results when analytic ones are missing, to add complex modelling functions and to impute missing d/p/q/r functions.

**Value**

Returns a Distribution with additional methods from the chosen DistributionDecorator.

**References**

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. 1994. “Design Patterns: Elements of Reusable Object-Oriented Software.” Addison-Wesley.

**See Also**

- `listDecorators()` for available decorators and DistributionDecorator for the parent class.

**Examples**

```r
B <- Binomial$new()
decorate(B, "CoreStatistics")

E <- Exponential$new()
decorate(E, c("CoreStatistics", "ExoticStatistics"))
```
Degenerate

Degenerate Distribution Class

Description
Mathematical and statistical functions for the Degenerate distribution, which is commonly used to model deterministic events or as a representation of the delta, or Heaviside, function.

Details
The Degenerate distribution parameterised with mean, \( \mu \) is defined by the pmf,

\[
f(x) = 1, \text{ if } x = \mu \\
f(x) = 0, \text{ if } x \neq \mu
\]

for \( \mu \in \mathbb{R} \).

Value
Returns an R6 object inheriting from class SDistribution.

Distribution support
The distribution is supported on \( \mu \).

Default Parameterisation
\texttt{Degen(mean = 0)}

Omitted Methods
N/A

Also known as
Also known as the Dirac distribution.

Super classes
\texttt{distr6::Distribution \rightarrow distr6::SDistribution \rightarrow Degenerate}

Public fields
name Full name of distribution.
short_name Short name of distribution for printing.
description Brief description of the distribution.
Active bindings

properties Returns distribution properties, including skewness type and symmetry.

Methods

Public methods:

- `Degenerate$new()`
- `Degenerate$mean()`
- `Degenerate$mode()`
- `Degenerate$variance()`
- `Degenerate$skewness()`
- `Degenerate$kurtosis()`
- `Degenerate$entropy()`
- `Degenerate$mgf()`
- `Degenerate$cf()`
- `Degenerate$clone()`

Method `new()`: Creates a new instance of this R6 class.

Usage:
`Degenerate$new(mean = NULL, decorators = NULL)`

Arguments:

- `mean` numeric(1)
  Mean of the distribution, defined on the Reals.
- `decorators` character()
  Decorators to add to the distribution during construction.

Method `mean()`: The arithmetic mean of a (discrete) probability distribution $X$ is the expectation

$$E_X(X) = \sum p_X(x) \times x$$

with an integration analogue for continuous distributions.

Usage:
`Degenerate$mean(...)`

Arguments:

- `...` Unused.

Method `mode()`: The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
`Degenerate$mode(which = "all")`

Arguments:

- `which` character(1) | numeric(1)
  Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies which mode to return.
Method **variance()**: The variance of a distribution is defined by the formula

\[ \text{var}_X = E[X^2] - E[X]^2 \]

where \( E_X \) is the expectation of distribution \( X \). If the distribution is multivariate the covariance matrix is returned.

*Usage:*

Degenerate$\text{variance}(...)

*Arguments:*

... Unused.

Method **skewness()**: The skewness of a distribution is defined by the third standardised moment,

\[ \text{sk}_X = E_X \left[ \frac{x - \mu^3}{\sigma} \right] \]

where \( E_X \) is the expectation of distribution \( X \), \( \mu \) is the mean of the distribution and \( \sigma \) is the standard deviation of the distribution.

*Usage:*

Degenerate$\text{skewness}(...)

*Arguments:*

... Unused.

Method **kurtosis()**: The kurtosis of a distribution is defined by the fourth standardised moment,

\[ k_X = E_X \left[ \frac{x - \mu^4}{\sigma} \right] \]

where \( E_X \) is the expectation of distribution \( X \), \( \mu \) is the mean of the distribution and \( \sigma \) is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

*Usage:*

Degenerate$\text{kurtosis}(\text{excess = TRUE}, ...)

*Arguments:*

\( \text{excess} \) (logical(1))

If TRUE (default) excess kurtosis returned.

... Unused.

Method **entropy()**: The entropy of a (discrete) distribution is defined by

\[ - \sum (f_X) \log(f_X) \]

where \( f_X \) is the pdf of distribution \( X \), with an integration analogue for continuous distributions.

*Usage:*

Degenerate$\text{entropy}(\text{base = 2}, ...)

*Arguments:*

\( \text{base} \) (integer(1))

Base of the entropy logarithm, default = 2 (Shannon entropy)
... Unused.

**Method mgf():** The moment generating function is defined by

\[ mgf_X(t) = E_X[exp(xt)] \]

where \( X \) is the distribution and \( E_X \) is the expectation of the distribution \( X \).

*Usage:*

`Degenerate$mgf(t, ...)`

*Arguments:*

- `t` (integer(1))
  - \( t \) integer to evaluate function at.
- ... Unused.

**Method cf():** The characteristic function is defined by

\[ cf_X(t) = E_X[exp(xti)] \]

where \( X \) is the distribution and \( E_X \) is the expectation of the distribution \( X \).

*Usage:*

`Degenerate$cf(t, ...)`

*Arguments:*

- `t` (integer(1))
  - \( t \) integer to evaluate function at.
- ... Unused.

**Method clone():** The objects of this class are cloneable with this method.

*Usage:*

`Degenerate$clone(deep = FALSE)`

*Arguments:*

- `deep` Whether to make a deep clone.

**References**


**See Also**

Other discrete distributions: Bernoulli, Binomial, Categorical, DiscreteUniform, EmpiricalMV, Empirical, Geometric, Hypergeometric, Logarithmic, Multinomial, NegativeBinomial, WeightedDiscrete

**Dirichlet Distribution Class**

**Description**

Mathematical and statistical functions for the Dirichlet distribution, which is commonly used as a prior in Bayesian modelling and is multivariate generalisation of the Beta distribution.

**Details**

The Dirichlet distribution parameterised with concentration parameters, \( \alpha_1, \ldots, \alpha_k \), is defined by the pdf,

\[
f(x_1, \ldots, x_k) = \frac{\prod \Gamma(\alpha_i)}{\Gamma(\sum \alpha_i)} \prod x_i^{\alpha_i - 1}
\]

for \( \alpha = \alpha_1, \ldots, \alpha_k; \alpha > 0 \), where \( \Gamma \) is the gamma function.

Sampling is performed via sampling independent Gamma distributions and normalising the samples (Devroye, 1986).

**Value**

Returns an R6 object inheriting from class `SDistribution`.

**Distribution support**

The distribution is supported on \( x_i \in (0, 1), \sum x_i = 1 \).

**Default Parameterisation**

`Diri(params = c(1, 1))`

**Omitted Methods**

cdf and quantile are omitted as no closed form analytic expression could be found, decorate with `FunctionImputation` for a numerical imputation.

**Also known as**

N/A

**Super classes**

distr6::Distribution -> distr6::SDistribution -> Dirichlet

**Public fields**

- name  Full name of distribution.
- short_name  Short name of distribution for printing.
- description  Brief description of the distribution.
- packages  Packages required to be installed in order to construct the distribution.
Active bindings

properties Returns distribution properties, including skewness type and symmetry.

Methods

Public methods:

• Dirichlet$new()
• Dirichlet$mean()
• Dirichlet$mode()
• Dirichlet$variance()
• Dirichlet$entropy()
• Dirichlet$pgf()
• Dirichlet$setParameterValue()
• Dirichlet$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Dirichlet$new(params = NULL, decorators = NULL)

Arguments:
params numeric()
  Vector of concentration parameters of the distribution defined on the positive Reals.
decorators (character())
  Decorators to add to the distribution during construction.

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

\[ E_X(X) = \sum p_X(x) \times x \]

with an integration analogue for continuous distributions.

Usage:
Dirichlet$mean(...)

Arguments:
... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
Dirichlet$mode(which = "all")

Arguments:
which (character(1) | numeric(1))
  Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies which mode to return.
Method variance(): The variance of a distribution is defined by the formula

\[ \text{var}_X = E[X^2] - E[X]^2 \]

where \( E_X \) is the expectation of distribution \( X \). If the distribution is multivariate the covariance matrix is returned.

Usage:
Dirichlet$variance(...)

Arguments:
... Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

\[ -\sum (f_X) \log(f_X) \]

where \( f_X \) is the pdf of distribution \( X \), with an integration analogue for continuous distributions.

Usage:
Dirichlet$entropy(base = 2, ...)

Arguments:
base (integer(1))
  Base of the entropy logarithm, default = 2 (Shannon entropy)
... Unused.

Method pgf(): The probability generating function is defined by

\[ pgf_X(z) = E_X[exp(z^x)] \]

where \( X \) is the distribution and \( E_X \) is the expectation of the distribution \( X \).

Usage:
Dirichlet$pgf(z, ...)

Arguments:
z (integer(1))
  z integer to evaluate probability generating function at.
... Unused.

Method setParameterValue(): Sets the value(s) of the given parameter(s).

Usage:
Dirichlet$setParameterValue(
    ..., lst = list(...),
    error = "warn",
    resolveConflicts = FALSE
)

Arguments:
... ANY
  Named arguments of parameters to set values for. See examples.
Discrete Uniform Distribution Class

Description

Mathematical and statistical functions for the Discrete Uniform distribution, which is commonly used as a discrete variant of the more popular Uniform distribution, used to model events with an equal probability of occurring (e.g. role of a die).
Details

The Discrete Uniform distribution parameterised with lower, \( a \), and upper, \( b \), limits is defined by the pmf,

\[
f(x) = \frac{1}{b - a + 1}
\]

for \( a, b \in \mathbb{Z}; \ b \geq a \).

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on \( \{a, a+1, \ldots, b\} \).

Default Parameterisation

\( \text{DUnif}(\text{lower} = 0, \text{upper} = 1) \)

Omitted Methods

N/A

Also known as

N/A

Super classes

\( \text{distr6::Distribution} \rightarrow \text{distr6::SDistribution} \rightarrow \text{DiscreteUniform} \)

Public fields

name  Full name of distribution.
short_name  Short name of distribution for printing.
description  Brief description of the distribution.
packages  Packages required to be installed in order to construct the distribution.

Active bindings

properties  Returns distribution properties, including skewness type and symmetry.

Methods

Public methods:

- \( \text{DiscreteUniform}\$\text{new()} \)
- \( \text{DiscreteUniform}\$\text{mean()} \)
- \( \text{DiscreteUniform}\$\text{mode()} \)
- \( \text{DiscreteUniform}\$\text{variance()} \)
• `DiscreteUniform$skewness()`
• `DiscreteUniform$skewness()`
• `DiscreteUniform$entropy()`
• `DiscreteUniform$mgf()`
• `DiscreteUniform$cf()`
• `DiscreteUniform$pgf()`
• `DiscreteUniform$clone()`

**Method** `new()`: Creates a new instance of this R6 class.

*Usage:*

```r
DiscreteUniform$new(lower = NULL, upper = NULL, decorators = NULL)
```

*Arguments:*

- `lower` (integer(1))
  - Lower limit of the Distribution, defined on the Naturals.
- `upper` (integer(1))
  - Upper limit of the Distribution, defined on the Naturals.
- `decorators` (character())
  - Decorators to add to the distribution during construction.

**Method** `mean()`: The arithmetic mean of a (discrete) probability distribution \(X\) is the expectation

\[
E_X(X) = \sum p_X(x) \times x
\]

with an integration analogue for continuous distributions.

*Usage:*

```r
DiscreteUniform$mean(...)```

Arguments:

... Unused.

Method `mode()`: The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:

```r
DiscreteUniform$mode(which = "all")```

*Arguments:*

- `which` (character(1) | numeric(1))
  - Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies which mode to return.

**Method** `variance()`: The variance of a distribution is defined by the formula

\[
var_X = E[X^2] - E[X]^2
\]

where \(E_X\) is the expectation of distribution \(X\). If the distribution is multivariate the covariance matrix is returned.

*Usage:*
DiscreteUniform

DiscreteUniform$\text{variance}(...)$

Arguments:
... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised moment,

$$sk_X = E_X \left[ \frac{x - \mu^3}{\sigma} \right]$$

where $E_X$ is the expectation of distribution $X$, $\mu$ is the mean of the distribution and $\sigma$ is the standard deviation of the distribution.

Usage:
DiscreteUniform$\text{skewness}(...)$

Arguments:
... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised moment,

$$k_X = E_X \left[ \frac{x - \mu^4}{\sigma} \right]$$

where $E_X$ is the expectation of distribution $X$, $\mu$ is the mean of the distribution and $\sigma$ is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
DiscreteUniform$\text{kurtosis}(\text{excess} = \text{TRUE}, ...)$

Arguments:
excess (logical(1))
If TRUE (default) excess kurtosis returned.
... Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

$$- \sum (f_X \log(f_X))$$

where $f_X$ is the pdf of distribution $X$, with an integration analogue for continuous distributions.

Usage:
DiscreteUniform$\text{entropy}(\text{base} = 2, ...)$

Arguments:
base (integer(1))
Base of the entropy logarithm, default = 2 (Shannon entropy)
... Unused.

Method mgf(): The moment generating function is defined by

$$mgf_X(t) = E_X[exp(xt)]$$

where $X$ is the distribution and $E_X$ is the expectation of the distribution $X$. 
Usage:
DiscreteUniform$mgf(t, ...)

Arguments:
t (integer(1))
  t integer to evaluate function at.
... Unused.

Method cf(): The characteristic function is defined by

$$c_f_X(t) = E_X[exp(xt)]$$

where X is the distribution and $E_X$ is the expectation of the distribution X.

Usage:
DiscreteUniform$cf(t, ...)

Arguments:
t (integer(1))
  t integer to evaluate function at.
... Unused.

Method pgf(): The probability generating function is defined by

$$p_g_f_X(z) = E_X[exp(zx)]$$

where X is the distribution and $E_X$ is the expectation of the distribution X.

Usage:
DiscreteUniform$pgf(z, ...)

Arguments:
z (integer(1))
  z integer to evaluate probability generating function at.
... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
DiscreteUniform$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References
Michael P. McLaughlin.
See Also

Other discrete distributions: Bernoulli, Binomial, Categorical, Degenerate, EmpiricalMV, Empirical, Geometric, Hypergeometric, Logarithmic, Multinomial, NegativeBinomial, WeightedDiscrete

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical, Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, Empirical, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz, Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal, NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete

distr6News

Description

Displays the contents of the NEWS.md file for viewing distr6 release information.

Usage

distr6News()

Value

NEWS.md in viewer.

Examples

## Not run:
distr6News()

## End(Not run)

Distribution

Generalised Distribution Object

Description

A generalised distribution object for defining custom probability distributions as well as serving as the parent class to specific, familiar distributions.

Value

Returns R6 object of class Distribution.
Public fields

- name: Full name of distribution.
- short_name: Short name of distribution for printing.
- description: Brief description of the distribution.

Active bindings

- decorators: Returns decorators currently used to decorate the distribution.
- traits: Returns distribution traits.
- valueSupport: Deprecated, use $traits$valueSupport.
- variateForm: Deprecated, use $traits$variateForm.
- type: Deprecated, use $traits$type.
- properties: Returns distribution properties, including skewness type and symmetry.
- support: Deprecated, use $properties$type.
- symmetry: Deprecated, use $properties$symmetry.
- sup: Returns supremum (upper bound) of the distribution support.
- inf: Returns infimum (lower bound) of the distribution support.
- dmax: Returns maximum of the distribution support.
- dmin: Returns minimum of the distribution support.
- kurtosisType: Deprecated, use $properties$kurtosis.
- skewnessType: Deprecated, use $properties$skewness.

Methods

Public methods:

- Distribution$new()
- Distribution$strprint()
- Distribution$print()
- Distribution$summary()
- Distribution$parameters()
- Distribution$ParameterValue()
- Distribution$setParameterValue()
- Distribution$pdf()
- Distribution$cdf()
- Distribution$squantile()
- Distribution$rand()
- Distribution$prec()
- Distribution$stdev()
- Distribution$median()
- Distribution$iqr()
- Distribution$correlation()
• Distribution$liesInSupport()
• Distribution$liesInType()
• Distribution$workingSupport()
• Distribution$clone()

**Method** new(): Creates a new instance of this **R6** class.

**Usage:**
Distribution$new(
  name = NULL,
  short_name = NULL,
  type,
  support = NULL,
  symmetric = FALSE,
  pdf = NULL,
  cdf = NULL,
  quantile = NULL,
  rand = NULL,
  parameters = NULL,
  decorators = NULL,
  valueSupport = NULL,
  variateForm = NULL,
  description = NULL,
  suppressChecks = FALSE
)

**Arguments:**
nname character(1)
  Full name of distribution.
short_name character(1)
  Short name of distribution for printing.
type ([set6::Set])
  Distribution type.
support ([set6::Set])
  Distribution support.
symmetric logical(1)
  Symmetry type of the distribution.
pdf function(1)
  Probability density function of the distribution. At least one of pdf and cdf must be provided.
cdf function(1)
  Cumulative distribution function of the distribution. At least one of pdf and cdf must be provided.
quantile function(1)
  Quantile (inverse-cdf) function of the distribution.
rand function(1)
  Simulation function for drawing random samples from the distribution.
parameters ([param6::ParameterSet])
  Parameter set for defining the parameters in the distribution, which should be set before
  construction.

decorators (character())
  Decorators to add to the distribution during construction.

valueSupport (character(1))
  The support type of the distribution, one of "discrete", "continuous", "mixture". If NULL, determined automatically.

variateForm (character(1))
  The variate type of the distribution, one of "univariate", "multivariate", "matrixvariate". If NULL, determined automatically.

description (character(1))
  Optional short description of the distribution.

.suppressChecks (logical(1))
  Used internally.


Usage:
Distribution$strprint(n = 2)

Arguments:
  n (integer(1))
    Number of parameters to display when printing.

Method print(): Prints the Distribution.

Usage:
Distribution$print(n = 2, ...)

Arguments:
  n (integer(1))
    Passed to $strprint.
  ... ANY
    Unused. Added for consistency.

Method summary(): Prints a summary of the Distribution.

Usage:
Distribution$summary(full = TRUE, ...)

Arguments:
  full (logical(1))
    If TRUE (default) prints a long summary of the distribution, otherwise prints a shorter summary.
  ... ANY
    Unused. Added for consistency.

Method parameters(): Returns the full parameter details for the supplied parameter.

Usage:
Distribution

Distribution$parameters(id = NULL)

Arguments:
id Deprecated.

Method getParameterValue(): Returns the value of the supplied parameter.

Usage:
Distribution$getParameterValue(id, error = "warn")

Arguments:
id character()
id of parameter value to return.
error (character(1))
If "warn" then returns a warning on error, otherwise breaks if "stop".

Method setParameterValue(): Sets the value(s) of the given parameter(s).

Usage:
Distribution$setParameterValue(
  ..., 
  lst = list(...),
  error = "warn",
  resolveConflicts = FALSE
)

Arguments:
... ANY
  Named arguments of parameters to set values for. See examples.
lst (list(1))
  Alternative argument for passing parameters. List names should be parameter names and
  list values are the new values to set.
error (character(1))
  If "warn" then returns a warning on error, otherwise breaks if "stop".
resolveConflicts (logical(1))
  If FALSE (default) throws error if conflicting parameterisations are provided, otherwise au-
  tomatically resolves them by removing all conflicting parameters.

Examples:
b = Binomial$new()
b$setParameterValue(size = 4, prob = 0.4)
b$setParameterValue(lst = list(size = 4, prob = 0.4))

Method pdf(): For discrete distributions the probability mass function (pmf) is returned, defined as

\[ p_X(x) = P(X = x) \]

for continuous distributions the probability density function (pdf), \( f_X \), is returned

\[ f_X(x) = P(x < X \leq x + dx) \]

for some infinitesimally small \( dx \).
If available a pdf will be returned using an analytic expression. Otherwise, if the distribution has not been decorated with FunctionImputation, NULL is returned.
Usage:
Distribution$pdf(..., log = FALSE, simplify = TRUE, data = NULL)

Arguments:
... (numeric())
  Points to evaluate the function at Arguments do not need to be named. The length of each argument corresponds to the number of points to evaluate, the number of arguments corresponds to the number of variables in the distribution. See examples.

log (logical(1))
  If TRUE returns the logarithm of the probabilities. Default is FALSE.

simplify logical(1)
  If TRUE (default) simplifies the return if possible to a numeric, otherwise returns a data.table::data.table.

data array
  Alternative method to specify points to evaluate. If univariate then rows correspond with number of points to evaluate and columns correspond with number of variables to evaluate. In the special case of VectorDistributions of multivariate distributions, then the third dimension corresponds to the distribution in the vector to evaluate.

Examples:
b <- Binomial$new()
b$pdf(1:10)
b$pdf(1:10, log = TRUE)
b$pdf(data = matrix(1:10))

mvn <- MultivariateNormal$new()
mvn$pdf(1, 2)
mvn$pdf(1:2, 3:4)
mvn$pdf(data = matrix(1:4, nrow = 2), simplify = FALSE)

Method cdf(): The (lower tail) cumulative distribution function, \( F_X \), is defined as

\[
F_X(x) = P(X \leq x)
\]

If lower.tail is FALSE then \( 1 - F_X(x) \) is returned, also known as the survival function.

If available a cdf will be returned using an analytic expression. Otherwise, if the distribution has not been decorated with FunctionImputation, NULL is returned.

Usage:
Distribution$cdf(
  ..., 
  lower.tail = TRUE,
  log.p = FALSE,
  simplify = TRUE,
  data = NULL
)

Arguments:
... (numeric())
  Points to evaluate the function at Arguments do not need to be named. The length of each argument corresponds to the number of points to evaluate, the number of arguments corresponds to the number of variables in the distribution. See examples.
lower.tail (logical(1))
  If TRUE (default), probabilities are \( X \leq x \), otherwise, \( P(X > x) \).
log.p (logical(1))
  If TRUE returns the logarithm of the probabilities. Default is FALSE.
simplify logical(1)
  If TRUE (default) simplifies the return if possible to a numeric, otherwise returns a data.table::data.table.
data array
  Alternative method to specify points to evaluate. If univariate then rows correspond with number of points to evaluate and columns correspond with number of variables to evaluate. In the special case of VectorDistributions of multivariate distributions, then the third dimension corresponds to the distribution in the vector to evaluate.

Examples:
  b <- Binomial$new()
b$cdf(1:10)
b$cdf(1:10, log.p = TRUE, lower.tail = FALSE)
b$cdf(data = matrix(1:10))

Method quantile(): The quantile function, \( q_X \), is the inverse cdf, i.e.

\[
  q_X(p) = F_X^{-1}(p) = \inf\{x \in \mathbb{R} : F_X(x) \geq p\}
\]

Usage:
  Distribution$quantile(
    ...,  
    lower.tail = TRUE,  
    log.p = FALSE,  
    simplify = TRUE,  
    data = NULL  
  )

Arguments:
  ... (numeric())
  Points to evaluate the function at Arguments do not need to be named. The length of each argument corresponds to the number of points to evaluate, the number of arguments corresponds to the number of variables in the distribution. See examples.
lower.tail (logical(1))
  If TRUE (default), probabilities are \( X \leq x \), otherwise, \( P(X > x) \).
log.p (logical(1))
  If TRUE returns the logarithm of the probabilities. Default is FALSE.
simplify logical(1)
  If TRUE (default) simplifies the return if possible to a numeric, otherwise returns a data.table::data.table.
data array
  Alternative method to specify points to evaluate. If univariate then rows correspond with
number of points to evaluate and columns correspond with number of variables to evaluate. In the special case of VectorDistributions of multivariate distributions, then the third dimension corresponds to the distribution in the vector to evaluate.

Examples:

b <- Binomial$new()
b$quantile(0.42)
b$quantile(log(0.42), log.p = TRUE, lower.tail = TRUE)
b$quantile(data = matrix(c(0.1,0.2)))

Method `rand()`: The rand function draws \( n \) simulations from the distribution.

If available simulations will be returned using an analytic expression. Otherwise, if the distribution has not been decorated with FunctionImputation, NULL is returned.

Usage:

Distribution$rand(n, simplify = TRUE)

Arguments:

n (numeric(1))
- Number of points to simulate from the distribution. If length greater than 1, then \( n \leftarrow \text{length}(n) \).
- simplify logical(1)
  - If TRUE (default) simplifies the return if possible to a numeric, otherwise returns a data.table::data.table.

Examples:

b <- Binomial$new()
b$rand(10)

mvn <- MultivariateNormal$new()
mvn$rand(5)

Method `prec()`: Returns the precision of the distribution as \( 1 / \text{self$variance}() \).

Usage:

Distribution$prec()

Method `stdev()`: Returns the standard deviation of the distribution as \( \sqrt{\text{self$variance}()} \).

Usage:

Distribution$stdev()

Method `median()`: Returns the median of the distribution. If an analytical expression is available returns distribution median, otherwise if symmetric returns self$mean, otherwise returns self$quantile(0.5).

Usage:

Distribution$median(na.rm = NULL, ...)

Arguments:

na.rm (logical(1))
- Ignored, added for consistency.
... ANY
- Ignored, added for consistency.
**Method** `iqr()`: Inter-quartile range of the distribution. Estimated as `self$quantile(0.75) - self$quantile(0.25)`.

*Usage:*

```r
Distribution$iqr()
```

**Method** `correlation()`: If univariate returns 1, otherwise returns the distribution correlation.

*Usage:*

```r
Distribution$correlation()
```

**Method** `liesInSupport()`: Tests if the given values lie in the support of the distribution. Uses `[set6::Set]$contains`.

*Usage:*

```r
Distribution$liesInSupport(x, all = TRUE, bound = FALSE)
```

*Arguments:*

- `x` ANY
  - Values to test.
- `all` logical(1)
  - If TRUE (default) returns TRUE if all x are in the distribution, otherwise returns a vector of logicals corresponding to each element in x.
- `bound` logical(1)
  - If TRUE then tests if x lie between the upper and lower bounds of the distribution, otherwise tests if x lie between the maximum and minimum of the distribution.

**Method** `liesInType()`: Tests if the given values lie in the type of the distribution. Uses `[set6::Set]$contains`.

*Usage:*

```r
Distribution$liesInType(x, all = TRUE, bound = FALSE)
```

*Arguments:*

- `x` ANY
  - Values to test.
- `all` logical(1)
  - If TRUE (default) returns TRUE if all x are in the distribution, otherwise returns a vector of logicals corresponding to each element in x.
- `bound` logical(1)
  - If TRUE then tests if x lie between the upper and lower bounds of the distribution, otherwise tests if x lie between the maximum and minimum of the distribution.

**Method** `workingSupport()`: Returns an estimate for the computational support of the distribution. If an analytical cdf is available, then this is computed as the smallest interval in which the cdf lower bound is 0 and the upper bound is 1, bounds are incremented in $10^i$ intervals. If no analytical cdf is available, then this is computed as the smallest interval in which the lower and upper bounds of the pdf are 0, this is much less precise and is more prone to error. Used primarily by decorators.

*Usage:*

```r
Distribution$workingSupport()
```
Method clone(): The objects of this class are cloneable with this method.

Usage:
Distribution$clone(deep = FALSE)

Arguments:
dep Whether to make a deep clone.

Examples

```r
Method 'Distribution$setParameterValue'

b = Binomial$new()
b$setParameterValue(size = 4, prob = 0.4)
b$setParameterValue(lst = list(size = 4, prob = 0.4))

Method 'Distribution$pdf'

b <- Binomial$new()
b$pdf(1:10)
b$pdf(1:10, log = TRUE)
b$pdf(data = matrix(1:10))

mvn <- MultivariateNormal$new()
mvn$pdf(1, 2)
mvn$pdf(1:2, 3:4)
mvn$pdf(data = matrix(1:4, nrow = 2), simplify = FALSE)

Method 'Distribution$cdf'

b <- Binomial$new()
b$cdf(1:10)
b$cdf(1:10, log.p = TRUE, lower.tail = FALSE)
b$cdf(data = matrix(1:10))

Method 'Distribution$quantile'

b <- Binomial$new()
b$quantile(0.42)
b$quantile(log(0.42), log.p = TRUE, lower.tail = TRUE)
b$quantile(data = matrix(c(0.1, 0.2)))

Method 'Distribution$rand'
```
### Abstract DistributionDecorator Class

**Description**

Abstract class that cannot be constructed directly.

**Details**

Decorating is the process of adding methods to classes that are not part of the core interface (Gamma et al. 1994). Use `listDecorators` to see which decorators are currently available. The primary use-cases are to add numeric results when analytic ones are missing, to add complex modelling functions and to impute missing `d/p/q/r` functions.

Use `decorate` or `$decorate` to decorate distributions.

**Value**

Returns error. Abstract classes cannot be constructed directly.

An R6 object.

**Public fields**

packages Packages required to be installed in order to construct the distribution.

**Active bindings**

methods Returns the names of the available methods in this decorator.

**Methods**

**Public methods:**

- `DistributionDecorator$new()`
- `DistributionDecorator$decorate()`
- `DistributionDecorator$clone()`

**Method** `new()`: Creates a new instance of this R6 class.

**Usage:**

DistributionDecorator$new()
**Method** decorate(): Decorates the given distribution with the methods available in this decorator.

*Usage:*

```
DistributionDecorator$decorate(distribution, ...)
```

*Arguments:*

distribution Distribution
    Distribution to decorate.

... ANY
    Extra arguments passed down to specific decorators.

**Method** clone(): The objects of this class are cloneable with this method.

*Usage:*

```
DistributionDecorator$clone(deep = FALSE)
```

*Arguments:*

deep Whether to make a deep clone.

**References**

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. 1994. “Design Patterns: Elements of Reusable Object-Oriented Software.” Addison-Wesley.

---

**DistributionWrapper** Abstract DistributionWrapper Class

**Description**

Abstract class that cannot be constructed directly.

**Details**

Wrappers in distr6 use the composite pattern (Gamma et al. 1994), so that a wrapped distribution has the same methods and fields as an unwrapped one. After wrapping, the parameters of a distribution are prefixed with the distribution name to ensure uniqueness of parameter IDs.

Use `listWrappers` function to see constructable wrappers.

**Value**

Returns error. Abstract classes cannot be constructed directly.

**Super class**

```
distr6::Distribution -> DistributionWrapper
```
Methods

Public methods:

- DistributionWrapper$new()
- DistributionWrapper$wrappedModels()
- DistributionWrapper$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
DistributionWrapper$new(
  distlist = NULL,
  name,
  short_name,
  description,
  support,
  type,
  valueSupport,
  variateForm,
  parameters = NULL,
  outerID = NULL
)

Arguments:
distlist (list())
  List of Distributions.
nname (character(1))
  Wrapped distribution name.
short_name (character(1))
  Wrapped distribution ID.
description (character())
  Wrapped distribution description.
support ([set6::Set])
  Wrapped distribution support.
type ([set6::Set])
  Wrapped distribution type.
valueSupport (character(1))
  Wrapped distribution value support.
variateForm (character(1))
  Wrapped distribution variate form.
parameters ([param6::ParameterSet])
  Optional parameters to add to the internal collection, ignored if distlist is given.
outerID ([param6::ParameterSet])
  Parameters added by the wrapper.

Method wrappedModels(): Returns model(s) wrapped by this wrapper.

Usage:
DistributionWrapper$wrappedModels(model = NULL)
Arguments:
model (character(1))
    id of wrapped Distributions to return. If NULL (default), a list of all wrapped Distributions is returned; if only one Distribution is matched then this is returned, otherwise a list of Distributions.

Method clone(): The objects of this class are cloneable with this method.

Usage:
DistributionWrapper$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References
Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. 1994. “Design Patterns: Elements of Reusable Object-Oriented Software.” Addison-Wesley.

See Also
Other wrappers: Convolution, HuberizedDistribution, MixtureDistribution, ProductDistribution, TruncatedDistribution, VectorDistribution

distrSimulate Simulate from a Distribution

Description
Helper function to quickly simulate from a distribution with given parameters.

Usage
distrSimulate(
    n = 100,
    distribution = "Normal",
    pars = list(),
    simplify = TRUE,
    seed,
    ...
)

Arguments
n number of points to simulate.
distribution distribution to simulate from, corresponds to ClassName of distr6 distribution, abbreviations allowed.
pars parameters to pass to distribution. If omitted then distribution defaults used.

simplify if TRUE (default) only the simulations are returned, otherwise the constructed distribution is also returned.

seed passed to set.seed

... additional optional arguments for set.seed

Value

If simplify then vector of n simulations, otherwise list of simulations and distribution.

---

dstr  Helper Functionality for Constructing Distributions

Description

Helper functions for constructing an SDistribution (with dstr) or VectorDistribution (with dstrs).

Usage

dstr(d, ..., pars = NULL)
dstrs(d, pars = NULL, ...)

Arguments

d (character(1))
Distribution. Can be the ShortName or ClassName from listDistributions().

... (ANY)
Passed to the distribution constructor, should be parameters or decorators.

pars (list())
List of parameters of same length as d corresponding to distribution parameters.

Examples

# Construct standard Normal and distribution
dstr("Norm") # ShortName
dstr("Normal") # ClassName

# Construct Binomial(5, 0.1)
dstr("Binomial", size = 5, prob = 0.1)

# Construct decorated Gamma(2, 1)
dstr("Gamma", shape = 2, rate = 1,
   decorators = "ExoticStatistics")

# Or with a list
dstr("Gamma", pars = list(shape = 2, rate = 4))

# Construct vector with dstrs

# Binomial and Gamma with default parameters
dstrs(c("Binom","Gamma"))

# Binomial with set parameters and Gamma with
# default parameters
dstrs(c("Binom","Gamma"), list(list(size = 4), NULL))

# Binomial and Gamma with set parameters
dstrs(c("Binom","Gamma"),
      list(list(size = 4), list(rate = 2, shape = 3)))

# Multiple Binomials
dstrs("Binom", data.frame(size = 1:5, prob = 0.5))

---

**Empirical**

**Empirical Distribution Class**

**Description**

Mathematical and statistical functions for the Empirical distribution, which is commonly used in sampling such as MCMC.

**Details**

The Empirical distribution is defined by the pmf,

\[ p(x) = \frac{\sum I(x = x_i)}{k} \]

for \( x_i \in R, i = 1, ..., k \).

Sampling from this distribution is performed with the sample function with the elements given as the support set and uniform probabilities. Sampling is performed with replacement, which is consistent with other distributions but non-standard for Empirical distributions. Use simulateEmpiricalDistribution to sample without replacement.

The cdf and quantile assumes that the elements are supplied in an indexed order (otherwise the results are meaningless).

**Value**

Returns an R6 object inheriting from class SDistribution.

**Distribution support**

The distribution is supported on \( x_1, ..., x_k \).
Empirical

Default Parameterisation
Emp(samples = 1)

Omitted Methods
N/A

Also known as
N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> Empirical

Public fields

name Full name of distribution.
short_name Short name of distribution for printing.
description Brief description of the distribution.

Methods

Public methods:
• Empirical$new()
• Empirical$mean()
• Empirical$mode()
• Empirical$variance()
• Empirical$skewness()
• Empirical$kurtosis()
• Empirical$entropy()
• Empirical$mgf()
• Empirical$cf()
• Empirical$pgf()
• Empirical$setParameterValue()
• Empirical$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Empirical$new(samples = NULL, decorators = NULL)

Arguments:
samples (numeric())
Vector of observed samples, see examples.
decorators (character())
Decorators to add to the distribution during construction.
Empirical Examples:
Empirical$new(runif(1000))

Method mean(): The arithmetic mean of a (discrete) probability distribution \( X \) is the expectation

\[
E_X(X) = \sum p_X(x) \cdot x
\]

with an integration analogue for continuous distributions.

Usage:
Empirical$mean(...)

Arguments:
... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
Empirical$mode(which = "all")

Arguments:
which (character(1) | numeric(1))
  Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies which mode to return.

Method variance(): The variance of a distribution is defined by the formula

\[
\text{var}_X = E[X^2] - E[X]^2
\]

where \( E_X \) is the expectation of distribution \( X \). If the distribution is multivariate the covariance matrix is returned.

Usage:
Empirical$variance(...)

Arguments:
... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised moment,

\[
sk_X = E_X \left[ \frac{x - \mu}{\sigma} \right]^3
\]

where \( E_X \) is the expectation of distribution \( X \), \( \mu \) is the mean of the distribution and \( \sigma \) is the standard deviation of the distribution.

Usage:
Empirical$skewness(...)

Arguments:
... Unused.
Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised moment,

$$k_X = E_X \left[ \frac{x - \mu}{\sigma}^4 \right]$$

where $E_X$ is the expectation of distribution $X$, $\mu$ is the mean of the distribution and $\sigma$ is the standard deviation of the distribution. Excess Kurtosis is $Kurtosis - 3$.

Usage:
Empirical$kurtosis(excess = TRUE, ...)$

Arguments:
excess (logical(1))
  If TRUE (default) excess kurtosis returned.
... Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

$$- \sum (f_X) \log(f_X)$$

where $f_X$ is the pdf of distribution $X$, with an integration analogue for continuous distributions.

Usage:
Empirical$entropy(base = 2, ...)$

Arguments:
base (integer(1))
  Base of the entropy logarithm, default = 2 (Shannon entropy)
... Unused.

Method mgf(): The moment generating function is defined by

$$mgf_X(t) = E_X[exp(tx)]$$

where $X$ is the distribution and $E_X$ is the expectation of the distribution $X$.

Usage:
Empirical$mgf(t, ...)$

Arguments:
t (integer(1))
  t integer to evaluate function at.
... Unused.

Method cf(): The characteristic function is defined by

$$cf_X(t) = E_X[exp(txi)]$$

where $X$ is the distribution and $E_X$ is the expectation of the distribution $X$.

Usage:
Empirical$cf(t, ...)$

Arguments:
Method \texttt{pgf()}: The probability generating function is defined by

\[ pgf_X(z) = E_X[\exp(z^X)] \]

where \( X \) is the distribution and \( E_X \) is the expectation of the distribution \( X \).

Usage:
\texttt{Empirical$pgf(z, \ldots)}

Arguments:
\( z \) (integer(1))
\( z \) integer to evaluate probability generating function at.
... Unused.

Method \texttt{setParameterValue()}: Sets the value(s) of the given parameter(s).

Usage:
\texttt{Empirical$setParameterValue(}
\texttt{...,}
\texttt{lst = NULL,}
\texttt{error = "warn",}
\texttt{resolveConflicts = FALSE}
\texttt{)}

Arguments:
... \texttt{ANY}
\( \text{Named arguments of parameters to set values for. See examples.} \)
\( \text{lst} \) (list(1))
\( \text{Alternative argument for passing parameters. List names should be parameter names and list values are the new values to set.} \)
\( \text{error} \) (character(1))
\( \text{If "warn" then returns a warning on error, otherwise breaks if "stop".} \)
\( \text{resolveConflicts} \) (logical(1))
\( \text{If FALSE (default) throws error if conflicting parameterisations are provided, otherwise automatically resolves them by removing all conflicting parameters.} \)

Method \texttt{clone()}: The objects of this class are cloneable with this method.

Usage:
\texttt{Empirical$clone(deep = FALSE)}

Arguments:
\( \text{deep} \) \text{Whether to make a deep clone.}

References

EmpiricalMV

See Also
Other discrete distributions: Bernoulli, Binomial, Categorical, Degenerate, DiscreteUniform, EmpiricalMV, Geometric, Hypergeometric, Logarithmic, Multinomial, NegativeBinomial, WeightedDiscrete

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical, Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz, Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal, NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete

Examples

```r
Method `Empirical$new`
Empirical$new(runif(1000))
```

**EmpiricalMV**

**EmpiricalMV Distribution Class**

**Description**
Mathematical and statistical functions for the EmpiricalMV distribution, which is commonly used in sampling such as MCMC.

**Details**
The EmpiricalMV distribution is defined by the pmf,

\[
p(x) = \sum I(x = x_i)/k
\]

for \(x_i \in \mathbb{R}, i = 1, ..., k\).

Sampling from this distribution is performed with the `sample` function with the elements given as the support set and uniform probabilities. Sampling is performed with replacement, which is consistent with other distributions but non-standard for Empirical distributions. Use `simulateEmpiricalDistribution` to sample without replacement.

The cdf assumes that the elements are supplied in an indexed order (otherwise the results are meaningless).

**Value**
Returns an R6 object inheriting from class `SDistribution`. 
Distribution support

The distribution is supported on \( x_1, \ldots, x_k \).

Default Parameterisation

\[ \text{EmpMV(data = data.frame(1, 1))} \]

Omitted Methods

N/A

Also known as

N/A

Super classes

\[
\text{distr6::Distribution} \rightarrow \text{distr6::SDistribution} \rightarrow \text{EmpiricalMV}
\]

Public fields

- **name** Full name of distribution.
- **short_name** Short name of distribution for printing.
- **description** Brief description of the distribution.

Methods

Public methods:

- \text{EmpiricalMV$new()}\]
- \text{EmpiricalMV$mean()}\]
- \text{EmpiricalMV$variance()}\]
- \text{EmpiricalMV$setParameterValue()}\]
- \text{EmpiricalMV$clone()}\]

**Method new():** Creates a new instance of this R6 class.

**Usage:**

\[ \text{EmpiricalMV$new(data = NULL, decorators = NULL)}\]

**Arguments:**

- **data** [matrix]
  
  Matrix-like object where each column is a vector of observed samples corresponding to each variable.

- **decorators** [character()]
  
  Decorators to add to the distribution during construction.

**Examples:**

\[ \text{EmpiricalMV$new(MultivariateNormal$new()$rand(100))} \]
**Method** mean(): The arithmetic mean of a (discrete) probability distribution $X$ is the expectation

$$E_X(X) = \sum p_X(x) * x$$

with an integration analogue for continuous distributions.

**Usage:**
EmpiricalMV$mean(...)

**Arguments:**
... Unused.

**Method** variance(): The variance of a distribution is defined by the formula

$$var_X = E[X^2] - E[X]^2$$

where $E_X$ is the expectation of distribution $X$. If the distribution is multivariate the covariance matrix is returned.

**Usage:**
EmpiricalMV$variance(...)

**Arguments:**
... Unused.

**Method** setParameterValue(): Sets the value(s) of the given parameter(s).

**Usage:**
EmpiricalMV$setParameterValue(
    ..., 
    lst = NULL, 
    error = "warn", 
    resolveConflicts = FALSE 
)

**Arguments:**
... ANY
    Named arguments of parameters to set values for. See examples.
lst (list(1))
    Alternative argument for passing parameters. List names should be parameter names and list values are the new values to set.
error (character(1))
    If "warn" then returns a warning on error, otherwise breaks if "stop".
resolveConflicts (logical(1))
    If FALSE (default) throws error if conflicting parameterisations are provided, otherwise automatically resolves them by removing all conflicting parameters.

**Method** clone(): The objects of this class are cloneable with this method.

**Usage:**
EmpiricalMV$clone(deep = FALSE)

**Arguments:**
deepe Whether to make a deep clone.
Epanechnikov

References


See Also

Other discrete distributions: Bernoulli, Binomial, Categorical, Degenerate, DiscreteUniform, Empirical, Geometric, Hypergeometric, Logarithmic, Multinomial, NegativeBinomial, WeightedDiscrete

Other multivariate distributions: Dirichlet, Multinomial, MultivariateNormal

Examples

```r

Method `EmpiricalMV$new`

EmpiricalMV$new(MultivariateNormal$new()$rand(100))
```

---

Epanechnikov  

\textit{Epanechnikov Kernel}

Description

Mathematical and statistical functions for the Epanechnikov kernel defined by the pdf,

$$f(x) = \frac{3}{4}(1 - x^2)$$

over the support $x \in (-1,1)$.

Details

The quantile function is omitted as no closed form analytic expressions could be found, decorate with FunctionImputation for numeric results.

Super classes

distr6::Distribution -> distr6::Kernel -> Epanechnikov

Public fields

- name  Full name of distribution.
- short_name  Short name of distribution for printing.
- description  Brief description of the distribution.
Methods

Public methods:
- Epanechnikov$pdfSquared2Norm()
- Epanechnikov$cdfSquared2Norm()
- Epanechnikov$variance()
- Epanechnikov$clone()

Method pdfSquared2Norm(): The squared 2-norm of the pdf is defined by

\[ \int_a^b (f_X(u))^2 du \]

where \(X\) is the Distribution, \(f_X\) is its pdf and \(a, b\) are the distribution support limits.

Usage:
Epanechnikov$pdfSquared2Norm(x = 0, upper = Inf)

Arguments:
- x (numeric(1))
  Amount to shift the result.
- upper (numeric(1))
  Upper limit of the integral.

Method cdfSquared2Norm(): The squared 2-norm of the cdf is defined by

\[ \int_a^b (F_X(u))^2 du \]

where \(X\) is the Distribution, \(F_X\) is its pdf and \(a, b\) are the distribution support limits.

Usage:
Epanechnikov$cdfSquared2Norm(x = 0, upper = 0)

Arguments:
- x (numeric(1))
  Amount to shift the result.
- upper (numeric(1))
  Upper limit of the integral.

Method variance(): The variance of a distribution is defined by the formula

\[ var_X = E[X^2] - E[X]^2 \]

where \(E_X\) is the expectation of distribution \(X\). If the distribution is multivariate the covariance matrix is returned.

Usage:
Epanechnikov$variance(...)
Method clone(): The objects of this class are cloneable with this method.

Usage:
Epanechnikov$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also
Other kernels: Cosine, LogisticKernel, NormalKernel, Quartic, Sigmoid, Silverman, TriangularKernel, Tricube, Triweight, UniformKernel

Erlang Distribution Class

Description
Mathematical and statistical functions for the Erlang distribution, which is commonly used as a special case of the Gamma distribution when the shape parameter is an integer.

Details
The Erlang distribution parameterised with shape, \( \alpha \), and rate, \( \beta \), is defined by the pdf,

\[
f(x) = (\beta^\alpha)(x^{\alpha-1})(exp(-x\beta))/(\alpha - 1)!
\]

for \( \alpha = 1, 2, 3, \ldots \) and \( \beta > 0 \).

Value
Returns an R6 object inheriting from class SDistribution.

Distribution support
The distribution is supported on the Positive Reals.

Default Parameterisation
Erlang(shape = 1, rate = 1)

Omitted Methods
N/A

Also known as
N/A
Super classes

distr6::Distribution -> distr6::SDistribution -> Erlang

Public fields

name  Full name of distribution.
short_name  Short name of distribution for printing.
description  Brief description of the distribution.
packages  Packages required to be installed in order to construct the distribution.

Methods

Public methods:

- Erlang$new()
- Erlang$mean()
- Erlang$mode()
- Erlang$variance()
- Erlang$skewness()
- Erlang$kurtosis()
- Erlang$entropy()
- Erlang$mgf()
- Erlang$cf()
- Erlang$pgf()
- Erlang$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Erlang$new(shape = NULL, rate = NULL, scale = NULL, decorators = NULL)

Arguments:
shape (integer(1))
  Shape parameter, defined on the positive Naturals.
rate (numeric(1))
  Rate parameter of the distribution, defined on the positive Reals.
scale numeric(1))
  Scale parameter of the distribution, defined on the positive Reals. scale = 1/rate. If provided rate is ignored.
decorators (character())
  Decorators to add to the distribution during construction.

Method mean(): The arithmetic mean of a (discrete) probability distribution $X$ is the expectation

$$E_X(X) = \sum p_X(x) \times x$$

with an integration analogue for continuous distributions.
Usage:
Erlang$mean(...)  

Arguments:
... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
Erlang$mode(which = "all")  

Arguments:
which (character(1) | numeric(1))  
Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies which mode to return.

Method variance(): The variance of a distribution is defined by the formula

$$\text{var}_X = E[X^2] - E[X]^2$$

where $E_X$ is the expectation of distribution $X$. If the distribution is multivariate the covariance matrix is returned.

Usage:
Erlang$variance(...)  

Arguments:
... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised moment,

$$sk_X = E_X\left[\frac{x - \mu}{\sigma}\right]^3$$

where $E_X$ is the expectation of distribution $X$, $\mu$ is the mean of the distribution and $\sigma$ is the standard deviation of the distribution.

Usage:
Erlang$skewness(...)  

Arguments:
... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised moment,

$$k_X = E_X\left[\frac{x - \mu}{\sigma}\right]^4$$

where $E_X$ is the expectation of distribution $X$, $\mu$ is the mean of the distribution and $\sigma$ is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
Erlang$kurtosis(excess = TRUE, ...)  

Arguments:
excess (logical(1))
    If TRUE (default) excess kurtosis returned.
... Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

\[- \sum (f_X) \log(f_X)\]

where \( f_X \) is the pdf of distribution X, with an integration analogue for continuous distributions.

Usage:
Erlang$entropy(base = 2, ...)

Arguments:
base (integer(1))
    Base of the entropy logarithm, default = 2 (Shannon entropy)
... Unused.

Method mgf(): The moment generating function is defined by

\[ mgf_X(t) = E_X[exp(xt)] \]

where X is the distribution and \( E_X \) is the expectation of the distribution X.

Usage:
Erlang$mgf(t, ...)

Arguments:
t (integer(1))
    t integer to evaluate function at.
... Unused.

Method cf(): The characteristic function is defined by

\[ cf_X(t) = E_X[exp(xti)] \]

where X is the distribution and \( E_X \) is the expectation of the distribution X.

Usage:
Erlang$cf(t, ...)

Arguments:
t (integer(1))
    t integer to evaluate function at.
... Unused.

Method pgf(): The probability generating function is defined by

\[ pgf_X(z) = E_X[exp(z^2)] \]

where X is the distribution and \( E_X \) is the expectation of the distribution X.

Usage:
Erlang$pgf(z, ...)
Arguments:
z (integer(1))
  z integer to evaluate probability generating function at.
... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Erlang$clone(deep = FALSE)

Arguments:
  deep Whether to make a deep clone.

References
Michael P. McLaughlin.

See Also
Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral,
ChiSquared, Dirichlet, Exponential, FDistributionNoncentral, FDistribution, Frechet,
Gamma, Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal, MultivariateNormal,
Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT,
Triangular, Uniform, Wald, Weibull
Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical,
Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Exponential,
FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz, Gumbel,
Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal,
NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral,
StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete

---

exkurtosisType | Kurtosis Type
---

Description
  Gets the type of (excess) kurtosis

Usage
  exkurtosisType(kurtosis)

Arguments
  kurtosis numeric.
Details

Kurtosis is a measure of the tailedness of a distribution. Distributions can be compared to the Normal distribution by whether their kurtosis is higher, lower or the same as that of the Normal distribution.

A distribution with a negative excess kurtosis is called 'platykurtic', a distribution with a positive excess kurtosis is called 'leptokurtic' and a distribution with an excess kurtosis equal to zero is called 'mesokurtic'.

Value

Returns one of 'platykurtic', 'mesokurtic' or 'leptokurtic'.

Examples

\[
\text{exkurtosisType(-1)} \\
\text{exkurtosisType(0)} \\
\text{exkurtosisType(1)}
\]

Description

This decorator adds methods for more complex statistical methods including p-norms, survival and hazard functions and anti-derivatives. If possible analytical expressions are exploited, otherwise numerical ones are used with a message.

Details

Decorator objects add functionality to the given Distribution object by copying methods in the decorator environment to the chosen Distribution environment.

All methods implemented in decorators try to exploit analytical results where possible, otherwise numerical results are used with a message.

Super class

\[\text{distr6::DistributionDecorator -> ExoticStatistics}\]

Methods

Public methods:
- \text{ExoticStatistics$cdfAntiDeriv()}
- \text{ExoticStatistics$survivalAntiDeriv()}
- \text{ExoticStatistics$survival()}
- \text{ExoticStatistics$hazard()}
- \text{ExoticStatistics$\text{cumHazard}()}\]
Method cdfAntiDeriv(): The cdf anti-derivative is defined by

\[ acdf(a, b) = \int_a^b F_X(x) \, dx \]

where \( X \) is the distribution, \( F_X \) is the cdf of the distribution \( X \) and \( a, b \) are the lower and upper limits of integration.

Usage:
ExoticStatistics$cdfAntiDeriv(lower = NULL, upper = NULL)

Arguments:
lower (numeric(1))
   Lower bounds of integral.
upper (numeric(1))
   Upper bounds of integral.

Method survivalAntiDeriv(): The survival anti-derivative is defined by

\[ as(a, b) = \int_a^b S_X(x) \, dx \]

where \( X \) is the distribution, \( S_X \) is the survival function of the distribution \( X \) and \( a, b \) are the lower and upper limits of integration.

Usage:
ExoticStatistics$survivalAntiDeriv(lower = NULL, upper = NULL)

Arguments:
lower (numeric(1))
   Lower bounds of integral.
upper (numeric(1))
   Upper bounds of integral.

Method survival(): The survival function is defined by

\[ S_X(x) = P(X \geq x) = 1 - F_X(x) = \int_x^{\infty} f_X(x) \, dx \]

where \( X \) is the distribution, \( S_X \) is the survival function, \( F_X \) is the cdf and \( f_X \) is the pdf.

Usage:
ExoticStatistics$survival(..., log = FALSE, simplify = TRUE, data = NULL)

Arguments:
... (numeric(1))
   Points to evaluate the function at Arguments do not need to be named. The length of each argument corresponds to the number of points to evaluate, the number of arguments corresponds to the number of variables in the distribution. See examples.
log (logical(1))
  If TRUE returns the logarithm of the probabilities. Default is FALSE.
simplify logical(1)
  If TRUE (default) simplifies the return if possible to a numeric, otherwise returns a data.table::data.table.
data array
  Alternative method to specify points to evaluate. If univariate then rows correspond with
  number of points to evaluate and columns correspond with number of variables to evaluate.
  In the special case of VectorDistributions of multivariate distributions, then the third
dimension corresponds to the distribution in the vector to evaluate.

Method hazard(): The hazard function is defined by

\[ h_X(x) = \frac{f_X}{S_X} \]

where X is the distribution, \( S_X \) is the survival function and \( f_X \) is the pdf.

Usage:
ExoticStatistics$hazard(..., log = FALSE, simplify = TRUE, data = NULL)

Arguments:
... (numeric())
  Points to evaluate the function at Arguments do not need to be named. The length of each
  argument corresponds to the number of points to evaluate, the number of arguments corres-
  ponds to the number of variables in the distribution. See examples.
log (logical(1))
  If TRUE returns the logarithm of the probabilities. Default is FALSE.
simplify logical(1)
  If TRUE (default) simplifies the return if possible to a numeric, otherwise returns a data.table::data.table.
data array
  Alternative method to specify points to evaluate. If univariate then rows correspond with
  number of points to evaluate and columns correspond with number of variables to evaluate.
  In the special case of VectorDistributions of multivariate distributions, then the third
dimension corresponds to the distribution in the vector to evaluate.

Method cumHazard(): The cumulative hazard function is defined analytically by

\[ H_X(x) = -\log(S_X) \]

where X is the distribution and \( S_X \) is the survival function.

Usage:
ExoticStatistics$cumHazard(..., log = FALSE, simplify = TRUE, data = NULL)

Arguments:
... (numeric())
  Points to evaluate the function at Arguments do not need to be named. The length of each
  argument corresponds to the number of points to evaluate, the number of arguments corres-
  ponds to the number of variables in the distribution. See examples.
log (logical(1))
  If TRUE returns the logarithm of the probabilities. Default is FALSE.
simplify logical(1)
If TRUE (default) simplifies the return if possible to a numeric, otherwise returns a data.table::data.table.
data array
Alternative method to specify points to evaluate. If univariate then rows correspond with number of points to evaluate and columns correspond with number of variables to evaluate. In the special case of VectorDistributions of multivariate distributions, then the third dimension corresponds to the distribution in the vector to evaluate.

**Method cdfPNorm():** The p-norm of the cdf is defined by

$$\left( \int_a^b |F_X|^p d\mu \right)^{1/p}$$

where X is the distribution, $F_X$ is the cdf and $a, b$ are the lower and upper limits of integration. Returns NULL if distribution is not continuous.

**Usage:**
ExoticStatistics$cdfPNorm(p = 2, lower = NULL, upper = NULL)

**Arguments:**
p (integer(1)) Norm to evaluate.
lower (numeric(1)) Lower bounds of integral.
upper (numeric(1)) Upper bounds of integral.

**Method pdfPNorm():** The p-norm of the pdf is defined by

$$\left( \int_a^b |f_X|^p d\mu \right)^{1/p}$$

where X is the distribution, $f_X$ is the pdf and $a, b$ are the lower and upper limits of integration. Returns NULL if distribution is not continuous.

**Usage:**
ExoticStatistics$pdfPNorm(p = 2, lower = NULL, upper = NULL)

**Arguments:**
p (integer(1)) Norm to evaluate.
lower (numeric(1)) Lower bounds of integral.
upper (numeric(1)) Upper bounds of integral.

**Method survivalPNorm():** The p-norm of the survival function is defined by

$$\left( \int_a^b |S_X|^p d\mu \right)^{1/p}$$

where X is the distribution, $S_X$ is the survival function and $a, b$ are the lower and upper limits of integration.

Returns NULL if distribution is not continuous.
Usage:
ExoticStatistics$survivalPNorm(p = 2, lower = NULL, upper = NULL)

Arguments:
p (integer(1)) Norm to evaluate.
lower (numeric(1)) Lower bounds of integral.
upper (numeric(1)) Upper bounds of integral.

Method clone(): The objects of this class are cloneable with this method.

Usage:
ExoticStatistics$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also
Other decorators: CoreStatistics, FunctionImputation

Examples
decorate(Exponential$new(), "ExoticStatistics")
Exponential$new(decorators = "ExoticStatistics")
ExoticStatistics$new()$decorate(Exponential$new())

Exponential Distribution Class

Description
Mathematical and statistical functions for the Exponential distribution, which is commonly used to model inter-arrival times in a Poisson process and has the memoryless property.

Details
The Exponential distribution parameterised with rate, \( \lambda \), is defined by the pdf,

\[
f(x) = \lambda exp(-x\lambda)
\]

for \( \lambda > 0 \).

Value
Returns an R6 object inheriting from class SDistribution.
Distribution support

The distribution is supported on the Positive Reals.

Default Parameterisation

Exp(rate = 1)

Omitted Methods

N/A

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> Exponential

Public fields

name Full name of distribution.
short_name Short name of distribution for printing.
description Brief description of the distribution.
packages Packages required to be installed in order to construct the distribution.

Methods

Public methods:

- Exponential$new()
- Exponential$mean()
- Exponential$mode()
- Exponential$median()
- Exponential$variance()
- Exponential$skewness()
- Exponential$kurtosis()
- Exponential$entropy()
- Exponential$mgf()
- Exponential$cf()
- Exponential$pgf()
- Exponential$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Exponential$new(rate = NULL, scale = NULL, decorators = NULL)

Arguments:
Exponential

rate (numeric(1))
  Rate parameter of the distribution, defined on the positive Reals.

scale numeric(1))
  Scale parameter of the distribution, defined on the positive Reals. scale = 1/rate. If provided rate is ignored.

decorators (character())
  Decorators to add to the distribution during construction.

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

\[ E_X(X) = \sum p_X(x) \times x \]

with an integration analogue for continuous distributions.

Usage:
Exponential$mean(...)

Arguments:
... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
Exponential$mode(which = "all")

Arguments:
which (character(1) | numeric(1)
  Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies which mode to return.

Method median(): Returns the median of the distribution. If an analytical expression is available returns distribution median, otherwise if symmetric returns self$mean, otherwise returns self$quantile(0.5).

Usage:
Exponential$median()

Method variance(): The variance of a distribution is defined by the formula

\[ var_X = E[X^2] - E[X]^2 \]

where \( E_X \) is the expectation of distribution X. If the distribution is multivariate the covariance matrix is returned.

Usage:
Exponential$variance(...)

Arguments:
... Unused.
Method `skewness()`: The skewness of a distribution is defined by the third standardised moment,

\[ sk_X = E_X \left[ \frac{x - \mu^3}{\sigma} \right] \]

where \( E_X \) is the expectation of distribution \( X \), \( \mu \) is the mean of the distribution and \( \sigma \) is the standard deviation of the distribution.

Usage:
```r
Exponential$skewness(...)```
Arguments:
... Unused.

Method `kurtosis()`: The kurtosis of a distribution is defined by the fourth standardised moment,

\[k_X = E_X \left[\frac{x - \mu^4}{\sigma} \right] \]

where \(E_X \) is the expectation of distribution \(X \), \(\mu \) is the mean of the distribution and \(\sigma \) is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
```r
Exponential$kurtosis(excess = TRUE, ...)```
Arguments:
`excess` (logical(1))
  If TRUE (default) excess kurtosis returned.
... Unused.

Method `entropy()`: The entropy of a (discrete) distribution is defined by

\[-\sum (f_X) \log(f_X)\]

where \( f_X \) is the pdf of distribution \( X \), with an integration analogue for continuous distributions.

Usage:
```r
Exponential$entropy(base = 2, ...)```
Arguments:
`base` (integer(1))
 Base of the entropy logarithm, default = 2 (Shannon entropy)
... Unused.

Method `mgf()`: The moment generating function is defined by

\[mgf_X(t) = E_X[exp(tx)]\]

where \(X \) is the distribution and \(E_X \) is the expectation of the distribution \(X \).

Usage:
```r
Exponential$mgf(t, ...)```
Arguments:
Exponential

\[ t \text{ (integer(1))} \]
\[ t \text{ integer to evaluate function at.} \]
... Unused.

**Method** `cf()` : The characteristic function is defined by
\[
    cf_X(t) = E_X[exp(eti)]
\]
where \( X \) is the distribution and \( E_X \) is the expectation of the distribution \( X \).

*Usage:
Exponential$cf(t, ...)*

*Arguments:*
\[ t \text{ (integer(1))} \]
\[ t \text{ integer to evaluate function at.} \]
... Unused.

**Method** `pgf()` : The probability generating function is defined by
\[
    pgf_X(z) = E_X[exp(zx)]
\]
where \( X \) is the distribution and \( E_X \) is the expectation of the distribution \( X \).

*Usage:
Exponential$pgf(z, ...)*

*Arguments:*
\[ z \text{ (integer(1))} \]
\[ z \text{ integer to evaluate probability generating function at.} \]
... Unused.

**Method** `clone()` : The objects of this class are cloneable with this method.

*Usage:
Exponential$clone(deep = FALSE)***

*Arguments:*
\[ deep \text{ Whether to make a deep clone.} \]

**References**


**See Also**

Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral, ChiSquared, Dirichlet, Erlang, FDistributionNoncentral, FDistribution, Frechet, Gamma, Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal, MultivariateNormal, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull
Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical, Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz, Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal, NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete

---

**FDistribution 'F' Distribution Class**

**Description**

Mathematical and statistical functions for the 'F' distribution, which is commonly used in ANOVA testing and is the ratio of scaled Chi-Squared distributions.

**Details**

The 'F' distribution parameterised with two degrees of freedom parameters, $\mu, \nu$, is defined by the pdf,

$$f(x) = \frac{\Gamma((\mu + \nu)/2)/(\Gamma(\mu/2)\Gamma(\nu/2))(\mu/\nu)^{\mu/2}x^{\mu/2-1}(1 + (\mu/\nu)x)^{-(\mu+\nu)/2}}{\text{for } \mu, \nu > 0.}$$

**Value**

Returns an R6 object inheriting from class SDistribution.

**Distribution support**

The distribution is supported on the Positive Reals.

**Default Parameterisation**

F(df1 = 1, df2 = 1)

**Omitted Methods**

N/A

**Also known as**

N/A

**Super classes**

distr6::Distribution -> distr6::SDistribution -> FDistribution
Public fields

name  Full name of distribution.
short_name  Short name of distribution for printing.
derscription  Brief description of the distribution.
packages  Packages required to be installed in order to construct the distribution.

Active bindings

properties  Returns distribution properties, including skewness type and symmetry.

Methods

Public methods:

• FDistribution$new()
• FDistribution$mean()
• FDistribution$mode()
• FDistribution$variance()
• FDistribution$skewness()
• FDistribution$kurtosis()
• FDistribution$entropy()
• FDistribution$mgf()
• FDistribution$pgf()
• FDistribution$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
FDistribution$new(df1 = NULL, df2 = NULL, decorators = NULL)

Arguments:
df1 (numeric(1))
   First degree of freedom of the distribution defined on the positive Reals.
df2 (numeric(1))
   Second degree of freedom of the distribution defined on the positive Reals.
decorators (character())
   Decorators to add to the distribution during construction.

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

\[ E_X(X) = \sum p_X(x) \times x \]

with an integration analogue for continuous distributions.

Usage:
FDistribution$mean(...)

Arguments:
...
   Unused.
Method `mode()`: The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
```r
FDistribution$mode(which = "all")
```

Arguments:
- `which` (character(1) | numeric(1))
  - Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies which mode to return.

Method `variance()`: The variance of a distribution is defined by the formula

\[ \text{var}_X = E[X^2] - E[X]^2 \]

where \( E_X \) is the expectation of distribution X. If the distribution is multivariate the covariance matrix is returned.

Usage:
```r
FDistribution$variance(...)
```

Arguments:
- `...` Unused.

Method `skewness()`: The skewness of a distribution is defined by the third standardised moment,

\[ sk_X = E_X \left[ \frac{x - \mu}{\sigma} \right]^3 \]

where \( E_X \) is the expectation of distribution X, \( \mu \) is the mean of the distribution and \( \sigma \) is the standard deviation of the distribution.

Usage:
```r
FDistribution$skewness(...)
```

Arguments:
- `...` Unused.

Method `kurtosis()`: The kurtosis of a distribution is defined by the fourth standardised moment,

\[ k_X = E_X \left[ \frac{x - \mu}{\sigma} \right]^4 \]

where \( E_X \) is the expectation of distribution X, \( \mu \) is the mean of the distribution and \( \sigma \) is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
```r
FDistribution$kurtosis(excess = TRUE, ...)
```

Arguments:
- `excess` (logical(1))
  - If TRUE (default) excess kurtosis returned.
- `...` Unused.
**Method entropy()**: The entropy of a (discrete) distribution is defined by

\[- \sum(f_X)\log(f_X)\]

where \(f_X\) is the pdf of distribution X, with an integration analogue for continuous distributions.

*Usage:*

FDistribution$entropy(base = 2, ...)

*Arguments:*

base (integer(1))
  Base of the entropy logarithm, default = 2 (Shannon entropy)

... Unused.

**Method mgf()**: The moment generating function is defined by

\[mgf_X(t) = E_X[exp(xt)]\]

where X is the distribution and \(E_X\) is the expectation of the distribution X.

*Usage:*

FDistribution$mgf(t, ...)

*Arguments:*

  t (integer(1))
  t integer to evaluate function at.

... Unused.

**Method pgf()**: The probability generating function is defined by

\[pgf_X(z) = E_X[exp(z^x)]\]

where X is the distribution and \(E_X\) is the expectation of the distribution X.

*Usage:*

FDistribution$pgf(z, ...)

*Arguments:*

  z (integer(1))
  z integer to evaluate probability generating function at.

... Unused.

**Method clone()**: The objects of this class are cloneable with this method.

*Usage:*

FDistribution$clone(deep = FALSE)

*Arguments:*

dep The Whether to make a deep clone.

**References**

Michael P. McLaughlin.
FDistributionNoncentral

See Also
Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral, ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, Frechet, Gamma, Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal, MultivariateNormal, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull
Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical, Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang, Exponential, FDistributionNoncentral, Frechet, Gamma, Geometric, Gompertz, Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal, NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete

FDistributionNoncentral

Noncentral F Distribution Class

Description
Mathematical and statistical functions for the Noncentral F distribution, which is commonly used in ANOVA testing and is the ratio of scaled Chi-Squared distributions.

Details
The Noncentral F distribution parameterised with two degrees of freedom parameters, \( \mu, \nu \), and location, \( \lambda \), is defined by the pdf,

\[
f(x) = \sum_{r=0}^{\infty} \frac{e^{-\lambda/2} (\lambda/2)^r}{(\nu/2, \mu/2+r)r!} \left( \frac{\mu}{\nu} \right)^{\mu/2+r} (\nu/(\nu+x\mu))^{(\nu+\mu)/2+r} x^{\mu/2-1+r}
\]

for \( \mu, \nu > 0, \lambda \geq 0 \).

Value
Returns an R6 object inheriting from class SDistribution.

Distribution support
The distribution is supported on the Positive Reals.

Default Parameterisation
FNC(df1 = 1, df2 = 1, location = 0)

Omitted Methods
N/A
FDistributionNoncentral

Also known as

N/A

Super classes

\texttt{distr6::Distribution} -> \texttt{distr6::SDistribution} -> \texttt{FDistributionNoncentral}

Public fields

- \texttt{name} Full name of distribution.
- \texttt{short_name} Short name of distribution for printing.
- \texttt{description} Brief description of the distribution.
- \texttt{packages} Packages required to be installed in order to construct the distribution.

Active bindings

- \texttt{properties} Returns distribution properties, including skewness type and symmetry.

Methods

Public methods:

- \texttt{FDistributionNoncentral$new()}
- \texttt{FDistributionNoncentral$mean()}
- \texttt{FDistributionNoncentral$variance()}
- \texttt{FDistributionNoncentral$clone()}

Method \texttt{new()}: Creates a new instance of this \texttt{R6} class.

\textit{Usage:}

\begin{verbatim}
FDistributionNoncentral$new(
  df1 = NULL,
  df2 = NULL,
  location = NULL,
  decorators = NULL
)
\end{verbatim}

\textit{Arguments:}

- \texttt{df1} (\texttt{numeric(1))}
  First degree of freedom of the distribution defined on the positive Reals.
- \texttt{df2} (\texttt{numeric(1))}
  Second degree of freedom of the distribution defined on the positive Reals.
- \texttt{location} (\texttt{numeric(1))}
  Location parameter, defined on the Reals.
- \texttt{decorators} (\texttt{character(1))}
  Decorators to add to the distribution during construction.
Method mean(): The arithmetic mean of a (discrete) probability distribution \( X \) is the expectation
\[
E_X(X) = \sum p_X(x) * x
\]
with an integration analogue for continuous distributions.

Usage:
FDistributionNoncentral$mean(...)

Arguments:
... Unused.

Method variance(): The variance of a distribution is defined by the formula
\[
var_X = E[X^2] - E[X]^2
\]
where \( E_X \) is the expectation of distribution \( X \). If the distribution is multivariate the covariance matrix is returned.

Usage:
FDistributionNoncentral$variance(...)

Arguments:
... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
FDistributionNoncentral$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)
Jordan Deenichin

References

See Also
Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral, ChiSquared, Dirichlet, Erlang, Exponential, FDistribution, Frechet, Gamma, Gompertz, Gumbel, InverseGamma, Laplace, Logistic, LogLogistic, Lognormal, MultivariateNormal, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical, Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang, Exponential, FDistribution, Frechet, Gamma, Geometric, Gompertz, Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal, NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete
Description

Mathematical and statistical functions for the Frechet distribution, which is commonly used as a special case of the Generalised Extreme Value distribution.

Details

The Frechet distribution parameterised with shape, $\alpha$, scale, $\beta$, and minimum, $\gamma$, is defined by the pdf,

$$f(x) = \left(\frac{\alpha}{\beta}\right) \left(\frac{x - \gamma}{\beta}\right)^{-1-\alpha} \exp\left(-\frac{x - \gamma}{\beta}\right)^{-\alpha}$$

for $\alpha, \beta \in \mathbb{R}^+$ and $\gamma \in \mathbb{R}$.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on $x > \gamma$.

Default Parameterisation

Frechet(shape = 1, scale = 1, minimum = 0)

Omitted Methods

N/A

Also known as

Also known as the Inverse Weibull distribution.

Super classes

distr6::Distribution -> distr6::SDistribution -> Frechet

Public fields

name Full name of distribution.
short_name Short name of distribution for printing.
description Brief description of the distribution.
packages Packages required to be installed in order to construct the distribution.
Active bindings

properties Returns distribution properties, including skewness type and symmetry.

Methods

Public methods:

- Frechet$new()
- Frechet$mean()
- Frechet$mode()
- Frechet$median()
- Frechet$variance()
- Frechet$skewness()
- Frechet$kurtosis()
- Frechet$entropy()
- Frechet$pgf()
- Frechet$clone()

Method `new()`: Creates a new instance of this R6 class.

Usage:
Frechet$new(shape = NULL, scale = NULL, minimum = NULL, decorators = NULL)

Arguments:

- shape (numeric(1))
  Shape parameter, defined on the positive Reals.
- scale (numeric(1))
  Scale parameter, defined on the positive Reals.
- minimum (numeric(1))
  Minimum of the distribution, defined on the Reals.
- decorators (character())
  Decorators to add to the distribution during construction.

Method `mean()`: The arithmetic mean of a (discrete) probability distribution $X$ is the expectation

$$E_X(X) = \sum p_X(x) \times x$$

with an integration analogue for continuous distributions.

Usage:
Frechet$mean(...)

Arguments:

... Unused.

Method `mode()`: The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
Frechet$mode(which = "all")
Arguments:
which (character(1) | numeric(1))
Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies which mode to return.

Method median(): Returns the median of the distribution. If an analytical expression is available returns distribution median, otherwise if symmetric returns self$mean, otherwise returns self$quantile(0.5).

Usage:
Frechet$median()

Method variance(): The variance of a distribution is defined by the formula

$$\text{var}_X = E[X^2] - E[X]^2$$

where $E_X$ is the expectation of distribution X. If the distribution is multivariate the covariance matrix is returned.

Usage:
Frechet$variance(...)

Arguments:
... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised moment,

$$sk_X = E_X \left[ \frac{x - \mu}{\sigma}^3 \right]$$

where $E_X$ is the expectation of distribution X, $\mu$ is the mean of the distribution and $\sigma$ is the standard deviation of the distribution.

Usage:
Frechet$skewness(...)

Arguments:
... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised moment,

$$k_X = E_X \left[ \frac{x - \mu}{\sigma}^4 \right]$$

where $E_X$ is the expectation of distribution X, $\mu$ is the mean of the distribution and $\sigma$ is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
Frechet$kurtosis(excess = TRUE, ...)

Arguments:
excess (logical(1))
If TRUE (default) excess kurtosis returned.
... Unused.
Method entropy(): The entropy of a (discrete) distribution is defined by
\[- \sum (f_X) \log(f_X)\]
where \(f_X\) is the pdf of distribution \(X\), with an integration analogue for continuous distributions.

Usage:
Frechet$entropy(base = 2, ...)

Arguments:
base (integer(1))
  Base of the entropy logarithm, default = 2 (Shannon entropy)
... Unused.

Method pgf(): The probability generating function is defined by
\[ pgf_X(z) = E_X[exp(z^x)] \]
where \(X\) is the distribution and \(E_X\) is the expectation of the distribution \(X\).

Usage:
Frechet$pgf(z, ...)

Arguments:
z (integer(1))
  \(z\) integer to evaluate probability generating function at.
... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Frechet$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References
Michael P. McLaughlin.

See Also
Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral, ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution, Gamma, Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal, MultivariateNormal, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical, Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang, Exponential, FDistributionNoncentral, FDistribution, Gamma, Geometric, Gompertz, Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal, NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete
**FunctionImputation**

**Imputed Pdf/Cdf/Quantile/Rand Functions Decorator**

**Description**

This decorator imputes missing pdf/cdf/quantile/rand methods from R6 Distributions by using strategies dependent on which methods are already present in the distribution. Unlike other decorators, private methods are added to the Distribution, not public methods. Therefore the underlying public [Distribution]$pdf, [Distribution]$pdf, [Distribution]$quantile, and [Distribution]$rand functions stay the same.

**Details**

Decorator objects add functionality to the given Distribution object by copying methods in the decorator environment to the chosen Distribution environment.

All methods implemented in decorators try to exploit analytical results where possible, otherwise numerical results are used with a message.

**Super class**

```
distr6::DistributionDecorator -> FunctionImputation
```

**Public fields**

- **packages**: Packages required to be installed in order to construct the distribution.

**Active bindings**

- **methods**: Returns the names of the available methods in this decorator.

**Methods**

**Public methods**:

- `FunctionImputation$decorate()`
- `FunctionImputation$clone()`

**Method** `decorate()`: Decorates the given distribution with the methods available in this decorator.

**Usage**:

```
FunctionImputation$decorate(distribution, n = 1000)
```

**Arguments**:

- `distribution` **Distribution**: Distribution to decorate.
- `n` (**integer(1)**): Grid size for imputing functions, cannot be changed after decorating. Generally larger `n` means better accuracy but slower computation, and smaller `n` means worse accuracy and faster computation.
Method clone(): The objects of this class are cloneable with this method.

Usage:
FunctionImputation$clone(deep = FALSE)

Arguments:
depth Whether to make a deep clone.

See Also
Other decorators: CoreStatistics, ExoticStatistics

Examples
if (requireNamespace("GoFKernel", quietly = TRUE) &&
    requireNamespace("pracma", quietly = TRUE)) {
  pdf <- function(x) ifelse(x < 1 | x > 10, 0, 1 / 10)
  x <- Distribution$new("Test",
    pdf = pdf,
    support = set6::Interval$new(1, 10, class = "integer"),
    type = set6::Naturals$new()
  )
  decorate(x, "FunctionImputation", n = 1000)
  x <- Distribution$new("Test",
    pdf = pdf,
    support = set6::Interval$new(1, 10, class = "integer"),
    type = set6::Naturals$new()
  )
  x <- Distribution$new("Test",
    pdf = pdf,
    support = set6::Interval$new(1, 10, class = "integer"),
    type = set6::Naturals$new()
  )
  FunctionImputation$new()$decorate(x, n = 1000)
  x$pdf(1:10)
  x$cdf(1:10)
  x$quantile(0.42)
  x$rand(4)
}
**Gamma**

**Description**

Mathematical and statistical functions for the Gamma distribution, which is commonly used as the prior in Bayesian modelling, the convolution of exponential distributions, and to model waiting times.

**Details**

The Gamma distribution parameterised with shape, $\alpha$, and rate, $\beta$, is defined by the pdf,

$$f(x) = \frac{\beta^\alpha}{\Gamma(\alpha)}x^{\alpha-1}e^{-x\beta}$$

for $\alpha, \beta > 0$.

**Value**

Returns an R6 object inheriting from class `SDistribution`.

**Distribution support**

The distribution is supported on the Positive Reals.

**Default Parameterisation**

Gamma(shape = 1, rate = 1)

**Omitted Methods**

N/A

**Also known as**

N/A

**Super classes**

distr6::Distribution -> distr6::SDistribution -> Gamma

**Public fields**

- name: Full name of distribution.
- short_name: Short name of distribution for printing.
- description: Brief description of the distribution.
- packages: Packages required to be installed in order to construct the distribution.
Methods

Public methods:

- `Gamma$new()`
- `Gamma$mean()`
- `Gamma$mode()`
- `Gamma$variance()`
- `Gamma$skewness()`
- `Gamma$kurtosis()`
- `Gamma$entropy()`
- `Gamma$mgf()`
- `Gamma$cf()`
- `Gamma$pgf()`
- `Gamma$clone()`

Method `new()`: Creates a new instance of this R6 class.

Usage:
```
Gamma$new(
 shape = NULL,
 rate = NULL,
 scale = NULL,
 mean = NULL,
 decorators = NULL
)
```

Arguments:

- `shape` (numeric(1))
  Shape parameter, defined on the positive Reals.
- `rate` (numeric(1))
  Rate parameter of the distribution, defined on the positive Reals.
- `scale` (numeric(1))
  Scale parameter of the distribution, defined on the positive Reals. `scale = 1/rate`. If provided `rate` is ignored.
- `mean` (numeric(1))
  Alternative parameterisation of the distribution, defined on the positive Reals. If given then `rate` and `scale` are ignored. Related by `mean = shape/rate`.
- `decorators` (character())
  Decorators to add to the distribution during construction.

Method `mean()`: The arithmetic mean of a (discrete) probability distribution X is the expectation

\[ E_X(X) = \sum p_X(x) * x \]

with an integration analogue for continuous distributions.

Usage:
```
Gamma$mean(...)```
Method `mode()`: The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
```r
Gamma$mode(which = "all")
```

Arguments:
- `which` (character(1) | numeric(1))
 - Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies which mode to return.

Method `variance()`: The variance of a distribution is defined by the formula

\[
\text{var}_X = E[X^2] - E[X]^2
\]

where \(E_X\) is the expectation of distribution \(X\). If the distribution is multivariate the covariance matrix is returned.

Usage:
```r
Gamma$variance(...)```

**Arguments:**
- ... Unused.

Method `skewness()`: The skewness of a distribution is defined by the third standardised moment,

\[
sk_X = E_X \left[ \frac{x - \mu}{\sigma} \right]^3
\]

where \(E_X\) is the expectation of distribution \(X\), \(\mu\) is the mean of the distribution and \(\sigma\) is the standard deviation of the distribution.

**Usage:**
```r
Gamma$skewness(...)```

Arguments:
- ... Unused.

Method `kurtosis()`: The kurtosis of a distribution is defined by the fourth standardised moment,

\[
k_X = E_X \left[\frac{x - \mu}{\sigma} \right]^4
\]

where \(E_X\) is the expectation of distribution \(X\), \(\mu\) is the mean of the distribution and \(\sigma\) is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
```r
Gamma$kurtosis(excess = TRUE, ...)```

**Arguments:**
- `excess` (logical(1))
  - If TRUE (default) excess kurtosis returned.
Method entropy(): The entropy of a (discrete) distribution is defined by

$$-\sum (f_X \log(f_X))$$

where $f_X$ is the pdf of distribution $X$, with an integration analogue for continuous distributions.

Usage:
Gamma$entropy(base = 2, ...)

Arguments:
base (integer(1))
   Base of the entropy logarithm, default = 2 (Shannon entropy)

Method mgf(): The moment generating function is defined by

$$mgf_X(t) = E_X[exp(xt)]$$

where $X$ is the distribution and $E_X$ is the expectation of the distribution $X$.

Usage:
Gamma$mgf(t, ...)

Arguments:
t (integer(1))
   t integer to evaluate function at.

Method cf(): The characteristic function is defined by

$$cf_X(t) = E_X[exp(xti)]$$

where $X$ is the distribution and $E_X$ is the expectation of the distribution $X$.

Usage:
Gamma$cf(t, ...)

Arguments:
t (integer(1))
   t integer to evaluate function at.

Method pgf(): The probability generating function is defined by

$$pgf_X(z) = E_X[exp(z^t)]$$

where $X$ is the distribution and $E_X$ is the expectation of the distribution $X$.

Usage:
Gamma$pgf(z, ...)

Arguments:
z (integer(1))
  z integer to evaluate probability generating function at.
... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Gamma$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

See Also
Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral, ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal, MultivariateNormal, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull
Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical, Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Geometric, Gompertz, Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal, NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete

generalPNorm

Generalised P-Norm

Description
Calculate the p-norm of any function between given limits.

Usage
generalPNorm(fun, p, lower, upper, range = NULL)

Arguments

fun function to calculate the p-norm of.
p the pth norm to calculate
lower lower bound for the integral
upper upper bound for the integral
range if discrete then range of the function to sum over
Details

The p-norm of a continuous function $f$ is given by,

$$\left( \int_S |f|^p \, d\mu \right)^{1/p}$$

where $S$ is the function support. And for a discrete function by

$$\sum_i (x_{i+1} - x_i) \ast |f(x_i)|^p$$

where $i$ is over a given range.

The p-norm is calculated numerically using the integrate function and therefore results are approximate only.

Value

Returns a numeric value for the p norm of a function evaluated between given limits.

Examples

```r
generalPNorm(Exponential$new()$pdf, 2, 0, 10)
```

**Geometric Distribution Class**

Description

Mathematical and statistical functions for the Geometric distribution, which is commonly used to model the number of trials (or number of failures) before the first success.

Details

The Geometric distribution parameterised with probability of success, $p$, is defined by the pmf,

$$f(x) = (1 - p)^{x-1}p$$

for probability $p$.

The Geometric distribution is used to either model the number of trials (trials = TRUE) or number of failures (trials = FALSE) before the first success.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on the Naturals (zero is included if modelling number of failures before success).
**Default Parameterisation**

Geom(prob = 0.5, trials = FALSE)

**Omitted Methods**

N/A

**Also known as**

N/A

**Super classes**

distr6::Distribution -> distr6::SDistribution -> Geometric

**Public fields**

- name  Full name of distribution.
- short_name  Short name of distribution for printing.
- description  Brief description of the distribution.
- packages  Packages required to be installed in order to construct the distribution.

**Methods**

**Public methods:**

- Geometric$new()
- Geometric$mean()
- Geometric$mode()
- Geometric$variance()
- Geometric$skewness()
- Geometric$kurtosis()
- Geometric$entropy()
- Geometric$mgf()
- Geometric$cf()
- Geometric$pgf()
- Geometric$clone()

**Method new():** Creates a new instance of this R6 class.

*Usage:*

Geometric$new(prob = NULL, qprob = NULL, trials = NULL, decorators = NULL)

*Arguments:*

- prob (numeric(1))
  Probability of success.
- qprob (numeric(1))
  Probability of failure. If provided then prob is ignored. qprob = 1 - prob.
Trials (logical(1))

If TRUE then the distribution models the number of trials, \( x \), before the first success. Otherwise the distribution calculates the probability of \( y \) failures before the first success. Mathematically these are related by \( Y = X - 1 \).

Decorators (character(1))

Decorators to add to the distribution during construction.

**Method** `mean()`: The arithmetic mean of a (discrete) probability distribution \( X \) is the expectation

\[
EX(X) = \sum p_X(x) \cdot x
\]

with an integration analogue for continuous distributions.

**Usage:**

Geometric$mean(...) 

**Arguments:**
... Unused.

**Method** `mode()`: The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

**Usage:**

Geometric$mode(which = "all")

**Arguments:**
which (character(1) | numeric(1))

Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies which mode to return.

**Method** `variance()`: The variance of a distribution is defined by the formula

\[
var_X = E[X^2] - E[X]^2
\]

where \( E_X \) is the expectation of distribution \( X \). If the distribution is multivariate the covariance matrix is returned.

**Usage:**

Geometric$variance(...) 

**Arguments:**
... Unused.

**Method** `skewness()`: The skewness of a distribution is defined by the third standardised moment,

\[
sk_X = \frac{E_X[x - \mu]^3}{\sigma^3}
\]

where \( E_X \) is the expectation of distribution \( X \), \( \mu \) is the mean of the distribution and \( \sigma \) is the standard deviation of the distribution.

**Usage:**

Geometric$skewness(...) 

**Arguments:**
Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised moment,

\[ k_X = E_X \left[ \frac{x - \mu^4}{\sigma} \right] \]

where \( E_X \) is the expectation of distribution \( X \), \( \mu \) is the mean of the distribution and \( \sigma \) is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
Geometric$kurtosis(excess = TRUE, ...)

Arguments:
excess (logical(1))
   If TRUE (default) excess kurtosis returned.
   ... Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

\[-\sum (f_X)\log(f_X)\]

where \( f_X \) is the pdf of distribution \( X \), with an integration analogue for continuous distributions.

Usage:
Geometric$entropy(base = 2, ...)

Arguments:
base (integer(1))
   Base of the entropy logarithm, default = 2 (Shannon entropy)
   ... Unused.

Method mgf(): The moment generating function is defined by

\[ mgf_X(t) = E_X[exp(xt)] \]

where \( X \) is the distribution and \( E_X \) is the expectation of the distribution \( X \).

Usage:
Geometric$mgf(t, ...)

Arguments:
t (integer(1))
   t integer to evaluate function at.
   ... Unused.

Method cf(): The characteristic function is defined by

\[ cf_X(t) = E_X[exp(xti)] \]

where \( X \) is the distribution and \( E_X \) is the expectation of the distribution \( X \).

Usage:
Geometric$cf(t, ...)
Arguments:
t (integer(1))
    t integer to evaluate function at.
... Unused.

Method pgf(): The probability generating function is defined by

$$ pgf_X(z) = E_X[exp(z^x)] $$

where $X$ is the distribution and $E_X$ is the expectation of the distribution $X$.

Usage:
Geometric$pgf(z, ...)

Arguments:
z (integer(1))
    z integer to evaluate probability generating function at.
... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Geometric$clone(deep = FALSE)

Arguments:
deep  Whether to make a deep clone.

References
Michael P. McLaughlin.

See Also
Other discrete distributions: Bernoulli, Binomial, Categorical, Degenerate, DiscreteUniform,
EmpiricalMV, Empirical, Hypergeometric, Logarithmic, Multinomial, NegativeBinomial,
WeightedDiscrete

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical,
Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang,
Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Gompertz, Gumbel,
Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal,
NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral,
StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete
Gompertz

Gompertz Distribution Class

Description

Mathematical and statistical functions for the Gompertz distribution, which is commonly used in survival analysis particularly to model adult mortality rates.

Details

The Gompertz distribution parameterised with shape, \( \alpha \), and scale, \( \beta \), is defined by the pdf,

\[
f(x) = \alpha \beta \exp(x\beta) \exp(\alpha \exp(-\exp(x\beta)\alpha))
\]

for \( \alpha, \beta > 0 \).

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on the Non-Negative Reals.

Default Parameterisation

\texttt{Gomp(shape = 1, scale = 1)}

Omitted Methods

\texttt{N/A}

Also known as

\texttt{N/A}

Super classes

\texttt{distr6::Distribution -> distr6::SDistribution -> Gompertz}

Public fields

- name: Full name of distribution.
- short_name: Short name of distribution for printing.
- description: Brief description of the distribution.
- packages: Packages required to be installed in order to construct the distribution.
Methods

Public methods:

- Gompertz$new()
- Gompertz$median()
- Gompertz$pgf()
- Gompertz$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Gompertz$new(shape = NULL, scale = NULL, decorators = NULL)

Arguments:
- shape (numeric(1))
  Shape parameter, defined on the positive Reals.
- scale (numeric(1))
  Scale parameter, defined on the positive Reals.
- decorators (character())
  Decorators to add to the distribution during construction.

Method median(): Returns the median of the distribution. If an analytical expression is available returns distribution median, otherwise if symmetric returns self$mean, otherwise returns self$quantile(0.5).

Usage:
Gompertz$median()

Method pgf(): The probability generating function is defined by

\[ pgf_X(z) = E_X[exp(z^x)] \]

where X is the distribution and \( E_X \) is the expectation of the distribution X.

Usage:
Gompertz$pgf(z, ...)

Arguments:
- z (integer(1))
  z integer to evaluate probability generating function at.
- ... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Gompertz$clone(deep = FALSE)

Arguments:
- deep Whether to make a deep clone.

References

Gumbel Distribution Class

Description

Mathematical and statistical functions for the Gumbel distribution, which is commonly used to model the maximum (or minimum) of a number of samples of different distributions, and is a special case of the Generalised Extreme Value distribution.

Details

The Gumbel distribution parameterised with location, \(\mu\), and scale, \(\beta\), is defined by the pdf,

\[
f(x) = \frac{\exp(-z + \exp(-z))}{\beta}
\]

for \(z = (x - \mu)/\beta\), \(\mu \in \mathbb{R}\) and \(\beta > 0\).

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on the Reals.

Default Parameterisation

Gumb(location = 0, scale = 1)

Omitted Methods

N/A
Also known as
N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> Gumbel

Public fields

- name  Full name of distribution.
- short_name  Short name of distribution for printing.
- description  Brief description of the distribution.
- packages  Packages required to be installed in order to construct the distribution.

Methods

Public methods:

- Gumbel$new()
- Gumbel$mean()
- Gumbel$mode()
- Gumbel$median()
- Gumbel$variance()
- Gumbel$skewness()
- Gumbel$kurtosis()
- Gumbel$entropy()
- Gumbel$mgf()
- Gumbel$cf()
- Gumbel$pgf()
- Gumbel$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Gumbel$new(location = NULL, scale = NULL, decorators = NULL)

Arguments:
- location (numeric(1))
  Location parameter defined on the Reals.
- scale (numeric(1))
  Scale parameter defined on the positive Reals.
- decorators (character())
  Decorators to add to the distribution during construction.

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

\[ E_X(X) = \sum p_X(x) * x \]

with an integration analogue for continuous distributions.
Usage:
Gumbel$mean(...)

Arguments:
... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
Gumbel$mode(which = "all")

Arguments:
which (character(1) | numeric(1))
Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies which mode to return.

Method median(): Returns the median of the distribution. If an analytical expression is available returns distribution median, otherwise if symmetric returns self$mean, otherwise returns self$quantile(0.5).

Usage:
Gumbel$median()

Method variance(): The variance of a distribution is defined by the formula

\[ \text{var}_X = E[X^2] - E[X]^2 \]

where \( E_X \) is the expectation of distribution \( X \). If the distribution is multivariate the covariance matrix is returned.

Usage:
Gumbel$variance(...)

Arguments:
... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised moment,

\[ \text{sk}_X = E_X \left[ \frac{x - \mu}{\sigma}^3 \right] \]

where \( E_X \) is the expectation of distribution \( X \), \( \mu \) is the mean of the distribution and \( \sigma \) is the standard deviation of the distribution. Apery's Constant to 16 significant figures is used in the calculation.

Usage:
Gumbel$skewness(...)

Arguments:
... Unused.
Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised moment,

\[ k_X = E_X \left[ \frac{x - \mu}{\sigma} \right]^4 \]

where \( E_X \) is the expectation of distribution \( X \), \( \mu \) is the mean of the distribution and \( \sigma \) is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
Gumbel$kurtosis(excess = TRUE, ...)

Arguments:
excess (logical(1))
If TRUE (default) excess kurtosis returned.
... Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

\[ -\sum (f_X) \log(f_X) \]

where \( f_X \) is the pdf of distribution \( X \), with an integration analogue for continuous distributions.

Usage:
Gumbel$entropy(base = 2, ...)

Arguments:
base (integer(1))
Base of the entropy logarithm, default = 2 (Shannon entropy)
... Unused.

Method mgf(): The moment generating function is defined by

\[ mgf_X(t) = E_X [\exp(xt)] \]

where \( X \) is the distribution and \( E_X \) is the expectation of the distribution \( X \).

Usage:
Gumbel$mgf(t, ...)

Arguments:
t (integer(1))
t integer to evaluate function at.
... Unused.

Method cf(): The characteristic function is defined by

\[ cf_X(t) = E_X [\exp(xti)] \]

where \( X \) is the distribution and \( E_X \) is the expectation of the distribution \( X \).

pracma::gammaz() is used in this function to allow complex inputs.

Usage:
Gumbel$cf(t, ...)
Arguments:
t (integer(1))
  t integer to evaluate function at.
  ... Unused.

Method pgf(): The probability generating function is defined by

\[ pgf_X(z) = E_X[exp(z^X)] \]

where X is the distribution and \( E_X \) is the expectation of the distribution X.

Usage:
Gumbel$pgf(z, ...)

Arguments:
z (integer(1))
  z integer to evaluate probability generating function at.
  ... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Gumbel$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

See Also
Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral, 
ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution, 
Frechet, Gamma, Gompertz, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal, MultivariateNormal, 
Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, 
Triangular, Uniform, Wald, Weibull

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical, 
Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang, 
Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz, 
Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal, 
NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, 
StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete
huberize  

**Description**

S3 functionality to huberize an R6 distribution.

**Usage**

```r
dubberize(x, lower, upper)
```

**Arguments**

- `x`: distribution to huberize.
- `lower`: lower limit for huberization.
- `upper`: upper limit for huberization.

**See Also**

- `HuberizedDistribution`

---

**HuberizedDistribution**  

**Distribution Huberization Wrapper**

**Description**

A wrapper for huberizing any probability distribution at given limits.

**Details**

The pdf and cdf of the distribution are required for this wrapper, if unavailable decorate with `FunctionImputation` first.

Huberizes a distribution at lower and upper limits, using the formula

\[
\begin{align*}
    f_H(x) &= F(x), \text{if } x \leq \text{lower} \\
    f_H(x) &= f(x), \text{if } \text{lower} < x < \text{upper} \\
    f_H(x) &= F(x), \text{if } x \geq \text{upper}
\end{align*}
\]

where \( f_H \) is the pdf of the truncated distribution \( H = \text{Huberize}(X, \text{lower}, \text{upper}) \) and \( f_X/F_X \) is the pdf/cdf of the original distribution.

**Super classes**

- `distr6::Distribution`  
- `distr6::DistributionWrapper`  
- `HuberizedDistribution`
Active bindings

properties  Returns distribution properties, including skewness type and symmetry.

Methods

Public methods:

• HuberizedDistribution$new()
• HuberizedDistribution$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
HuberizedDistribution$new(distribution, lower = NULL, upper = NULL)

Arguments:
distribution ([Distribution])
  Distribution to wrap.
lower (numeric(1))
  Lower limit to huberize the distribution at. If NULL then the lower bound of the Distribution is used.
upper (numeric(1))
  Upper limit to huberize the distribution at. If NULL then the upper bound of the Distribution is used.

Examples:
HuberizedDistribution$new(
  Binomial$new(prob = 0.5, size = 10),
  lower = 2, upper = 4
)

# alternate constructor
huberize(Binomial$new(), lower = 2, upper = 4)

Method clone(): The objects of this class are cloneable with this method.

Usage:
HuberizedDistribution$clone(deep = FALSE)

Arguments:
depth  Whether to make a deep clone.

See Also

Other wrappers: Convolution, DistributionWrapper, MixtureDistribution, ProductDistribution, TruncatedDistribution, VectorDistribution
Examples

```r
Method `HuberizedDistribution$new`
HuberizedDistribution$new(
 Binomial$new(prob = 0.5, size = 10),
 lower = 2, upper = 4
)

alternate constructor
huberize(Binomial$new(), lower = 2, upper = 4)
```

---

**Hypergeometric Distribution Class**

**Description**

Mathematical and statistical functions for the Hypergeometric distribution, which is commonly used to model the number of successes out of a population containing a known number of possible successes, for example the number of red balls from an urn or red, blue and yellow balls.

**Details**

The Hypergeometric distribution parameterised with population size, $N$, number of possible successes, $K$, and number of draws from the distribution, $n$, is defined by the pmf,

$$f(x) = C(K, x)C(N - K, n - x)/C(N, n)$$

for $N = \{0, 1, 2, \ldots\}$, $n, K = \{0, 1, 2, \ldots, N\}$ and $C(a, b)$ is the combination (or binomial coefficient) function.

**Value**

Returns an R6 object inheriting from class `SDistribution`.

**Distribution support**

The distribution is supported on $\{max(0, n + K - N), \ldots, min(n, K)\}$.

**Default Parameterisation**

Hyper(size = 50, successes = 5, draws = 10)

**Omitted Methods**

N/A
Hypergeometric

Also known as
N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> Hypergeometric

Public fields

name Full name of distribution.
short_name Short name of distribution for printing.
description Brief description of the distribution.
packages Packages required to be installed in order to construct the distribution.

Active bindings

properties Returns distribution properties, including skewness type and symmetry.

Methods

Public methods:
• Hypergeometric$new()
• Hypergeometric$mean()
• Hypergeometric$mode()
• Hypergeometric$variance()
• Hypergeometric$skewness()
• Hypergeometric$kurtosis()
• Hypergeometric$setParameterValue()
• Hypergeometric$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Hypergeometric$new(
  size = NULL,
  successes = NULL,
  failures = NULL,
  draws = NULL,
  decorators = NULL
)

Arguments:
size (integer(1))
  Population size. Defined on positive Naturals.
successes (integer(1))
  Number of population successes. Defined on positive Naturals.
failures (integer(1))
   Number of population failures. failures = size - successes. If given then successes is
   ignored. Defined on positive Naturals.
draws (integer(1))
   Number of draws from the distribution, defined on the positive Naturals.
decorators (character())
   Decorators to add to the distribution during construction.

Method mean(): The arithmetic mean of a (discrete) probability distribution $X$ is the expectation

\[ E_X(X) = \sum p_X(x) \times x \]

with an integration analogue for continuous distributions.

Usage:
Hypergeometric$mean(...)

Arguments:
... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
Hypergeometric$mode(which = "all")

Arguments:
which (character(1) | numeric(1))
   Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies
   which mode to return.

Method variance(): The variance of a distribution is defined by the formula

\[ var_X = E[X^2] - E[X]^2 \]

where $E_X$ is the expectation of distribution $X$. If the distribution is multivariate the covariance matrix is returned.

Usage:
Hypergeometric$variance(...)

Arguments:
... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised moment,

\[ sk_X = E_X \left[ \frac{x - \mu}{\sigma} \right]^3 \]

where $E_X$ is the expectation of distribution $X$, $\mu$ is the mean of the distribution and $\sigma$ is the
standard deviation of the distribution.

Usage:
Hypergeometric$skewness(...)
**Arguments:**

... Unused.

**Method** `kurtosis()`: The kurtosis of a distribution is defined by the fourth standardised moment,

\[ k_X = \mathbb{E}_X \left[ \frac{x - \mu^4}{\sigma} \right] \]

where \( \mathbb{E}_X \) is the expectation of distribution \( X \), \( \mu \) is the mean of the distribution and \( \sigma \) is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

**Usage:**

`Hypergeometric$kurtosis(excess = TRUE, ...)`

**Arguments:**

`excess` (logical(1))

If `TRUE` (default) excess kurtosis returned.

... Unused.

**Method** `setParameterValue()`: Sets the value(s) of the given parameter(s).

**Usage:**

`Hypergeometric$setParameterValue( ...,
    lst = list(...),
    error = "warn",
    resolveConflicts = FALSE
)`

**Arguments:**

... ANY

Named arguments of parameters to set values for. See examples.

`lst` (list(1))

Alternative argument for passing parameters. List names should be parameter names and list values are the new values to set.

`error` (character(1))

If "warn" then returns a warning on error, otherwise breaks if "stop".

`resolveConflicts` (logical(1))

If FALSE (default) throws error if conflicting parameterisations are provided, otherwise automatically resolves them by removing all conflicting parameters.

**Method** `clone()`: The objects of this class are cloneable with this method.

**Usage:**

`Hypergeometric$clone(deep = FALSE)`

**Arguments:**

deep Whether to make a deep clone.

**References**

Inverse Gamma Distribution Class

Description
Mathematical and statistical functions for the Inverse Gamma distribution, which is commonly used in Bayesian statistics as the posterior distribution from the unknown variance in a Normal distribution.

Details
The Inverse Gamma distribution parameterised with shape, $\alpha$, and scale, $\beta$, is defined by the pdf,

$$f(x) = \frac{\beta^\alpha}{\Gamma(\alpha)} x^{-\alpha - 1} \exp(-\beta/x)$$

for $\alpha, \beta > 0$, where $\Gamma$ is the gamma function.

Value
Returns an R6 object inheriting from class SDistribution.

Distribution support
The distribution is supported on the Positive Reals.

Default Parameterisation
InvGamma(shape = 1, scale = 1)

Omitted Methods
N/A

Also known as
N/A
InverseGamma

Super classes

distr6::Distribution -> distr6::SDistribution -> InverseGamma

Public fields

name Full name of distribution.
short_name Short name of distribution for printing.
description Brief description of the distribution.
packages Packages required to be installed in order to construct the distribution.

Methods

Public methods:

• InverseGamma$new()
• InverseGamma$mean()
• InverseGamma$mode()
• InverseGamma$variance()
• InverseGamma$skewness()
• InverseGamma$kurtosis()
• InverseGamma$entropy()
• InverseGamma$mgf()
• InverseGamma$pgf()
• InverseGamma$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
InverseGamma$new(shape = NULL, scale = NULL, decorators = NULL)

Arguments:
shape (numeric(1))
  Shape parameter, defined on the positive Reals.
scale (numeric(1))
  Scale parameter, defined on the positive Reals.
decorators (character())
  Decorators to add to the distribution during construction.

Method mean(): The arithmetic mean of a (discrete) probability distribution \( X \) is the expectation

\[ E_X(X) = \sum p_X(x) * x \]

with an integration analogue for continuous distributions.

Usage:
InverseGamma$mean(...)

Arguments:
... Unused.
Method `mode()`: The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
```r
InverseGamma$mode(which = "all")
```

Arguments:
- `which` (character(1) | numeric(1))
  - Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies which mode to return.

Method `variance()`: The variance of a distribution is defined by the formula

\[ \text{var}_X = E[X^2] - E[X]^2 \]

where \( E_X \) is the expectation of distribution X. If the distribution is multivariate the covariance matrix is returned.

Usage:
```r
InverseGamma$variance(...)
```

Arguments:
- `...` Unused.

Method `skewness()`: The skewness of a distribution is defined by the third standardised moment,

\[ \text{sk}_X = E_X \left[ \frac{x - \mu}{\sigma}^3 \right] \]

where \( E_X \) is the expectation of distribution X, \( \mu \) is the mean of the distribution and \( \sigma \) is the standard deviation of the distribution.

Usage:
```r
InverseGamma$skewness(...)
```

Arguments:
- `...` Unused.

Method `kurtosis()`: The kurtosis of a distribution is defined by the fourth standardised moment,

\[ k_X = E_X \left[ \frac{x - \mu}{\sigma}^4 \right] \]

where \( E_X \) is the expectation of distribution X, \( \mu \) is the mean of the distribution and \( \sigma \) is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
```r
InverseGamma$kurtosis(excess = TRUE, ...)
```

Arguments:
- `excess` (logical(1))
  - If TRUE (default) excess kurtosis returned.
- `...` Unused.
Method entropy(): The entropy of a (discrete) distribution is defined by

$$- \sum (f_X) \log(f_X)$$

where $f_X$ is the pdf of distribution $X$, with an integration analogue for continuous distributions.

Usage:
InverseGamma$entropy(base = 2, ...)

Arguments:
base (integer(1))
    Base of the entropy logarithm, default = 2 (Shannon entropy)
    ... Unused.

Method mgf(): The moment generating function is defined by

$$mgf_X(t) = E_X[exp(xt)]$$

where $X$ is the distribution and $E_X$ is the expectation of the distribution $X$.

Usage:
InverseGamma$mgf(t, ...)

Arguments:
t (integer(1))
    t integer to evaluate function at.
    ... Unused.

Method pgf(): The probability generating function is defined by

$$pgf_X(z) = E_X[exp(z^x)]$$

where $X$ is the distribution and $E_X$ is the expectation of the distribution $X$.

Usage:
InverseGamma$pgf(z, ...)

Arguments:
z (integer(1))
    z integer to evaluate probability generating function at.
    ... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
InverseGamma$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References
Michael P. McLaughlin.
See Also

Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral, ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Gompertz, Gumbel, Laplace, Logistic, Loglogistic, Lognormal, MultivariateNormal, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical, Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz, Gumbel, Hypergeometric, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal, NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete

---

**Kernel**

**Abstract Kernel Class**

**Description**

Abstract class that cannot be constructed directly.

**Value**

Returns error. Abstract classes cannot be constructed directly.

**Super class**

distr6::Distribution \rightarrow Kernel

**Public fields**

- `package` Deprecated, use `$packages` instead.
- `packages` Packages required to be installed in order to construct the distribution.

**Methods**

**Public methods:**

- `Kernel$new()`
- `Kernel$mode()`
- `Kernel$mean()`
- `Kernel$median()`
- `Kernel$pdfSquared2Norm()`
- `Kernel$cdfSquared2Norm()`
- `Kernel$skewness()`
- `Kernel$clone()`

**Method** `new()`: Creates a new instance of this R6 class.
**Kernel**

**Usage:**

```r
Kernel$new(decorators = NULL, support = Interval$new(-1, 1))
```

**Arguments:**

- `decorators` (character())
  Decorators to add to the distribution during construction.

- `support` [set6::Set]
  Support of the distribution.

**Method** `mode()`: Calculates the mode of the distribution.

**Usage:**

```r
Kernel$mode(which = "all")
```

**Arguments:**

- `which` (character(1) | numeric(1))
  Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies which mode to return.

**Method** `mean()`: Calculates the mean (expectation) of the distribution.

**Usage:**

```r
Kernel$mean(...)`

Arguments:

- `...` Unused.

Method `median()`: Calculates the median of the distribution.

Usage:

```r
Kernel$median()
```

Method `pdfSquared2Norm()`: The squared 2-norm of the pdf is defined by

\[
\int_a^b (f_X(u))^2\,du
\]

where \(X\) is the Distribution, \(f_X\) is its pdf and \(a, b\) are the distribution support limits.

Usage:

```r
Kernel$pdfSquared2Norm(x = 0, upper = Inf)
```

Arguments:

- `x` (numeric(1))
 Amount to shift the result.

- `upper` (numeric(1))
 Upper limit of the integral.

Method `cdfSquared2Norm()`: The squared 2-norm of the cdf is defined by

\[
\int_a^b (F_X(u))^2\,du
\]

where \(X\) is the Distribution, \(F_X\) is its pdf and \(a, b\) are the distribution support limits.
Usage:
Kernel$cdfSquared2Norm(x = 0, upper = Inf)

Arguments:
 x (numeric(1))
 Amount to shift the result.
 upper (numeric(1))
 Upper limit of the integral.

Method skewness(): The skewness of a distribution is defined by the third standardised moment,

\[sk_X = E_X\left[\frac{x - \mu}{\sigma}^3 \right] \]

where \(E_X\) is the expectation of distribution \(X\), \(\mu\) is the mean of the distribution and \(\sigma\) is the standard deviation of the distribution.

Usage:
Kernel$skewness(...)

Arguments:
 ... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Kernel$clone(deep = FALSE)

Arguments:
 deep Whether to make a deep clone.

Laplace Distribution Class

Description

Mathematical and statistical functions for the Laplace distribution, which is commonly used in signal processing and finance.

Details

The Laplace distribution parameterised with mean, \(\mu\), and scale, \(\beta\), is defined by the pdf,

\[f(x) = \exp(-|x - \mu|/\beta)/(2\beta) \]

for \(\mu \in \mathbb{R}\) and \(\beta > 0\).

Value

Returns an R6 object inheriting from class SDistribution.
Distribution support
The distribution is supported on the Reals.

Default Parameterisation
Lap(mean = 0, scale = 1)

Omitted Methods
N/A

Also known as
N/A

Super classes
distr6::Distribution -> distr6::SDistribution -> Laplace

Public fields
- name Full name of distribution.
- short_name Short name of distribution for printing.
- description Brief description of the distribution.
- packages Packages required to be installed in order to construct the distribution.

Methods

Public methods:
- Laplace$new()
- Laplace$mean()
- Laplace$mode()
- Laplace$variance()
- Laplace$skewness()
- Laplace$kurtosis()
- Laplace$entropy()
- Laplace$mgf()
- Laplace$cf()
- Laplace$pgf()
- Laplace$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Laplace$new(mean = NULL, scale = NULL, var = NULL, decorators = NULL)

Arguments:
mean (numeric(1))
 Mean of the distribution, defined on the Reals.
scale (numeric(1))
 Scale parameter, defined on the positive Reals.
var (numeric(1))
 Variance of the distribution, defined on the positive Reals. \(\text{var} = 2 \times \text{scale}^2 \). If \(\text{var} \) is provided then \(\text{scale} \) is ignored.
decorators (character())
 Decorators to add to the distribution during construction.

Method **mean()**: The arithmetic mean of a (discrete) probability distribution \(X \) is the expectation

\[E_X(X) = \sum p_X(x) \times x \]

with an integration analogue for continuous distributions.

Usage:

\[\text{Laplace}\$\text{mean}(...) \]

Arguments:

... Unused.

Method **mode()**: The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:

\[\text{Laplace}\$\text{mode}(\text{which} = "\text{all"}) \]

Arguments:

\(\text{which} \) (character(1) | numeric(1))
 Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies which mode to return.

Method **variance()**: The variance of a distribution is defined by the formula

\[\text{var}_X = E[X^2] - E[X]^2 \]

where \(E_X \) is the expectation of distribution \(X \). If the distribution is multivariate the covariance matrix is returned.

Usage:

\[\text{Laplace}\$\text{variance}(...) \]

Arguments:

... Unused.

Method **skewness()**: The skewness of a distribution is defined by the third standardised moment,

\[\text{sk}_X = E_X \left[\frac{x - \mu}{\sigma} \right]^3 \]

where \(E_X \) is the expectation of distribution \(X \), \(\mu \) is the mean of the distribution and \(\sigma \) is the standard deviation of the distribution.
Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised moment,

\[k_X = E_X \left[\frac{x - \mu}{\sigma} \right]^4 \]

where \(E_X \) is the expectation of distribution \(X \), \(\mu \) is the mean of the distribution and \(\sigma \) is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
Laplace$kurtosis(excess = TRUE, ...)

Arguments:
excess (logical(1))
 If TRUE (default) excess kurtosis returned.
... Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

\[-\sum (f_X \log(f_X)) \]

where \(f_X \) is the pdf of distribution \(X \), with an integration analogue for continuous distributions.

Usage:
Laplace$entropy(base = 2, ...)

Arguments:
base (integer(1))
 Base of the entropy logarithm, default = 2 (Shannon entropy)
... Unused.

Method mgf(): The moment generating function is defined by

\[mgf_X(t) = E_X [\exp(t)] \]

where \(X \) is the distribution and \(E_X \) is the expectation of the distribution \(X \).

Usage:
Laplace$mgf(t, ...)

Arguments:
t (integer(1))
 t integer to evaluate function at.
... Unused.

Method cf(): The characteristic function is defined by

\[cf_X(t) = E_X [\exp(t)] \]

where \(X \) is the distribution and \(E_X \) is the expectation of the distribution \(X \).
Usage:
Laplace\$cf(t, ...)

Arguments:
t (integer(1))
 t integer to evaluate function at.
... Unused.

Method \texttt{pgf()}: The probability generating function is defined by

\[pgf_X(z) = E_X[exp(z^X)] \]

where \(X \) is the distribution and \(E_X \) is the expectation of the distribution \(X \).

Usage:
Laplace\$pgf(z, ...)

Arguments:
z (integer(1))
 z integer to evaluate probability generating function at.
... Unused.

Method \texttt{clone()}: The objects of this class are cloneable with this method.

Usage:
Laplace\$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

See Also
Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral, ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Gompertz, Gumbel, InverseGamma, Logistic, Loglogistic, Lognormal, MultivariateNormal, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical, Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz, Gumbel, Hypergeometric, InverseGamma, Logarithmic, Logistic, Loglogistic, Lognormal, NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete
length.VectorDistribution

Get Number of Distributions in Vector Distribution

Description

Gets the number of distributions in an object inheriting from `VectorDistribution`.

Usage

```r
## S3 method for class 'VectorDistribution'
length(x)
```

Arguments

- `x`
 VectorDistribution

lines.Distribution

Superimpose Distribution Functions Plots for a distr6 Object

Description

One of six plots can be selected to be superimposed in the plotting window, including: pdf, cdf, quantile, survival, hazard and cumulative hazard.

Usage

```r
## S3 method for class 'Distribution'
lines(x, fun, npoints = 3000, ...)
```

Arguments

- `x`
 distr6 object.
- `fun`
 vector of functions to plot, one or more of: "pdf","cdf","quantile", "survival", "hazard", and "cumhazard"; partial matching available.
- `npoints`
 number of evaluation points.
- `...`
 graphical parameters.

Details

Unlike the `plot.Distribution` function, no internal checks are performed to ensure that the added plot makes sense in the context of the current plotting window. Therefore this function assumes that the current plot is of the same value support, see examples.
listDecorators

Lists Implemented Distribution Decorators

Description

Lists decorators that can decorate an R6 Distribution.

Usage

listDecorators(simplify = TRUE)

Arguments

simplify logical. If TRUE (default) returns results as characters, otherwise as R6 classes.

Value

Either a list of characters (if simplify is TRUE) or a list of DistributionDecorator classes.
See Also

DistributionDecorator

Examples

listDecorators()
listDecorators(FALSE)

listDistributions

Lists Implemented Distributions

Description

Lists distr6 distributions in a data.table or a character vector, can be filtered by traits, implemented package, and tags.

Usage

listDistributions(simplify = FALSE, filter = NULL)

Arguments

simplify logical. If FALSE (default) returns distributions with traits as a data.table, otherwise returns distribution names as characters.

filter list to filter distributions by. See examples.

Value

Either a list of characters (if simplify is TRUE) or a data.table of SDistributions and their traits.

See Also

SDistribution

Examples

listDistributions()

Filter list
listDistributions(filter = list(VariateForm = "univariate"))

Filter is case-insensitive
listDistributions(filter = list(VaLuESupport = "discrete"))

Multiple filters
listDistributions(filter = list(VaLuESupport = "discrete", package = "extraDistr"))
listKernels Lists Implemented Kernels

Description
Lists all implemented kernels in distr6.

Usage
listKernels(simplify = FALSE)

Arguments
simplify logical. If FALSE (default) returns kernels with support as a data.table, otherwise returns kernel names as characters.

Value
Either a list of characters (if simplify is TRUE) or a data.table of Kernels and their traits.

See Also
Kernel

Examples
listKernels()

listWrappers Lists Implemented Distribution Wrappers

Description
Lists wrappers that can wrap an R6 Distribution.

Usage
listWrappers(simplify = TRUE)

Arguments
simplify logical. If TRUE (default) returns results as characters, otherwise as R6 classes.

Value
Either a list of characters (if simplify is TRUE) or a list of Wrapper classes.
Logarithmic Distribution Class

Description
Mathematical and statistical functions for the Logarithmic distribution, which is commonly used to model consumer purchase habits in economics and is derived from the Maclaurin series expansion of $-\ln(1 - p)$.

Details
The Logarithmic distribution parameterised with a parameter, θ, is defined by the pmf,

$$f(x) = -\frac{\theta x}{x \log(1 - \theta)}$$

for $0 < \theta < 1$.

Value
Returns an R6 object inheriting from class SDistribution.

Distribution support
The distribution is supported on $1, 2, 3, \ldots$.

Default Parameterisation
Log(theta = 0.5)

Omitted Methods
N/A

Also known as
N/A

Super classes
distr6::Distribution -> distr6::SDistribution -> Logarithmic
Public fields

name Full name of distribution.
short_name Short name of distribution for printing.
description Brief description of the distribution.
packages Packages required to be installed in order to construct the distribution.

Methods

Public methods:

• Logarithmic$new()
• Logarithmic$mean()
• Logarithmic$mode()
• Logarithmic$variance()
• Logarithmic$skewness()
• Logarithmic$kurtosis()
• Logarithmic$mgf()
• Logarithmic$cf()
• Logarithmic$pgf()
• Logarithmic$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Logarithmic$new(theta = NULL, decorators = NULL)

Arguments:
theta (numeric(1))
 Theta parameter defined as a probability between 0 and 1.
decorators (character())
 Decorators to add to the distribution during construction.

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

\[E_X(X) = \sum p_X(x) \times x \]

with an integration analogue for continuous distributions.

Usage:
Logarithmic$mean(...)

Arguments:
... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
Logarithmic$mode(which = "all")
Arguments:
which (character(1) | numeric(1))
Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies which mode to return.

Method variance(): The variance of a distribution is defined by the formula

\[\text{var}_X = E[X^2] - E[X]^2 \]

where \(E_X\) is the expectation of distribution \(X\). If the distribution is multivariate the covariance matrix is returned.

Usage:
Logarithmic$variance(...)

Arguments:
... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised moment,

\[\text{sk}_X = E_X \left[\frac{x - \mu}{\sigma}^3 \right] \]

where \(E_X\) is the expectation of distribution \(X\), \(\mu\) is the mean of the distribution and \(\sigma\) is the standard deviation of the distribution.

Usage:
Logarithmic$skewness(...)

Arguments:
... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised moment,

\[k_X = E_X \left[\frac{x - \mu}{\sigma}^4 \right] \]

where \(E_X\) is the expectation of distribution \(X\), \(\mu\) is the mean of the distribution and \(\sigma\) is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
Logarithmic$kurtosis(excess = TRUE, ...)

Arguments:
excess (logical(1))
If TRUE (default) excess kurtosis returned.
... Unused.

Method mgf(): The moment generating function is defined by

\[mgf_X(t) = E_X[exp(\mu t)] \]

where \(X\) is the distribution and \(E_X\) is the expectation of the distribution \(X\).

Usage:
Logarithmic$mgf(t, ...)

Arguments:
t (integer(1))
 t integer to evaluate function at.
 ... Unused.

Method cf(): The characteristic function is defined by

$$cf_X(t) = E_X[exp(t)]$$

where \(X\) is the distribution and \(E_X\) is the expectation of the distribution \(X\).

Usage:
Logarithmic$cf(t, ...)

Arguments:
t (integer(1))
 t integer to evaluate function at.
 ... Unused.

Method pgf(): The probability generating function is defined by

$$pgf_X(z) = E_X[exp(z)]$$

where \(X\) is the distribution and \(E_X\) is the expectation of the distribution \(X\).

Usage:
Logarithmic$pgf(z, ...)

Arguments:
z (integer(1))
 z integer to evaluate probability generating function at.
 ... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Logarithmic$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

Logistic

See Also

Other discrete distributions: Bernoulli, Binomial, Categorical, Degenerate, DiscreteUniform, EmpiricalMV, Empirical, Geometric, Hypergeometric, Multinomial, NegativeBinomial, WeightedDiscrete

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical, Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz, Gumbel, Hypergeometric, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal, NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete

Logistic

Logistic Distribution Class

Description

Mathematical and statistical functions for the Logistic distribution, which is commonly used in logistic regression and feedforward neural networks.

Details

The Logistic distribution parameterised with mean, \(\mu \), and scale, \(s \), is defined by the pdf,

\[
f(x) = \frac{\exp(-(x - \mu)/s)}{(s(1 + \exp(-(x - \mu)/s))^2)}
\]

for \(\mu \in \mathbb{R} \) and \(s > 0 \).

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on the Reals.

Default Parameterisation

Logis(mean = 0, scale = 1)

Omitted Methods

N/A

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> Logistic
Public fields

- name: Full name of distribution.
- short_name: Short name of distribution for printing.
- description: Brief description of the distribution.
- packages: Packages required to be installed in order to construct the distribution.

Methods

Public methods:

- `Logistic$new()`
- `Logistic$mean()`
- `Logistic$mode()`
- `Logistic$variance()`
- `Logistic$skewness()`
- `Logistic$kurtosis()`
- `Logistic$entropy()`
- `Logistic$mgf()`
- `Logistic$cf()`
- `Logistic$pgf()`
- `Logistic$clone()`

Method `new()`: Creates a new instance of this R6 class.

Usage:

```
Logistic$new(mean = NULL, scale = NULL, sd = NULL, decorators = NULL)
```

Arguments:

- mean (numeric(1))
 - Mean of the distribution, defined on the Reals.
- scale (numeric(1))
 - Scale parameter, defined on the positive Reals.
- sd (numeric(1))
 - Standard deviation of the distribution as an alternate scale parameter, \(sd = scale \times \pi / \sqrt{3} \).
 - If given then scale is ignored.
- decorators (character())
 - Decorators to add to the distribution during construction.

Method `mean()`: The arithmetic mean of a (discrete) probability distribution \(X \) is the expectation

\[
E_X(X) = \sum p_X(x) \times x
\]

with an integration analogue for continuous distributions.

Usage:

```
Logistic$mean(...)```

Arguments:
Method mode(): The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
Logistic$mode(which = "all")

Arguments:
which (character(1) | numeric(1))
Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies which mode to return.

Method variance(): The variance of a distribution is defined by the formula

\[ \text{var}_X = E[X^2] - E[X]^2 \]

where \( E_X \) is the expectation of distribution \( X \). If the distribution is multivariate the covariance matrix is returned.

Usage:
Logistic$variance(...) 

Arguments:
... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised moment,

\[ \text{sk}_X = E_X \left[ \frac{x - \mu}{\sigma}^3 \right] \]

where \( E_X \) is the expectation of distribution \( X \), \( \mu \) is the mean of the distribution and \( \sigma \) is the standard deviation of the distribution.

Usage:
Logistic$skewness(...) 

Arguments:
... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised moment,

\[ k_X = E_X \left[ \frac{x - \mu}{\sigma}^4 \right] \]

where \( E_X \) is the expectation of distribution \( X \), \( \mu \) is the mean of the distribution and \( \sigma \) is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
Logistic$kurtosis(excess = TRUE, ...) 

Arguments:
excess (logical(1))
If TRUE (default) excess kurtosis returned.
... Unused.
Method `entropy()`: The entropy of a (discrete) distribution is defined by

\[- \sum (f_X \log(f_X))\]

where $f_X$ is the pdf of distribution $X$, with an integration analogue for continuous distributions.

Usage:
Logistic$entropy(base = 2, ...)

Arguments:
base (integer(1))
   Base of the entropy logarithm, default = 2 (Shannon entropy)
... Unused.

Method `mgf()`: The moment generating function is defined by

\[mgf_X(t) = E_x[exp(xt)]\]

where $X$ is the distribution and $E_X$ is the expectation of the distribution $X$.

Usage:
Logistic$mgf(t, ...)

Arguments:
t (integer(1))
   t integer to evaluate function at.
... Unused.

Method `cf()`: The characteristic function is defined by

\[cf_X(t) = E_x[exp(xt)]\]

where $X$ is the distribution and $E_X$ is the expectation of the distribution $X$.

Usage:
Logistic$cf(t, ...)

Arguments:
t (integer(1))
   t integer to evaluate function at.
... Unused.

Method `pgf()`: The probability generating function is defined by

\[pgf_X(z) = E_x[exp(zx)]\]

where $X$ is the distribution and $E_X$ is the expectation of the distribution $X$.

Usage:
Logistic$pgf(z, ...)

Arguments:
z (integer(1))
   z integer to evaluate probability generating function at.
LogisticKernel

Description
Mathematical and statistical functions for the LogisticKernel kernel defined by the pdf,

\[ f(x) = \left( \exp(x) + 2 + \exp(-x) \right)^{-1} \]

over the support \( x \in \mathbb{R} \).

Super classes
distr6::Distribution -> distr6::Kernel -> LogisticKernel

Public fields
name Full name of distribution.
short_name Short name of distribution for printing.
description Brief description of the distribution.
Methods

Public methods:
- LogisticKernel$new()
- LogisticKernel$pdfSquared2Norm()
- LogisticKernel$cdfSquared2Norm()
- LogisticKernel$variance()
- LogisticKernel$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
LogisticKernel$new(decorators = NULL)

Arguments:
- decorators (character())
  Decorators to add to the distribution during construction.

Method pdfSquared2Norm(): The squared 2-norm of the pdf is defined by
\[
\int_{a}^{b} (f_X(u))^2 du
\]
where X is the Distribution, \( f_X \) is its pdf and \( a, b \) are the distribution support limits.

Usage:
LogisticKernel$pdfSquared2Norm(x = 0, upper = Inf)

Arguments:
- x (numeric(1))
  Amount to shift the result.
- upper (numeric(1))
  Upper limit of the integral.

Method cdfSquared2Norm(): The squared 2-norm of the cdf is defined by
\[
\int_{a}^{b} (F_X(u))^2 du
\]
where X is the Distribution, \( F_X \) is its pdf and \( a, b \) are the distribution support limits.

Usage:
LogisticKernel$cdfSquared2Norm(x = 0, upper = 0)

Arguments:
- x (numeric(1))
  Amount to shift the result.
- upper (numeric(1))
  Upper limit of the integral.
Method variance(): The variance of a distribution is defined by the formula
\[ \text{var}_X = E[X^2] - E[X]^2 \]
where \( E_X \) is the expectation of distribution \( X \). If the distribution is multivariate the covariance matrix is returned.

Usage:
LogisticKernel$variance(...)

Arguments:
... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
LogisticKernel$clone(deep = FALSE)

Arguments:
deepl Whether to make a deep clone.

See Also
Other kernels: Cosine, Epanechnikov, NormalKernel, Quartic, Sigmoid, Silverman, TriangularKernel, Tricube, Triweight, UniformKernel

Loglogistic

Loglogistic Distribution Class

Description
Mathematical and statistical functions for the Log-Logistic distribution, which is commonly used in survival analysis for its non-monotonic hazard as well as in economics.

Details
The Log-Logistic distribution parameterised with shape, \( \beta \), and scale, \( \alpha \) is defined by the pdf,
\[ f(x) = (\beta/\alpha)(x/\alpha)^{\beta-1}(1 + (x/\alpha)^\beta)^{-2} \]
for \( \alpha, \beta > 0 \).

Value
Returns an R6 object inheriting from class SDistribution.

Distribution support
The distribution is supported on the non-negative Reals.
Default Parameterisation

LLogis(scale = 1, shape = 1)

Omitted Methods

N/A

Also known as

Also known as the Fisk distribution.

Super classes

distr6::Distribution -> distr6::SDistribution -> Loglogistic

Public fields

name Full name of distribution.
short_name Short name of distribution for printing.
description Brief description of the distribution.
packages Packages required to be installed in order to construct the distribution.

Methods

Public methods:

• Loglogistic$new()
• Loglogistic$mean()
• Loglogistic$mode()
• Loglogistic$median()
• Loglogistic$variance()
• Loglogistic$skewness()
• Loglogistic$kurtosis()
• Loglogistic$pgf()
• Loglogistic$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Loglogistic$new(scale = NULL, shape = NULL, rate = NULL, decorators = NULL)

Arguments:
scale (numeric(1))
    Scale parameter, defined on the positive Reals.
shape (numeric(1))
    Shape parameter, defined on the positive Reals.
rate (numeric(1))
    Alternate scale parameter, rate = 1/scale. If given then scale is ignored.
decorators (character())
Decorators to add to the distribution during construction.

**Method** `mean()`: The arithmetic mean of a (discrete) probability distribution $X$ is the expectation

$$E_X(X) = \sum p_X(x) \times x$$

with an integration analogue for continuous distributions.

**Usage:**
Loglogistic$mean(...)

**Arguments:**
... Unused.

**Method** `mode()`: The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

**Usage:**
Loglogistic$mode(which = "all")

**Arguments:**
which (character(1) | numeric(1)
Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies which mode to return.

**Method** `median()`: Returns the median of the distribution. If an analytical expression is available returns distribution median, otherwise if symmetric returns self$mean, otherwise returns self$quantile(0.5).

**Usage:**
Loglogistic$median()

**Method** `variance()`: The variance of a distribution is defined by the formula

$$\text{var}_X = E[X^2] - E[X]^2$$

where $E_X$ is the expectation of distribution $X$. If the distribution is multivariate the covariance matrix is returned.

**Usage:**
Loglogistic$variance(...)

**Arguments:**
... Unused.

**Method** `skewness()`: The skewness of a distribution is defined by the third standardised moment,

$$sk_X = E_X \left[ \frac{x - \mu}{\sigma}^3 \right]$$

where $E_X$ is the expectation of distribution $X$, $\mu$ is the mean of the distribution and $\sigma$ is the standard deviation of the distribution.

**Usage:**
Loglogistic$skewness(...)

*Arguments:*
... Unused.

**Method kurtosis():** The kurtosis of a distribution is defined by the fourth standardised moment,

\[ k_X = E_X \left[ \frac{x - \mu}{\sigma} \right]^4 \]

where \( E_X \) is the expectation of distribution \( X \), \( \mu \) is the mean of the distribution and \( \sigma \) is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

*Usage:*
Loglogistic$kurtosis(excess = TRUE, ...)

*Arguments:*
excess (logical(1))
  If TRUE (default) excess kurtosis returned.
... Unused.

**Method pgf():** The probability generating function is defined by

\[ pgf_X(z) = E_X[exp(z^x)] \]

where \( X \) is the distribution and \( E_X \) is the expectation of the distribution \( X \).

*Usage:*
Loglogistic$pgf(z, ...)

*Arguments:*

\[ z \] (integer(1))
  \( z \) integer to evaluate probability generating function at.
... Unused.

**Method clone():** The objects of this class are cloneable with this method.

*Usage:*
Loglogistic$clone(deep = FALSE)

*Arguments:*
deep Whether to make a deep clone.

**References**
Lognormal

See Also

Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral, ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechét, Gamma, Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Lognormal, MultivariateNormal, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical, Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechét, Gamma, Geometric, Gompertz, Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Lognormal, NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete

---

Lognormal

Log-Normal Distribution Class

Description

Mathematical and statistical functions for the Log-Normal distribution, which is commonly used to model many natural phenomena as a result of growth driven by small percentage changes.

Details

The Log-Normal distribution parameterised with logmean, \( \mu \), and logvar, \( \sigma \), is defined by the pdf,

\[
exp\left( -\frac{(\log(x) - \mu)^2}{2\sigma^2} \right) / \left( x\sigma \sqrt{2\pi} \right)
\]

for \( \mu \in \mathbb{R} \) and \( \sigma > 0 \).

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on the Positive Reals.

Default Parameterisation

Lnorm(meanlog = 0, varlog = 1)

Omitted Methods

N/A

Also known as

Also known as the Log-Gaussian distribution.
Super classes

distr6::Distribution -> distr6::SDistribution -> Lognormal

Public fields

ame Full name of distribution.
short_name Short name of distribution for printing.
description Brief description of the distribution.
packages Packages required to be installed in order to construct the distribution.

Methods

Public methods:

• Lognormal$new()
• Lognormal$mean()
• Lognormal$mode()
• Lognormal$median()
• Lognormal$variance()
• Lognormal$skewness()
• Lognormal$kurtosis()
• Lognormal$entropy()
• Lognormal$mgf()
• Lognormal$pgf()
• Lognormal$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Lognormal$new(
  meanlog = NULL,
  varlog = NULL,
  sdllog = NULL,
  precislog = NULL,
  mean = NULL,
  var = NULL,
  sd = NULL,
  precis = NULL,
  decorators = NULL
)

Arguments:

meanlog (numeric(1))
  Mean of the distribution on the log scale, defined on the Reals.
varlog (numeric(1))
  Variance of the distribution on the log scale, defined on the positive Reals.
Lognormal (numeric(1))

Standard deviation of the distribution on the log scale, defined on the positive Reals.

$$sdlog = varlog^2$$

. If preclog missing and sdlog given then all other parameters except meanlog are ignored.

preclog (numeric(1))

Precision of the distribution on the log scale, defined on the positive Reals.

$$preclog = 1/varlog$$

. If given then all other parameters except meanlog are ignored.

mean (numeric(1))

Mean of the distribution on the natural scale, defined on the positive Reals.

var (numeric(1))

Variance of the distribution on the natural scale, defined on the positive Reals.

$$var = (exp(var) - 1) * exp(2*meanlog + varlog)$$

sd (numeric(1))

Standard deviation of the distribution on the natural scale, defined on the positive Reals.

$$sd = var^2$$

. If prec missing and sd given then all other parameters except mean are ignored.

prec (numeric(1))

Precision of the distribution on the natural scale, defined on the Reals.

$$prec = 1/var$$

. If given then all other parameters except mean are ignored.

decorators (character())

Decorators to add to the distribution during construction.

Examples:
Lognormal$new(var = 2, mean = 1)
Lognormal$new(meanlog = 2, preclog = 5)

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

$$E_X(X) = \sum p_X(x) * x$$

with an integration analogue for continuous distributions.

Usage:
Lognormal$mean(...)

Arguments:
... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).
Usage:
Lognormal$mode(which = "all")

Arguments:
which (character(1) | numeric(1))
  Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies which mode to return.

... Unused.

Method median(): Returns the median of the distribution. If an analytical expression is available returns distribution median, otherwise if symmetric returns self$mean, otherwise returns self$quantile(0.5).

Usage:
Lognormal$median()

Method variance(): The variance of a distribution is defined by the formula

\[ \text{var}_X = E[X^2] - E[X]^2 \]

where \( E_X \) is the expectation of distribution \( X \). If the distribution is multivariate the covariance matrix is returned.

Usage:
Lognormal$variance(...)

Arguments:
... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised moment,

\[ \text{sk}_X = E_X \left[ \frac{x - \mu}{\sigma} \right]^3 \]

where \( E_X \) is the expectation of distribution \( X \), \( \mu \) is the mean of the distribution and \( \sigma \) is the standard deviation of the distribution.

Usage:
Lognormal$skewness(...)

Arguments:
... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised moment,

\[ k_X = E_X \left[ \frac{x - \mu}{\sigma} \right]^4 \]

where \( E_X \) is the expectation of distribution \( X \), \( \mu \) is the mean of the distribution and \( \sigma \) is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
Lognormal$kurtosis(excess = TRUE, ...)

Arguments:
excess (logical(1))
   If TRUE (default) excess kurtosis returned.
... Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

$$- \sum ( f_X ) \log( f_X )$$

where $f_X$ is the pdf of distribution $X$, with an integration analogue for continuous distributions.

Usage:
Lognormal$entropy(base = 2, ...)

Arguments:
base (integer(1))
   Base of the entropy logarithm, default = 2 (Shannon entropy)
... Unused.

Method mgf(): The moment generating function is defined by

$$mgf_X(t) = E_X[exp(tx)]$$

where $X$ is the distribution and $E_X$ is the expectation of the distribution $X$.

Usage:
Lognormal$mgf(t, ...)

Arguments:
t (integer(1))
   t integer to evaluate function at.
... Unused.

Method pgf(): The probability generating function is defined by

$$pgf_X(z) = E_X[exp(z^x)]$$

where $X$ is the distribution and $E_X$ is the expectation of the distribution $X$.

Usage:
Lognormal$pgf(z, ...)

Arguments:
z (integer(1))
   z integer to evaluate probability generating function at.
... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Lognormal$clone(deep = FALSE)

Arguments:
deept Whether to make a deep clone.
makeUniqueDistributions

**References**


**See Also**

Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral, ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, MultivariateNormal, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical, Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz, Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete

**Examples**

```r

Method 'Lognormal$new'

Lognormal$new(var = 2, mean = 1)
Lognormal$new(meanlog = 2, preclog = 5)
```

**Description**

Helper function to lapply over the given distribution list, and make the short_names unique.

**Usage**

```r
makeUniqueDistributions(distlist)
```

**Arguments**

- `distlist` list of Distributions.

**Details**

The short_names are made unique by suffixing each with a consecutive number so that the names are no longer duplicated.
**Value**

The list of inputted distributions except with the short_names manipulated as necessary to make them unique.

**Examples**

```r
makeUniqueDistributions(list(Binomial$new(), Binomial$new()))
```

---

**Description**

Wrapper used to construct a mixture of two or more distributions.

**Details**

A mixture distribution is defined by

\[
F_P(x) = w_1 F_{X_1}(x) \ast \cdots \ast w_n F_{X_N}(x)
\]

#nolint where \( F_P \) is the cdf of the mixture distribution, \( X_1, \ldots, X_N \) are independent distributions, and \( w_1, \ldots, w_N \) are weights for the mixture.

**Super classes**

```
distr6::Distribution -> distr6::DistributionWrapper -> distr6::VectorDistribution -> MixtureDistribution
```

**Methods**

**Public methods:**

- `MixtureDistribution$new()`
- `MixtureDistribution$strprint()`
- `MixtureDistribution$pdf()`
- `MixtureDistribution$cdf()`
- `MixtureDistribution$quantile()`
- `MixtureDistribution$rand()`
- `MixtureDistribution$clone()`

**Method new():** Creates a new instance of this R6 class.

*Usage:*
MixtureDistribution$new(
    distlist = NULL,
    weights = "uniform",
    distribution = NULL,
    params = NULL,
    shared_params = NULL,
    name = NULL,
    short_name = NULL,
    decorators = NULL,
    vecdist = NULL,
    ids = NULL
)

Arguments:
distlist (list())
    List of Distributions.
weights (character(1)|numeric())
    Weights to use in the resulting mixture. If all distributions are weighted equally then "uniform" provides a much faster implementation, otherwise a vector of length equal to the number of wrapped distributions, this is automatically scaled internally.
distribution (character(1))
    Should be supplied with params and optionally shared_params as an alternative to distlist. Much faster implementation when only one class of distribution is being wrapped. distribution is the full name of one of the distributions in listDistributions(), or "Distribution" if constructing custom distributions. See examples in VectorDistribution.
params (list()|data.frame())
    Parameters in the individual distributions for use with distribution. Can be supplied as a list, where each element is the list of parameters to set in the distribution, or as an object coercable to data.frame, where each column is a parameter and each row is a distribution. See examples in VectorDistribution.
shared_params (list())
    If any parameters are shared when using the distribution constructor, this provides a much faster implementation to list and query them together. See examples in VectorDistribution.
name (character(1))
    Optional name of wrapped distribution.
short_name (character(1))
    Optional short name/ID of wrapped distribution.
decorators (character())
    Decorators to add to the distribution during construction.
vecdist VectorDistribution
    Alternative constructor to directly create this object from an object inheriting from VectorDistribution.
ids (character())
    Optional ids for wrapped distributions in vector, should be unique and of same length as the number of distributions.

Examples:
MixtureDistribution

MixtureDistribution$new(list(Binomial$new(prob = 0.5, size = 10), Binomial$new()),
weights = c(0.2, 0.8)
)

**Method** strprint(): Printable string representation of the MixtureDistribution. Primarily used internally.

*Usage:*
MixtureDistribution$strprint(n = 10)

*Arguments:*
n (integer(1))
   Number of distributions to include when printing.

**Method** pdf(): Probability density function of the mixture distribution. Computed by

\[
    f_M(x) = \sum_i (f_i)(x) \ast w_i
\]

where \( w_i \) is the vector of weights and \( f_i \) are the pdfs of the wrapped distributions.

Note that as this class inherits from VectorDistribution, it is possible to evaluate the distributions at different points, but that this is not the usual use-case for mixture distributions.

*Usage:*
MixtureDistribution$pdf(..., log = FALSE, simplify = TRUE, data = NULL)

*Arguments:*
... (numeric())
   Points to evaluate the function at Arguments do not need to be named. The length of each argument corresponds to the number of points to evaluate, the number of arguments corresponds to the number of variables in the distribution. See examples.

log (logical(1))
   If TRUE returns the logarithm of the probabilities. Default is FALSE.

simplify logical(1)
   If TRUE (default) simplifies the return if possible to a numeric, otherwise returns a data.table::data.table.

data array
   Alternative method to specify points to evaluate. If univariate then rows correspond with number of points to evaluate and columns correspond with number of variables to evaluate. In the special case of VectorDistributions of multivariate distributions, then the third dimension corresponds to the distribution in the vector to evaluate.

*Examples:*
m <- MixtureDistribution$new(list(Binomial$new(prob = 0.5, size = 10), Binomial$new()),
weights = c(0.2, 0.8)
)
m$pdf(1:5)
m$pdf(1)
# also possible but unlikely to be used
m$pdf(1, 2)
Method cdf(): Cumulative distribution function of the mixture distribution. Computed by

\[ F_M(x) = \sum_i (F_i)(x) \times w_i \]

where \( w_i \) is the vector of weights and \( F_i \) are the cdfs of the wrapped distributions.

Usage:
MixtureDistribution$cdf(
  ..., 
  lower.tail = TRUE, 
  log.p = FALSE, 
  simplify = TRUE, 
  data = NULL
)

Arguments:
  ... (numeric())
  Points to evaluate the function at Arguments do not need to be named. The length of each argument corresponds to the number of points to evaluate, the number of arguments corresponds to the number of variables in the distribution. See examples.

  m <- MixtureDistribution$new(list(Binomial$new(prob = 0.5, size = 10), Binomial$new()), weights = c(0.2, 0.8) )
  m$cdf(1:5)

lower.tail (logical(1))
  If TRUE (default), probabilities are \( X \leq x \), otherwise, \( P(X > x) \).

log.p (logical(1))
  If TRUE returns the logarithm of the probabilities. Default is FALSE.

simplify logical(1)
  If TRUE (default) simplifies the return if possible to a numeric, otherwise returns a data.table::data.table.

data array
  Alternative method to specify points to evaluate. If univariate then rows correspond with number of points to evaluate and columns correspond with number of variables to evaluate. In the special case of VectorDistributions of multivariate distributions, then the third dimension corresponds to the distribution in the vector to evaluate.

Method quantile(): The quantile function is not implemented for mixture distributions.

Usage:
MixtureDistribution$quantile(
  ..., 
  lower.tail = TRUE, 
  log.p = FALSE, 
  simplify = TRUE, 
  data = NULL
)

Arguments:
  ... (numeric())
  Points to evaluate the function at Arguments do not need to be named. The length of each argument corresponds to the number of points to evaluate, the number of arguments corresponds to the number of variables in the distribution. See examples.
lower.tail (logical(1))
  If TRUE (default), probabilities are \( X \leq x \), otherwise, \( P(X > x) \).

log.p (logical(1))
  If TRUE returns the logarithm of the probabilities. Default is FALSE.

simplify logical(1)
  If TRUE (default) simplifies the return if possible to a numeric, otherwise returns a data.table::data.table.

data array
  Alternative method to specify points to evaluate. If univariate then rows correspond with
  number of points to evaluate and columns correspond with number of variables to evaluate.
  In the special case of VectorDistributions of multivariate distributions, then the third
  dimension corresponds to the distribution in the vector to evaluate.

Method rand(): Simulation function for mixture distributions. Samples are drawn from a
mixture by first sampling Multinomial(probs = weights, size = n), then sampling each distribution
according to the samples from the Multinomial, and finally randomly permuting these draws.

Usage:
MixtureDistribution$rand(n, simplify = TRUE)

Arguments:
  n (numeric(1))
    Number of points to simulate from the distribution. If length greater than 1, then n <-length(n),
  simplify logical(1)
    If TRUE (default) simplifies the return if possible to a numeric, otherwise returns a data.table::data.table.

Examples:
m <- MixtureDistribution$new(distribution = "Normal",
  params = data.frame(mean = 1:2, sd = 1))
m$rand(5)

Method clone(): The objects of this class are cloneable with this method.

Usage:
MixtureDistribution$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Other wrappers: Convolution, DistributionWrapper, HuberizedDistribution, ProductDistribution,
TruncatedDistribution, VectorDistribution

Examples

## ------------------------------------------------
## Method /grave.Var
MixtureDistribution$new
## ------------------------------------------------
MixtureDistribution$new(list(Binomial$new(prob = 0.5, size = 10), Binomial$new()),
weights = c(0.2, 0.8)
mixturiseVector

Create Mixture Distribution From Multiple Vectors

Description

Given m vector distributions of length N, creates a single vector distribution consisting of n mixture distributions mixing the m vectors.

Usage

mixturiseVector(vecdists, weights = "uniform")

Arguments

vecdists  
(list())  
List of VectorDistributions, should be of same length and with the non-‘distlist’ constructor with the same distribution.

weights  
(character(1)|numeric())  
Weights passed to MixtureDistribution. Default uniform weighting.

Details

Let \( v_1 = (D_{11}, D_{12}, ..., D_{1N}) \) and \( v_2 = (D_{21}, D_{22}, ..., D_{2N}) \) then the mixturiseVector function creates the vector distribution \( v_3 = (D_{31}, D_{32}, ..., D_{3N}) \) where \( D_{3N} = m(D_{1N}, D_{2N}, wN) \) where \( m \) is a mixture distribution with weights \( wN \).
Multinomial 183

Examples

```r
Not run:
v1 <- VectorDistribution$new(distribution = "Binomial", params = data.frame(size = 1:2))
v2 <- VectorDistribution$new(distribution = "Binomial", params = data.frame(size = 3:4))
mv1 <- mixturiseVector(list(v1, v2))

equivalently
mv2 <- VectorDistribution$new(list(
 MixtureDistribution$new(distribution = "Binomial", params = data.frame(size = c(1, 3))),
 MixtureDistribution$new(distribution = "Binomial", params = data.frame(size = c(2, 4)))
))

mv1$pdf(1:5)
mv2$pdf(1:5)

End(Not run)
```

Multinominal Distribution Class

Description

Mathematical and statistical functions for the Multinomial distribution, which is commonly used to extend the binomial distribution to multiple variables, for example to model the rolls of multiple dice multiple times.

Details

The Multinomial distribution parameterised with number of trials, \( n \), and probabilities of success, \( p_1, ..., p_k \), is defined by the pmf,

\[
f(x_1, x_2, ..., x_k) = \frac{n!}{x_1! \times x_2! \times ... \times x_k!} \times p_1^{x_1} \times p_2^{x_2} \times ... \times p_k^{x_k}
\]

for \( p_i, i = 1, ..., k; \sum p_i = 1 \) and \( n = 1, 2, ... \).

Value

Returns an R6 object inheriting from class \texttt{SDistribution}.

Distribution support

The distribution is supported on \( \sum x_i = N \).

Default Parameterisation

\texttt{Multinom(size = 10, probs = c(0.5, 0.5))}
Omitted Methods

cdf and quantile are omitted as no closed form analytic expression could be found, decorate with FunctionImputation for a numerical imputation.

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> Multinomial

Public fields

name  Full name of distribution.
short_name  Short name of distribution for printing.
description  Brief description of the distribution.
packages  Packages required to be installed in order to construct the distribution.

Active bindings

properties  Returns distribution properties, including skewness type and symmetry.

Methods

Public methods:

• Multinomial$new()
• Multinomial$mean()
• Multinomial$variance()
• Multinomial$skewness()
• Multinomial$kurtosis()
• Multinomial$entropy()
• Multinomial$mgf()
• Multinomial$cf()
• Multinomial$pgf()
• Multinomial$setParameterValue()
• Multinomial$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Multinomial$new(size = NULL, probs = NULL, decorators = NULL)

Arguments:
size (integer(1))
  Number of trials, defined on the positive Naturals.
Multinomial

probs (numeric())
Vector of probabilities. Automatically normalised by probs = probs/sum(probs).
decorators (character())
Decorators to add to the distribution during construction.

**Method** `mean()`: The arithmetic mean of a (discrete) probability distribution \( X \) is the expectation

\[
E_X(X) = \sum p_X(x) \times x
\]

with an integration analogue for continuous distributions.

**Usage:**
`Multinomial$mean(...)`

**Arguments:**
... Unused.

**Method** `variance()`: The variance of a distribution is defined by the formula

\[
\text{var}_X = E[X^2] - E[X]^2
\]

where \( E_X \) is the expectation of distribution \( X \). If the distribution is multivariate the covariance matrix is returned.

**Usage:**
`Multinomial$variance(...)`

**Arguments:**
... Unused.

**Method** `skewness()`: The skewness of a distribution is defined by the third standardised moment,

\[
\text{sk}_X = E_X\left[\frac{x - \mu^3}{\sigma}\right]
\]

where \( E_X \) is the expectation of distribution \( X \), \( \mu \) is the mean of the distribution and \( \sigma \) is the standard deviation of the distribution.

**Usage:**
`Multinomial$skewness(...)`

**Arguments:**
... Unused.

**Method** `kurtosis()`: The kurtosis of a distribution is defined by the fourth standardised moment,

\[
k_X = E_X\left[\frac{x - \mu^4}{\sigma}\right]
\]

where \( E_X \) is the expectation of distribution \( X \), \( \mu \) is the mean of the distribution and \( \sigma \) is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

**Usage:**
`Multinomial$kurtosis(excess = TRUE, ...)`

**Arguments:**
excess (logical(1))
   If TRUE (default) excess kurtosis returned.
... Unused.

**Method entropy()**: The entropy of a (discrete) distribution is defined by

\[- \sum (f_X) \log(f_X)\]

where \(f_X\) is the pdf of distribution \(X\), with an integration analogue for continuous distributions.

*Usage:*

Multinomial$entropy(base = 2, ...)

*Arguments:*

base (integer(1))
   Base of the entropy logarithm, default = 2 (Shannon entropy)
... Unused.

**Method mgf()**: The moment generating function is defined by

\[mgf_X(t) = E_X[exp(xt)]\]

where \(X\) is the distribution and \(E_X\) is the expectation of the distribution \(X\).

*Usage:*

Multinomial$mgf(t, ...)

*Arguments:*

t (integer(1))
   t integer to evaluate function at.
... Unused.

**Method cf()**: The characteristic function is defined by

\[cf_X(t) = E_X[exp(x\pi)]\]

where \(X\) is the distribution and \(E_X\) is the expectation of the distribution \(X\).

*Usage:*

Multinomial$cf(t, ...)

*Arguments:*

t (integer(1))
   t integer to evaluate function at.
... Unused.

**Method pgf()**: The probability generating function is defined by

\[pgf_X(z) = E_X[exp(z^x)]\]

where \(X\) is the distribution and \(E_X\) is the expectation of the distribution \(X\).

*Usage:*

Multinomial$pgf(z, ...
Multinomial

Arguments:
z (integer(1))
  z integer to evaluate probability generating function at.
  ... Unused.

Method `setParameterValue()`: Sets the value(s) of the given parameter(s).

Usage:
Multinomial$setParameterValue(
  ..., 
  lst = list(...),
  error = "warn",
  resolveConflicts = FALSE
)

Arguments:
  ... ANY
    Named arguments of parameters to set values for. See examples.
  lst (list(1))
    Alternative argument for passing parameters. List names should be parameter names and list values are the new values to set.
  error (character(1))
    If "warn" then returns a warning on error, otherwise breaks if "stop".
  resolveConflicts (logical(1))
    If FALSE (default) throws error if conflicting parameterisations are provided, otherwise automatically resolves them by removing all conflicting parameters.

Method `clone()`: The objects of this class are cloneable with this method.

Usage:
Multinomial$clone(deep = FALSE)

Arguments:
  deep Whether to make a deep clone.

References


See Also

Other discrete distributions: Bernoulli, Binomial, Categorical, Degenerate, DiscreteUniform, EmpiricalMV, Empirical, Geometric, Hypergeometric, Logarithmic, NegativeBinomial, WeightedDiscrete

Other multivariate distributions: Dirichlet, EmpiricalMV, MultivariateNormal
MultivariateNormal  Multivariate Normal Distribution Class

Description

Mathematical and statistical functions for the Multivariate Normal distribution, which is commonly used to generalise the Normal distribution to higher dimensions, and is commonly associated with Gaussian Processes.

Details

The Multivariate Normal distribution parameterised with mean, \( \mu \), and covariance matrix, \( \Sigma \), is defined by the pdf,

\[
f(x_1, \ldots, x_k) = \left(2 \pi \right)^{-k/2} \det(\Sigma)^{-1/2} \exp\left(-1/2(x - \mu)^T \Sigma^{-1}(x - \mu)\right)
\]

for \( \mu \in \mathbb{R}^k \) and \( \Sigma \in \mathbb{R}^{k \times k} \).

Sampling is performed via the Cholesky decomposition using \( \text{chol} \).

Number of variables cannot be changed after construction.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on the Reals and only when the covariance matrix is positive-definite.

Default Parameterisation

\[
\text{MultiNorm}(\text{mean} = \text{rep}(0, 2), \text{cov} = \text{c}(1, 0, 0, 1))
\]

Omitted Methods

\( \text{cdf} \) and \( \text{quantile} \) are omitted as no closed form analytic expression could be found, decorate with \( \text{FunctionImputation} \) for a numerical imputation.

Also known as

N/A

Super classes

\[
\text{distr6::Distribution} \rightarrow \text{distr6::SDistribution} \rightarrow \text{MultivariateNormal}
\]
Public fields

- name: Full name of distribution.
- short_name: Short name of distribution for printing.
- description: Brief description of the distribution.

Active bindings

- properties: Returns distribution properties, including skewness type and symmetry.

Methods

Public methods:

- MultivariateNormal$new()
- MultivariateNormal$mean()
- MultivariateNormal$mode()
- MultivariateNormal$variance()
- MultivariateNormal$entropy()
- MultivariateNormal$mgf()
- MultivariateNormal$cf()
- MultivariateNormal$pgf()
- MultivariateNormal$getParameterValue()
- MultivariateNormal$setParameterValue()
- MultivariateNormal$clone()

Method new(): Creates a new instance of this R6 class. Number of variables cannot be changed after construction.

Usage:
MultivariateNormal$new(
  mean = rep(0, 2),
  cov = c(1, 0, 0, 1),
  prec = NULL,
  decorators = NULL
)

Arguments:

- mean (numeric()): Vector of means, defined on the Reals.
- cov (matrix()|vector()): Covariance of the distribution, either given as a matrix or vector coerced to a matrix via matrix(cov,nrow = K,byrow = FALSE). Must be semi-definite.
- prec (matrix()|vector()): Precision of the distribution, inverse of the covariance matrix. If supplied then cov is ignored. Given as a matrix or vector coerced to a matrix via matrix(cov,nrow = K,byrow = FALSE). Must be semi-definite.
- decorators (character()): Decorators to add to the distribution during construction.
**Method** `mean()`: The arithmetic mean of a (discrete) probability distribution `X` is the expectation

\[ E_X(X) = \sum p_X(x) * x \]

with an integration analogue for continuous distributions.

*Usage:*

`MultivariateNormal$mean(...)`

*Arguments:*

... Unused.

**Method** `mode()`: The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

*Usage:*

`MultivariateNormal$mode(which = "all")`

*Arguments:*

`which` (character(1) | numeric(1))

Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies which mode to return.

**Method** `variance()`: The variance of a distribution is defined by the formula

\[ var_X = E[X^2] - E[X]^2 \]

where `E_X` is the expectation of distribution `X`. If the distribution is multivariate the covariance matrix is returned.

*Usage:*

`MultivariateNormal$variance(...)`

*Arguments:*

... Unused.

**Method** `entropy()`: The entropy of a (discrete) distribution is defined by

\[ -\sum (f_X) \log(f_X) \]

where `f_X` is the pdf of distribution `X`, with an integration analogue for continuous distributions.

*Usage:*

`MultivariateNormal$entropy(base = 2, ...)`

*Arguments:*

`base` (integer(1))

Base of the entropy logarithm, default = 2 (Shannon entropy)

... Unused.

**Method** `mgf()`: The moment generating function is defined by

\[ mgf_X(t) = E_X[exp(xt)] \]

where `X` is the distribution and `E_X` is the expectation of the distribution `X`. 

```r
MultivariateNormal$mean()
MultivariateNormal$mode(which = "all")
MultivariateNormal$variance()
MultivariateNormal$entropy(base = 2, ...)
MultivariateNormal$mgf()
```
Usage:
MultivariateNormal$mgf(t, ...)

Arguments:
t (integer(1))
  t integer to evaluate function at.
... Unused.

Method cf(): The characteristic function is defined by
\[ cf_X(t) = E_X[exp(x t_i)] \]
where X is the distribution and \( E_X \) is the expectation of the distribution X.

Usage:
MultivariateNormal$cf(t, ...)

Arguments:
t (integer(1))
  t integer to evaluate function at.
... Unused.

Method pgf(): The probability generating function is defined by
\[ pgf_X(z) = E_X[exp(z^t)] \]
where X is the distribution and \( E_X \) is the expectation of the distribution X.

Usage:
MultivariateNormal$pgf(z, ...)

Arguments:
z (integer(1))
  z integer to evaluate probability generating function at.
... Unused.

Method getParameterValue(): Returns the value of the supplied parameter.

Usage:
MultivariateNormal$getParameterValue(id, error = "warn")

Arguments:
id character()
  id of parameter support to return.
error (character(1))
  If "warn" then returns a warning on error, otherwise breaks if "stop".

Method setParameterValue(): Sets the value(s) of the given parameter(s).

Usage:
MultivariateNormal$setParameterValue(
  ..., 
  lst = list(...), 
  error = "warn", 
  resolveConflicts = FALSE 
)
NegativeBinomial

Arguments:

... ANY
Named arguments of parameters to set values for. See examples.

lst (list(1))
Alternative argument for passing parameters. List names should be parameter names and
list values are the new values to set.

error (character(1))
If "warn" then returns a warning on error, otherwise breaks if "stop".

resolveConflicts (logical(1))
If FALSE (default) throws error if conflicting parameterisations are provided, otherwise au-
tomatically resolves them by removing all conflicting parameters.

Method clone(): The objects of this class are cloneable with this method.

Usage:
MultivariateNormal$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References


See Also

Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral, 
ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution, 
Frechet, Gamma, Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal, 
Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, 
Triangular, Uniform, Wald, Weibull 

Other multivariate distributions: Dirichlet, EmpiricalMV, Multinomial 

NegativeBinomial

Negative Binomial Distribution Class

Description

Mathematical and statistical functions for the Negative Binomial distribution, which is commonly 
used to model the number of successes, trials or failures before a given number of failures or suc-
cesses.
Details

The Negative Binomial distribution parameterised with number of failures before successes, \( n \), and probability of success, \( p \), is defined by the pmf,

\[
f(x) = C(x + n - 1, n - 1)p^n(1 - p)^x
\]

for \( n = 0, 1, 2, \ldots \) and probability \( p \), where \( C(a, b) \) is the combination (or binomial coefficient) function.

The Negative Binomial distribution can refer to one of four distributions (forms):

1. The number of failures before \( K \) successes (fbs)
2. The number of successes before \( K \) failures (sbf)
3. The number of trials before \( K \) failures (tbf)
4. The number of trials before \( K \) successes (tbs)

For each we refer to the number of \( K \) successes/failures as the size parameter.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on 0, 1, 2, \ldots \) (for fbs and sbf) or \( n, n + 1, n + 2, \ldots \) (for tbf and tbs) (see below).

Default Parameterisation

\[
\text{NBinom(size = 10, prob = 0.5, form = "fbs")}
\]

Omitted Methods

N/A

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> NegativeBinomial

Public fields

name  Full name of distribution.
short_name  Short name of distribution for printing.
description  Brief description of the distribution.
packages  Packages required to be installed in order to construct the distribution.
Active bindings

properties  Returns distribution properties, including skewness type and symmetry.

Methods

Public methods:

• NegativeBinomial$new()
• NegativeBinomial$mean()
• NegativeBinomial$mode()
• NegativeBinomial$variance()
• NegativeBinomial$skewness()
• NegativeBinomial$kurtosis()
• NegativeBinomial$mgf()
• NegativeBinomial$cf()
• NegativeBinomial$pgf()
• NegativeBinomial$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
NegativeBinomial$new(
  size = NULL,
  prob = NULL,
  qprob = NULL,
  mean = NULL,
  form = NULL,
  decorators = NULL
)

Arguments:
size (integer(1))
  Number of trials/successes.
prob (numeric(1))
  Probability of success.
qprob (numeric(1))
  Probability of failure. If provided then prob is ignored. qprob = 1 -prob.
mean (numeric(1))
  Mean of distribution, alternative to prob and qprob.
form character(1))
  Form of the distribution, cannot be changed after construction. Options are to model the number of,
  • "fbs" - Failures before successes.
  • "sbf" - Successes before failures.
  • "tbf" - Trials before failures.
  • "tbs" - Trials before successes. Use $description to see the Negative Binomial form.
decorators (character())
  Decorators to add to the distribution during construction.
Method mean(): The arithmetic mean of a (discrete) probability distribution \( X \) is the expectation

\[
E_X(X) = \sum p_X(x) \cdot x
\]

with an integration analogue for continuous distributions.

Usage:
NegativeBinomial$mean(...)

Arguments:
... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
NegativeBinomial$mode(which = "all")

Arguments:
which (character(1) | numeric(1))
    Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies which mode to return.

Method variance(): The variance of a distribution is defined by the formula

\[
\text{var}_X = E[X^2] - E[X]^2
\]

where \( E_X \) is the expectation of distribution \( X \). If the distribution is multivariate the covariance matrix is returned.

Usage:
NegativeBinomial$variance(...)

Arguments:
... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised moment,

\[
sk_X = E_X\left[\frac{x - \mu}{\sigma}\right]^3
\]

where \( E_X \) is the expectation of distribution \( X \), \( \mu \) is the mean of the distribution and \( \sigma \) is the standard deviation of the distribution.

Usage:
NegativeBinomial$skewness(...)

Arguments:
... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised moment,

\[
k_X = E_X\left[\frac{x - \mu}{\sigma}\right]^4
\]

where \( E_X \) is the expectation of distribution \( X \), \( \mu \) is the mean of the distribution and \( \sigma \) is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.
Usage:
NegativeBinomial$kurtosis(excess = TRUE, ...)

Arguments:
excess (logical(1))
   If TRUE (default) excess kurtosis returned.
   ... Unused.

Method mgf(): The moment generating function is defined by

$$mgf_X(t) = E_X[exp(\lambda t)]$$

where X is the distribution and $E_X$ is the expectation of the distribution X.

Usage:
NegativeBinomial$mgf(t, ...)

Arguments:
t (integer(1))
   t integer to evaluate function at.
   ... Unused.

Method cf(): The characteristic function is defined by

$$cf_X(t) = E_X[exp(\lambda ti)]$$

where X is the distribution and $E_X$ is the expectation of the distribution X.

Usage:
NegativeBinomial$cf(t, ...)

Arguments:
t (integer(1))
   t integer to evaluate function at.
   ... Unused.

Method pgf(): The probability generating function is defined by

$$pgf_X(z) = E_X[exp(zx)]$$

where X is the distribution and $E_X$ is the expectation of the distribution X.

Usage:
NegativeBinomial$pgf(z, ...)

Arguments:
z (integer(1))
   z integer to evaluate probability generating function at.
   ... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
NegativeBinomial$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.
Normal

References


See Also

Other discrete distributions: Bernoulli, Binomial, Categorical, Degenerate, DiscreteUniform, EmpiricalMV, Empirical, Geometric, Hypergeometric, Logarithmic, Multinomial, WeightedDiscrete

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical, Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz, Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete

Normal Distribution Class

Description

Mathematical and statistical functions for the Normal distribution, which is commonly used in significance testing, for representing models with a bell curve, and as a result of the central limit theorem.

Details

The Normal distribution parameterised with variance, $\sigma^2$, and mean, $\mu$, is defined by the pdf,

$$f(x) = \exp\left(-\frac{(x - \mu)^2}{2\sigma^2}\right) / \sqrt{2\pi\sigma^2}$$

for $\mu \in \mathbb{R}$ and $\sigma^2 > 0$.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on the Reals.

Default Parameterisation

Norm(mean = 0, var = 1)

Omitted Methods

N/A
Also known as

Also known as the Gaussian distribution.

Super classes

distr6::Distribution -> distr6::SDistribution -> Normal

Public fields

name  Full name of distribution.
short_name  Short name of distribution for printing.
description  Brief description of the distribution.
packages  Packages required to be installed in order to construct the distribution.

Methods

Public methods:

• Normal$new()
• Normal$mean()
• Normal$mode()
• Normal$variance()
• Normal$skewness()
• Normal$kurtosis()
• Normal$entropy()
• Normal$mgf()
• Normal$cf()
• Normal$pgf()
• Normal$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Normal$new(mean = NULL, var = NULL, sd = NULL, prec = NULL, decorators = NULL)

Arguments:
mean  numeric(1)
  Mean of the distribution, defined on the Reals.
var  numeric(1)
  Variance of the distribution, defined on the positive Reals.
sd  numeric(1)
  Standard deviation of the distribution, defined on the positive Reals. sd = sqrt(var). If provided then var ignored.
prec  numeric(1)
  Precision of the distribution, defined on the positive Reals. prec = 1/var. If provided then var ignored.
decorators  character()
  Decorators to add to the distribution during construction.
Method `mean()`: The arithmetic mean of a (discrete) probability distribution $X$ is the expectation

$$E_X(X) = \sum p_X(x) \cdot x$$

with an integration analogue for continuous distributions.

Usage:
Normal$mean(...)

Arguments:
... Unused.

Method `mode()`: The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
Normal$mode(which = "all")

Arguments:
which (character(1) | numeric(1)
Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies which mode to return.

Method `variance()`: The variance of a distribution is defined by the formula

$$\text{var}_X = E[X^2] - E[X]^2$$

where $E_X$ is the expectation of distribution $X$. If the distribution is multivariate the covariance matrix is returned.

Usage:
Normal$variance(...)

Arguments:
... Unused.

Method `skewness()`: The skewness of a distribution is defined by the third standardised moment,

$$sk_X = E_X\left[ \frac{x - \mu^3}{\sigma} \right]$$

where $E_X$ is the expectation of distribution $X$, $\mu$ is the mean of the distribution and $\sigma$ is the standard deviation of the distribution.

Usage:
Normal$skewness(...)

Arguments:
... Unused.

Method `kurtosis()`: The kurtosis of a distribution is defined by the fourth standardised moment,

$$k_X = E_X\left[ \frac{x - \mu^4}{\sigma} \right]$$

where $E_X$ is the expectation of distribution $X$, $\mu$ is the mean of the distribution and $\sigma$ is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.
Usage:
Normal$kurtosis(excess = TRUE, ...)

Arguments:
excess (logical(1))
    If TRUE (default) excess kurtosis returned.
... Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

\[- \sum (f_X)\log(f_X)\]

where \( f_X \) is the pdf of distribution \( X \), with an integration analogue for continuous distributions.

Usage:
Normal$entropy(base = 2, ...)

Arguments:
base (integer(1))
    Base of the entropy logarithm, default = 2 (Shannon entropy)
... Unused.

Method mgf(): The moment generating function is defined by

\[ mgf_X(t) = E_X[exp(xt)] \]

where \( X \) is the distribution and \( E_X \) is the expectation of the distribution \( X \).

Usage:
Normal$mgf(t, ...)

Arguments:
t (integer(1))
    t integer to evaluate function at.
... Unused.

Method cf(): The characteristic function is defined by

\[ cf_X(t) = E_X[exp(xti)] \]

where \( X \) is the distribution and \( E_X \) is the expectation of the distribution \( X \).

Usage:
Normal$cf(t, ...)

Arguments:
t (integer(1))
    t integer to evaluate function at.
... Unused.

Method pgf(): The probability generating function is defined by

\[ pgf_X(z) = E_X[exp(z^x)] \]

where \( X \) is the distribution and \( E_X \) is the expectation of the distribution \( X \).
Usage:
Normal$pgf(z, ...)

Arguments:
z (integer(1))
  z integer to evaluate probability generating function at.
... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Normal$clone(deep = FALSE)

Arguments:
  deep Whether to make a deep clone.

References
Michael P. McLaughlin.

See Also
Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral, ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal, MultivariateNormal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull
Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical, Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz, Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal, NegativeBinomial, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete

NormalKernel

Normal Kernel

Description
Mathematical and statistical functions for the NormalKernel kernel defined by the pdf,

\[ f(x) = \exp(-x^2/2)/\sqrt{2\pi} \]

over the support \( x \in \mathbb{R} \).

Details
We use the \( \text{erf} \) and \( \text{erfinv} \) error and inverse error functions from \texttt{pracma}.
Super classes

\texttt{distr6::Distribution} -> \texttt{distr6::Kernel} -> \texttt{NormalKernel}

Public fields

\begin{itemize}
\item name Full name of distribution.
\item short\_name Short name of distribution for printing.
\item description Brief description of the distribution.
\item packages Packages required to be installed in order to construct the distribution.
\end{itemize}

Methods

Public methods:

- \texttt{NormalKernel\$new()}
- \texttt{NormalKernel\$pdfSquared2Norm()}
- \texttt{NormalKernel\$variance()}
- \texttt{NormalKernel\$clone()}

Method \texttt{new()}: Creates a new instance of this \texttt{R6} class.

\texttt{Usage:}
\texttt{NormalKernel\$new(decorators = NULL)}

\texttt{Arguments:}
\texttt{decorators (character())}
Decorators to add to the distribution during construction.

Method \texttt{pdfSquared2Norm()}: The squared 2-norm of the pdf is defined by

\[
\int_{a}^{b} (f_X(u))^2 \, du
\]

where \(X\) is the Distribution, \(f_X\) is its pdf and \(a, b\) are the distribution support limits.

\texttt{Usage:}
\texttt{NormalKernel\$pdfSquared2Norm(x = 0, upper = Inf)}

\texttt{Arguments:}
\texttt{x (numeric(1))}
Amount to shift the result.
\texttt{upper (numeric(1))}
Upper limit of the integral.

Method \texttt{variance()}: The variance of a distribution is defined by the formula

\[
var_X = E[X^2] - E[X]^2
\]

where \(E_X\) is the expectation of distribution \(X\). If the distribution is multivariate the covariance matrix is returned.

\texttt{Usage:}
NormalKernel$variance(...)  
**Arguments:**  
... Unused.

**Method** `clone()`: The objects of this class are cloneable with this method.  
**Usage:**  
NormalKernel$clone(deep = FALSE)  
**Arguments:**  
`deep` Whether to make a deep clone.

**See Also**

Other kernels: Cosine, Epanechnikov, LogisticKernel, Quartic, Sigmoid, Silverman, TriangularKernel, Tricube, Triweight, UniformKernel

---

### Description

Mathematical and statistical functions for the Pareto distribution, which is commonly used in Economics to model the distribution of wealth and the 80-20 rule.

### Details

The Pareto distribution parameterised with shape, $\alpha$, and scale, $\beta$, is defined by the pdf,

$$f(x) = \frac{\alpha \beta^\alpha}{x^{\alpha+1}}$$

for $\alpha, \beta > 0$.

Currently this is implemented as the Type I Pareto distribution, other types will be added in the future. Characteristic function is omitted as no suitable incomplete gamma function with complex inputs implementation could be found.

### Value

Returns an R6 object inheriting from class `SDistribution`.

### Distribution support

The distribution is supported on $[\beta, \infty)$.

### Default Parameterisation

```
Pareto(shape = 1, scale = 1)
```
Omitted Methods
N/A

Also known as
N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> Pareto

Public fields

name  Full name of distribution.
short_name  Short name of distribution for printing.
description  Brief description of the distribution.
packages  Packages required to be installed in order to construct the distribution.

Active bindings

properties  Returns distribution properties, including skewness type and symmetry.

Methods

Public methods:

- Pareto$new()
- Pareto$mean()
- Pareto$mode()
- Pareto$median()
- Pareto$variance()
- Pareto$skewness()
- Pareto$kurtosis()
- Pareto$entropy()
- Pareto$mgf()
- Pareto$pgf()
- Pareto$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Pareto$new(shape = NULL, scale = NULL, decorators = NULL)

Arguments:
shape (numeric(1))
  Shape parameter, defined on the positive Reals.
scale (numeric(1))
  Scale parameter, defined on the positive Reals.
decorators (character())
Decorators to add to the distribution during construction.

Method mean(): The arithmetic mean of a (discrete) probability distribution \( X \) is the expectation

\[
E_X(X) = \sum p_X(x) * x
\]

with an integration analogue for continuous distributions.

Usage:
Pareto$mean(...)

Arguments:
... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
Pareto$mode(which = "all")

Arguments:
which (character(1) | numeric(1))
  Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies which mode to return.

Method median(): Returns the median of the distribution. If an analytical expression is available returns distribution median, otherwise if symmetric returns self$mean, otherwise returns self$quantile(0.5).

Usage:
Pareto$median()

Method variance(): The variance of a distribution is defined by the formula

\[
var_X = E[X^2] - E[X]^2
\]

where \( E_X \) is the expectation of distribution \( X \). If the distribution is multivariate the covariance matrix is returned.

Usage:
Pareto$variance(...)

Arguments:
... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised moment,

\[
sk_X = E_X \left[ \frac{x - \mu}{\sigma} \right]^3
\]

where \( E_X \) is the expectation of distribution \( X \), \( \mu \) is the mean of the distribution and \( \sigma \) is the standard deviation of the distribution.

Usage:
Pareto$skewness(...)

Arguments:
... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised moment,

\[ k_X = E_X \left[ \frac{x - \mu}{\sigma} \right]^4 \]

where \( E_X \) is the expectation of distribution \( X \), \( \mu \) is the mean of the distribution and \( \sigma \) is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
Pareto$kurtosis(excess = TRUE, ...)

Arguments:
excess (logical(1))
  If TRUE (default) excess kurtosis returned.
... Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

\[ -\sum (f_X) \log(f_X) \]

where \( f_X \) is the pdf of distribution \( X \), with an integration analogue for continuous distributions.

Usage:
Pareto$entropy(base = 2, ...)

Arguments:
base (integer(1))
  Base of the entropy logarithm, default = 2 (Shannon entropy)
... Unused.

Method mgf(): The moment generating function is defined by

\[ mgf_X(t) = E_X[exp(xt)] \]

where \( X \) is the distribution and \( E_X \) is the expectation of the distribution \( X \).

Usage:
Pareto$mgf(t, ...)

Arguments:
t (integer(1))
  t integer to evaluate function at.
... Unused.

Method pgf(): The probability generating function is defined by

\[ pgf_X(z) = E_X[exp(zx)] \]

where \( X \) is the distribution and \( E_X \) is the expectation of the distribution \( X \).
### Usage:
```
Pareto$pgf(z, ...)```

Arguments:
- `z` (integer(1))
 - `z` integer to evaluate probability generating function at.
- `...` Unused.

Method `clone()`:
The objects of this class are cloneable with this method.

Usage:
```
Pareto$clone(deep = FALSE)```

### Arguments:
- `deep` Whether to make a deep clone.

### References

### See Also
- Other continuous distributions: `Arcsine`, `BetaNoncentral`, `Beta`, `Cauchy`, `ChiSquaredNoncentral`, `ChiSquared`, `Dirichlet`, `Erlang`, `Exponential`, `FDistributionNoncentral`, `FDistribution`, `Frechet`, `Gamma`, `Gompertz`, `Gumbel`, `InverseGamma`, `Laplace`, `Logistic`, `Loglogistic`, `Lognormal`, `MultivariateNormal`, `Normal`, `Poisson`, `Rayleigh`, `ShiftedLoglogistic`, `StudentTNoncentral`, `StudentT`, `Triangular`, `Uniform`, `Wald`, `Weibull`
- Other univariate distributions: `Arcsine`, `Bernoulli`, `BetaNoncentral`, `Beta`, `Binomial`, `Categorical`, `Cauchy`, `ChiSquaredNoncentral`, `ChiSquared`, `Degenerate`, `DiscreteUniform`, `Empirical`, `Erlang`, `Exponential`, `FDistributionNoncentral`, `FDistribution`, `Frechet`, `Gamma`, `Geometric`, `Gompertz`, `Gumbel`, `Hypergeometric`, `InverseGamma`, `Laplace`, `Logarithmic`, `Logistic`, `Loglogistic`, `Lognormal`, `NegativeBinomial`, `Normal`, `Poisson`, `Rayleigh`, `ShiftedLoglogistic`, `StudentTNoncentral`, `StudentT`, `Triangular`, `Uniform`, `Wald`, `Weibull`, `WeightedDiscrete`
Usage

```r
S3 method for class 'Distribution'
plot(
 x,
 fun = c("pdf", "cdf"),
 npoints = 3000,
 plot = TRUE,
 ask = FALSE,
 arrange = TRUE,
 ...
)
```

Arguments

- `x`: distr6 object.
- `fun`: vector of functions to plot, one or more of: "pdf", "cdf", "quantile", "survival", "hazard", "cumhazard", and "all"; partial matching available.
- `npoints`: number of evaluation points.
- `plot`: logical; if TRUE (default), figures are displayed in the plot window; otherwise a `data.table::data.table()` of points and calculated values is returned.
- `ask`: logical; if TRUE, the user is asked before each plot, see `graphics::par()`.
- `arrange`: logical; if TRUE (default), margins are automatically adjusted with `graphics::layout()` to accommodate all plotted functions.
- `...`: graphical parameters, see details.

Details

The evaluation points are calculated using inverse transform on a uniform grid between 0 and 1 with length given by `npoints`. Therefore any distribution without an analytical quantile method will first need to be imputed with the `FunctionImputation` decorator.

The order that the functions are supplied to `fun` determines the order in which they are plotted, however this is ignored if `ask` is TRUE. If `ask` is TRUE then `arrange` is ignored. For maximum flexibility in plotting layouts, set `arrange` and `ask` to FALSE.

The graphical parameters passed to `...` can either apply to all plots or selected plots. If parameters in `par` are prefixed with the plotted function name, then the parameter only applies to that function, otherwise it applies to them all. See examples for a clearer description.

Author(s)

Chengyang Gao, Runlong Yu and Shuhan Liu

See Also

`lines.Distribution`
plot.VectorDistribution

Plotting Distribution Functions for a VectorDistribution

Description

Helper function to more easily plot distributions inside a VectorDistribution.

Usage

## S3 method for class 'VectorDistribution'
plot(x, fun = "pdf", topn, ind, cols, ...)

Arguments

x  VectorDistribution.
fun  function to plot, one of: "pdf","cdf","quantile", "survival", "hazard", "cumhazard".
topn  integer. First n distributions in the VectorDistribution to plot.
ind  integer. Indices of the distributions in the VectorDistribution to plot. If given then topn is ignored.
cols  character. Vector of colours for plotting the curves. If missing 1:9 are used.
...  Other parameters passed to plot.Distribution.

Examples

## Not run:
# Plot pdf and cdf of Normal
plot(Normal$new())

# Colour both plots red
plot(Normal$new(), col = "red")

# Change the colours of individual plotted functions
plot(Normal$new(), pdf_col = "red", cdf_col = "green")

# Interactive plotting in order - par still works here
plot(Geometric$new(),
  fun = "all", ask = TRUE, pdf_col = "black",
  cdf_col = "red", quantile_col = "blue", survival_col = "purple",
  hazard_col = "brown", cumhazard_col = "yellow"
)

# Return plotting structure
x <- plot(Gamma$new(), plot = FALSE)
## End(Not run)
Details

If `topn` and `ind` are both missing then all distributions are plotted if there are 10 or less in the vector, otherwise the function will error.

See Also

`plot.Distribution`

Examples

```r
Not run:
Plot pdf of Normal distribution
vd <- VectorDistribution$new(list(Normal$new(), Normal$new(mean = 2)))
plot(vd)
plot(vd, fun = "surv")
plot(vd, fun = "quantile", ylim = c(-4, 4), col = c("blue", "purple"))
End(Not run)
```

---

**Poisson**

**Poisson Distribution Class**

Description

Mathematical and statistical functions for the Poisson distribution, which is commonly used to model the number of events occurring in at a constant, independent rate over an interval of time or space.

Details

The Poisson distribution parameterised with arrival rate, $\lambda$, is defined by the pmf,

$$f(x) = \frac{(\lambda^x \times e^{\lambda})}{x!}$$

for $\lambda > 0$.

Value

Returns an R6 object inheriting from class `SDistribution`.

Distribution support

The distribution is supported on the Naturals.

Default Parameterisation

Pois(rate = 1)
Omitted Methods
N/A

Also known as
N/A

Super classes

\texttt{distr6::Distribution} \rightarrow \texttt{distr6::SDistribution} \rightarrow \texttt{Poisson}

Public fields

name \hspace{1em} \text{Full name of distribution.}
short_name \hspace{1em} \text{Short name of distribution for printing.}
description \hspace{1em} \text{Brief description of the distribution.}
packages \hspace{1em} \text{Packages required to be installed in order to construct the distribution.}

Methods

Public methods:
- \texttt{Poisson$new()}
- \texttt{Poisson$mean()}
- \texttt{Poisson$mode()}
- \texttt{Poisson$variance()}
- \texttt{Poisson$skewness()}
- \texttt{Poisson$kurtosis()}
- \texttt{Poisson$mgf()}
- \texttt{Poisson$cf()}
- \texttt{Poisson$pgf()}
- \texttt{Poisson$clone()}

Method \texttt{new()}: Creates a new instance of this \texttt{R6} class.

Usage:
\texttt{Poisson$new(rate = NULL, decorators = NULL)}

Arguments:
rate (numeric(1))
\hspace{1em} \text{Rate parameter of the distribution, defined on the positive Reals.}
decorators (character())
\hspace{1em} \text{Decorators to add to the distribution during construction.}

Method \texttt{mean()}: The arithmetic mean of a (discrete) probability distribution $X$ is the expectation

\[ E_X(X) = \sum p_X(x) \cdot x \]

with an integration analogue for continuous distributions.
Usage:
Poisson$mean(...)

Arguments:
... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
Poisson$mode(which = "all")

Arguments:
which (character(1) | numeric(1))
  Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies which mode to return.

Method variance(): The variance of a distribution is defined by the formula

\[ \text{var}_X = E[X^2] - E[X]^2 \]

where \( E_X \) is the expectation of distribution \( X \). If the distribution is multivariate the covariance matrix is returned.

Usage:
Poisson$variance(...)

Arguments:
... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised moment,

\[ \text{sk}_X = E_X \left[ \frac{x - \mu^3}{\sigma} \right] \]

where \( E_X \) is the expectation of distribution \( X \), \( \mu \) is the mean of the distribution and \( \sigma \) is the standard deviation of the distribution.

Usage:
Poisson$skewness(...)

Arguments:
... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised moment,

\[ k_X = E_X \left[ \frac{x - \mu^4}{\sigma} \right] \]

where \( E_X \) is the expectation of distribution \( X \), \( \mu \) is the mean of the distribution and \( \sigma \) is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
Poisson$kurtosis(excess = TRUE, ...)

Arguments:
excess (logical(1))
  If TRUE (default) excess kurtosis returned.
... Unused.

Method mgf(): The moment generating function is defined by

\[ mgf_X(t) = E_X[exp(xt)] \]

where \( X \) is the distribution and \( E_X \) is the expectation of the distribution \( X \).

Usage:
Poisson$mgf(t, ...)

Arguments:
t (integer(1))
  t integer to evaluate function at.
... Unused.

Method cf(): The characteristic function is defined by

\[ cf_X(t) = E_X[exp(xti)] \]

where \( X \) is the distribution and \( E_X \) is the expectation of the distribution \( X \).

Usage:
Poisson$cf(t, ...)

Arguments:
t (integer(1))
  t integer to evaluate function at.
... Unused.

Method pgf(): The probability generating function is defined by

\[ pgf_X(z) = E_X[exp(zx)] \]

where \( X \) is the distribution and \( E_X \) is the expectation of the distribution \( X \).

Usage:
Poisson$pgf(z, ...)

Arguments:
z (integer(1))
  z integer to evaluate probability generating function at.
... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Poisson$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.
**References**


**See Also**

Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral, ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal, MultivariateNormal, Normal, Pareto, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical, Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz, Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal, NegativeBinomial, Normal, Pareto, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete

---

**ProductDistribution**  
*Product Distribution Wrapper*

**Description**

A wrapper for creating the product distribution of multiple independent probability distributions.

**Usage**

```r
S3 method for class 'Distribution'
 x * y
```

**Arguments**

- `x`, `y`  
  Distribution

**Details**

A product distribution is defined by

\[ F_P(X_1 = x_1, ..., X_N = x_N) = F_{X_1}(x_1) \ast ... \ast F_{X_N}(x_N) \]

#nolint where \( F_P \) is the cdf of the product distribution and \( X_1, ..., X_N \) are independent distributions.

**Super classes**

distr6::Distribution -> distr6::DistributionWrapper -> distr6::VectorDistribution

-> ProductDistribution
Methods

Public methods:

- `ProductDistribution$new()`
- `ProductDistribution$strprint()`
- `ProductDistribution$pdf()`
- `ProductDistribution$cdf()`
- `ProductDistribution$quantile()`
- `ProductDistribution$clone()`

Method `new()`: Creates a new instance of this R6 class.

Usage:

```r
ProductDistribution$new(
 distlist = NULL,
 distribution = NULL,
 params = NULL,
 shared_params = NULL,
 name = NULL,
 short_name = NULL,
 decorators = NULL,
 vecdist = NULL,
 ids = NULL
)
```

Arguments:

distlist (list())
List of Distributions.

distribution (character(1))
Should be supplied with params and optionally shared_params as an alternative to distlist. Much faster implementation when only one class of distribution is being wrapped. distribution is the full name of one of the distributions in `listDistributions()`, or "Distribution" if constructing custom distributions. See examples in `VectorDistribution`.

params (list()|data.frame())
Parameters in the individual distributions for use with distribution. Can be supplied as a list, where each element is the list of parameters to set in the distribution, or as an object coercable to data.frame, where each column is a parameter and each row is a distribution. See examples in `VectorDistribution`.

shared_params (list())
If any parameters are shared when using the distribution constructor, this provides a much faster implementation to list and query them together. See examples in `VectorDistribution`.

name (character(1))
Optional name of wrapped distribution.

short_name (character(1))
Optional short name/ID of wrapped distribution.

decorators (character())
Decorators to add to the distribution during construction.
vecdist `VectorDistribution`

Alternative constructor to directly create this object from an object inheriting from `VectorDistribution`.

ids (character())

Optional ids for wrapped distributions in vector, should be unique and of same length as the number of distributions.

Examples:

```r
\dontrun{
ProductDistribution$new(list(Binomial$new(
 prob = 0.5,
 size = 10
), Normal$new(mean = 15)))
}
```

```r
ProductDistribution$new(
 distribution = "Binomial",
 params = list(
 list(prob = 0.1, size = 2),
 list(prob = 0.6, size = 4),
 list(prob = 0.2, size = 6)
)
)
```

# Equivalently

```r
ProductDistribution$new(
 distribution = "Binomial",
 params = data.table::data.table(prob = c(0.1, 0.6, 0.2), size = c(2, 4, 6))
)
```

**Method strprint():** Printable string representation of the `ProductDistribution`. Primarily used internally.

**Usage:**

```r
ProductDistribution$strprint(n = 10)
```

**Arguments:**

n (integer(1))

Number of distributions to include when printing.

**Method pdf():** Probability density function of the product distribution. Computed by

\[
f_P(X_1 = x_1, \ldots, X_N = x_N) = \prod_i f_{X_i}(x_i)
\]

where \(f_{X_i}\) are the pdfs of the wrapped distributions.

**Usage:**

```r
ProductDistribution$pdf(\ldots, log = FALSE, simplify = TRUE, data = NULL)
```

**Arguments:**
... (numeric())
  Points to evaluate the function at Arguments do not need to be named. The length of each
  argument corresponds to the number of points to evaluate, the number of arguments corre-
  sponds to the number of variables in the distribution. See examples.

log (logical(1))
  If TRUE returns the logarithm of the probabilities. Default is FALSE.

simplify logical(1)
  If TRUE (default) simplifies the return if possible to a numeric, otherwise returns a data.table::data.table.

data array
  Alternative method to specify points to evaluate. If univariate then rows correspond with
  number of points to evaluate and columns correspond with number of variables to evalu-
  ate. In the special case of VectorDistributions of multivariate distributions, then the third
  dimension corresponds to the distribution in the vector to evaluate.

Examples:
p <- ProductDistribution$new(list(
  Binomial$new(prob = 0.5, size = 10),
  Binomial$new()))
p$pdf(1:5)
p$pdf(1, 2)
p$pdf(1:2)

Method cdf(): Cumulative distribution function of the product distribution. Computed by

\[ F_P(X_1 = x_1, \ldots, X_N = x_N) = \prod_i F_{X_i}(x_i) \]

where \( F_{X_i} \) are the cdfs of the wrapped distributions.

Usage:
ProductDistribution$cdf(
  ...
  lower.tail = TRUE,
  log.p = FALSE,
  simplify = TRUE,
  data = NULL
)

Arguments:
... (numeric())
  Points to evaluate the function at Arguments do not need to be named. The length of each
  argument corresponds to the number of points to evaluate, the number of arguments corre-
  sponds to the number of variables in the distribution. See examples.

lower.tail (logical(1))
  If TRUE (default), probabilities are \( X \leq x \), otherwise, \( P(X > x) \).

log.p (logical(1))
  If TRUE returns the logarithm of the probabilities. Default is FALSE.

simplify logical(1)
  If TRUE (default) simplifies the return if possible to a numeric, otherwise returns a data.table::data.table.
**ProductDistribution**

**data array**

Alternative method to specify points to evaluate. If univariate then rows correspond with number of points to evaluate and columns correspond with number of variables to evaluate. In the special case of VectorDistributions of multivariate distributions, then the third dimension corresponds to the distribution in the vector to evaluate.

**Examples:**

```r
p <- ProductDistribution$new(list(
 Binomial$new(prob = 0.5, size = 10),
 Binomial$new()))
p$cdf(1:5)
p$cdf(1, 2)
p$cdf(1:2)
```

**Method quantile():** The quantile function is not implemented for product distributions.

**Usage:**

```r
ProductDistribution$quantile(
 ...,
 lower.tail = TRUE,
 log.p = FALSE,
 simplify = TRUE,
 data = NULL
)
```

**Arguments:**

- `...` (numeric())
  - Points to evaluate the function at Arguments do not need to be named. The length of each argument corresponds to the number of points to evaluate, the number of arguments corresponds to the number of variables in the distribution. See examples.
- `lower.tail` (logical(1))
  - If TRUE (default), probabilities are $X \leq x$, otherwise, $P(X > x)$.
- `log.p` (logical(1))
  - If TRUE returns the logarithm of the probabilities. Default is FALSE.
- `simplify` logical(1)
  - If TRUE (default) simplifies the return if possible to a numeric, otherwise returns a data.table::data.table.

**data array**

Alternative method to specify points to evaluate. If univariate then rows correspond with number of points to evaluate and columns correspond with number of variables to evaluate. In the special case of VectorDistributions of multivariate distributions, then the third dimension corresponds to the distribution in the vector to evaluate.

**Method clone():** The objects of this class are cloneable with this method.

**Usage:**

```r
ProductDistribution$clone(deep = FALSE)
```

**Arguments:**

- `deep` Whether to make a deep clone.
See Also

Other wrappers: `Convolution`, `DistributionWrapper`, `HuberizedDistribution`, `MixtureDistribution`, `TruncatedDistribution`, `VectorDistribution`

Examples

```r
--
Method `ProductDistribution$new`
--

Not run:
ProductDistribution$new(list(Binomial$new(
 prob = 0.5,
 size = 10
), Normal$new(mean = 15)))

ProductDistribution$new(
 distribution = "Binomial",
 params = list(
 list(prob = 0.1, size = 2),
 list(prob = 0.6, size = 4),
 list(prob = 0.2, size = 6)
)
)

Equivalently
ProductDistribution$new(
 distribution = "Binomial",
 params = data.table::data.table(prob = c(0.1, 0.6, 0.2), size = c(2, 4, 6))
)

End(Not run)

Method `ProductDistribution$pdf`
--

p <- ProductDistribution$new(list(
 Binomial$new(prob = 0.5, size = 10),
 Binomial$new()))
p$pdf(1:5)
p$pdf(1, 2)
p$pdf(1:2)

Method `ProductDistribution$cdf`
--

p <- ProductDistribution$new(list(
 Binomial$new(prob = 0.5, size = 10),
 Binomial$new()))
```
qqplot

Quantile-Quantile Plots for distr6 Objects

Description

Quantile-quantile plots are used to compare a "theoretical" or empirical distribution to a reference distribution. They can also compare the quantiles of two reference distributions.

Usage

qqplot(x, y, npoints = 3000, idline = TRUE, plot = TRUE, ...)

Arguments

- **x**: distr6 object or numeric vector.
- **y**: distr6 object or numeric vector.
- **npoints**: number of evaluation points.
- **idline**: logical; if TRUE (default), the line $y = x$ is plotted.
- **plot**: logical; if TRUE (default), figures are displayed in the plot window; otherwise a data.table::data.table of points and calculated values is returned.
- **...**: graphical parameters.

Details

If x or y are given as numeric vectors then they are first passed to the Empirical distribution. The Empirical distribution is a discrete distribution so quantiles are equivalent to the the Type 1 method in quantile.

Author(s)

Chijing Zeng

See Also

plot.Distribution for plotting a distr6 object.

Examples

```r
qqplot(Normal$new(mean = 15, sd = sqrt(30)), ChiSquared$new(df = 15))
qqplot(rt(200, df = 5), rt(300, df = 5),
 main = "QQ-Plot", xlab = "t-200",
 ylab = "t-300"
)
qqplot(Normal$new(mean = 2), rnorm(100, mean = 3))
```
Quartic Kernel

Description

Mathematical and statistical functions for the Quartic kernel defined by the pdf,

\[ f(x) = \frac{15}{16}(1 - x^2)^2 \]

over the support \( x \in (-1, 1) \).

Details

Quantile is omitted as no closed form analytic expression could be found, decorate with Function-Imputation for numeric results.

Super classes

\texttt{distr6::Distribution -> distr6::Kernel -> Quartic}

Public fields

- \texttt{name} Full name of distribution.
- \texttt{short_name} Short name of distribution for printing.
- \texttt{description} Brief description of the distribution.

Methods

Public methods:

- \texttt{Quartic$pdfSquared2Norm()}
- \texttt{Quartic$cdfSquared2Norm()}
- \texttt{Quartic$variance()}
- \texttt{Quartic$clone()}

Method \texttt{pdfSquared2Norm()}: The squared 2-norm of the pdf is defined by

\[ \int_a^b (f_X(u))^2 \, du \]

where \( X \) is the Distribution, \( f_X \) is its pdf and \( a, b \) are the distribution support limits.

Usage:

\texttt{Quartic$pdfSquared2Norm(x = 0, upper = Inf)}

Arguments:

- \texttt{x} \ (\texttt{numeric(1)})
  Amount to shift the result.
upper (numeric(1))
  Upper limit of the integral.

Method cdfSquared2Norm(): The squared 2-norm of the cdf is defined by

\[ \int_a^b (F_X(u))^2 du \]

where \( X \) is the Distribution, \( F_X \) is its pdf and \( a, b \) are the distribution support limits.

Usage:
Quartic$cdfSquared2Norm(x = 0, upper = 0)

Arguments:
x (numeric(1))
  Amount to shift the result.
upper (numeric(1))
  Upper limit of the integral.

Method variance(): The variance of a distribution is defined by the formula

\[ \text{var}_X = E[X^2] - E[X]^2 \]

where \( E_X \) is the expectation of distribution \( X \). If the distribution is multivariate the covariance matrix is returned.

Usage:
Quartic$variance(...)

Arguments:
... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Quartic$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Other kernels: Cosine, Epanechnikov, LogisticKernel, NormalKernel, Sigmoid, Silverman, TriangularKernel, Tricube, Triweight, UniformKernel
Description

Mathematical and statistical functions for the Rayleigh distribution, which is commonly used to model random complex numbers.

Details

The Rayleigh distribution parameterised with mode (or scale), $\alpha$, is defined by the pdf,

$$f(x) = x/\alpha^2 \exp (-x^2/(2\alpha^2))$$

for $\alpha > 0$.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on $[0, \infty)$.

Default Parameterisation

Rayl(mode = 1)

Omitted Methods

N/A

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> Rayleigh

Public fields

- name  Full name of distribution.
- short_name  Short name of distribution for printing.
- description  Brief description of the distribution.
- packages  Packages required to be installed in order to construct the distribution.
Methods

Public methods:
- Rayleigh$new()
- Rayleigh$mean()
- Rayleigh$mode()
- Rayleigh$median()
- Rayleigh$variance()
- Rayleigh$skewness()
- Rayleigh$kurtosis()
- Rayleigh$entropy()
- Rayleigh$pgf()
- Rayleigh$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Rayleigh$new(mode = NULL, decorators = NULL)

Arguments:
mode (numeric(1))
Mode of the distribution, defined on the positive Reals. Scale parameter.
decorators (character())
Decorators to add to the distribution during construction.

Method mean(): The arithmetic mean of a (discrete) probability distribution $X$ is the expectation

$$E_X(X) = \sum p_X(x) * x$$

with an integration analogue for continuous distributions.

Usage:
Rayleigh$mean(...)

Arguments:
... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
Rayleigh$mode(which = "all")

Arguments:
which (character(1) | numeric(1))
Ignored if distribution is unimodal. Otherwise “all” returns all modes, otherwise specifies which mode to return.

Method median(): Returns the median of the distribution. If an analytical expression is available returns distribution median, otherwise if symmetric returns self$mean, otherwise returns self$quantile(0.5).
Usage:
Rayleigh$median()

Method variance(): The variance of a distribution is defined by the formula

$$var_X = E[X^2] - E[X]^2$$

where $E_X$ is the expectation of distribution $X$. If the distribution is multivariate the covariance matrix is returned.

Usage:
Rayleigh$variance(...)

Arguments:
... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised moment,

$$sk_X = E_X \left[ \frac{x - \mu}{\sigma}^3 \right]$$

where $E_X$ is the expectation of distribution $X$, $\mu$ is the mean of the distribution and $\sigma$ is the standard deviation of the distribution.

Usage:
Rayleigh$skewness(...)

Arguments:
... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised moment,

$$k_X = E_X \left[ \frac{x - \mu}{\sigma}^4 \right]$$

where $E_X$ is the expectation of distribution $X$, $\mu$ is the mean of the distribution and $\sigma$ is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
Rayleigh$kurtosis(excess = TRUE, ...)

Arguments:
excess (logical(1))
  If TRUE (default) excess kurtosis returned.
... Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

$$- \sum (f_X) \log(f_X)$$

where $f_X$ is the pdf of distribution $X$, with an integration analogue for continuous distributions.

Usage:
Rayleigh$entropy(base = 2, ...
**Arguments:**
base (integer(1))
   Base of the entropy logarithm, default = 2 (Shannon entropy)
... Unused.

**Method pgf():** The probability generating function is defined by

\[ pgf_X(z) = E_X[exp(z^x)] \]

where X is the distribution and \( E_X \) is the expectation of the distribution X.

**Usage:**
Rayleigh$pgf(z, ...)

**Arguments:**

z (integer(1))
   z integer to evaluate probability generating function at.
... Unused.

**Method clone():** The objects of this class are cloneable with this method.

**Usage:**
Rayleigh$clone(deep = FALSE)

**Arguments:**

deep  Whether to make a deep clone.

**References**


**See Also**

Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral, ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal, MultivariateNormal, Normal, Pareto, Poisson, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical, Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz, Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal, NegativeBinomial, Normal, Pareto, Poisson, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete
Description

Replicates a constructed distribution into either a

- VectorDistribution (class = "vector")
- ProductDistribution (class = "product")
- MixtureDistribution (class = "mixture")

If the distribution is not a custom Distribution then uses the more efficient distribution/params constructor, otherwise uses distlist.

Usage

```r
S3 method for class 'Distribution'
rep(x, times, class = c("vector", "product", "mixture"), ...)
```

Arguments

- **x**: Distribution
- **times**: (integer(1)) Number of times to replicate the distribution
- **class**: (character(1)) What type of vector to create, see description.
- **...**: Additional arguments, currently unused.

Examples

```r
rep(Binomial$new(), 10)
rep(Gamma$new(), 2, class = "product")
```

SDistribution

Description

Abstract class that cannot be constructed directly.

Value

Returns error. Abstract classes cannot be constructed directly.

Super class

distr6::Distribution -> SDistribution
Public fields

package  Deprecated, use $packages instead.
packages  Packages required to be installed in order to construct the distribution.

Methods

Public methods:

• SDistribution$new()
• SDistribution$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
SDistribution$new(
  decorators,
  support,
  type,
  symmetry = c("asymmetric", "symmetric")
)

Arguments:
decorators (character())
  Decorators to add to the distribution during construction.
support [set6::Set]
  Support of the distribution.
type [set6::Set]
  Type of the distribution.
symmetry character(1)
  Distribution symmetry type, default "asymmetric".

Method clone(): The objects of this class are cloneable with this method.

Usage:
SDistribution$clone(deep = FALSE)

Arguments:
deep  Whether to make a deep clone.

Description

Mathematical and statistical functions for the Shifted Log-Logistic distribution, which is commonly used in survival analysis for its non-monotonic hazard as well as in economics, a generalised variant of Loglogistic.
Details

The Shifted Log-Logistic distribution parameterised with shape, $\beta$, scale, $\alpha$, and location, $\gamma$, is defined by the pdf,

$$f(x) = (\beta/\alpha)((x - \gamma)/\alpha)^{\beta - 1}(1 + ((x - \gamma)/\alpha)^{\beta})^{-2}$$

for $\alpha, \beta > 0$ and $\gamma \geq 0$.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on the non-negative Reals.

Default Parameterisation

ShiftLLogis(scale = 1, shape = 1, location = 0)

Omitted Methods

N/A

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> ShiftedLoglogistic

Public fields

- name: Full name of distribution.
- short_name: Short name of distribution for printing.
- description: Brief description of the distribution.
- packages: Packages required to be installed in order to construct the distribution.

Active bindings

- properties: Returns distribution properties, including skewness type and symmetry.
Methods

Public methods:

- `ShiftedLoglogistic$new()`
- `ShiftedLoglogistic$mean()`
- `ShiftedLoglogistic$mode()`
- `ShiftedLoglogistic$median()`
- `ShiftedLoglogistic$variance()`
- `ShiftedLoglogistic$pgf()`
- `ShiftedLoglogistic$clone()`

**Method new()**: Creates a new instance of this R6 class.

Usage:

```r
ShiftedLoglogistic$new(
 scale = NULL,
 shape = NULL,
 location = NULL,
 rate = NULL,
 decorators = NULL
)
```

Arguments:

- `scale` (numeric(1))
  Scale parameter of the distribution, defined on the positive Reals. `scale = 1/rate`. If provided `rate` is ignored.
- `shape` (numeric(1))
  Shape parameter, defined on the positive Reals.
- `location` (numeric(1))
  Location parameter, defined on the Reals.
- `rate` (numeric(1))
  Rate parameter of the distribution, defined on the positive Reals.
- `decorators` (character())
  Decorators to add to the distribution during construction.

**Method mean()**: The arithmetic mean of a (discrete) probability distribution X is the expectation

\[ E_X(X) = \sum_x p_X(x) \cdot x \]

with an integration analogue for continuous distributions.

Usage:

```r
ShiftedLoglogistic$mean(...)
```

Arguments:

- `...` Unused.

**Method mode()**: The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).
Usage:
ShiftedLoglogistic$mode(which = "all")

Arguments:
which (character(1) | numeric(1))
Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies which mode to return.

Method median(): Returns the median of the distribution. If an analytical expression is available returns distribution median, otherwise if symmetric returns self$mean, otherwise returns self$quantile(0.5).

Usage:
ShiftedLoglogistic$median()

Method variance(): The variance of a distribution is defined by the formula

\[ var_X = E[X^2] - E[X]^2 \]

where \( E_X \) is the expectation of distribution \( X \). If the distribution is multivariate the covariance matrix is returned.

Usage:
ShiftedLoglogistic$variance(...)

Arguments:
... Unused.

Method pgf(): The probability generating function is defined by

\[ pgf_X(z) = E_X[exp(z^X)] \]

where \( X \) is the distribution and \( E_X \) is the expectation of the distribution \( X \).

Usage:
ShiftedLoglogistic$pgf(z, ...)

Arguments:
z (integer(1))
z integer to evaluate probability generating function at.
... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
ShiftedLoglogistic$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References
See Also

Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral, ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal, MultivariateNormal, Normal, Pareto, Poisson, Rayleigh, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical, Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz, Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal, NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete

---

**Sigmoid**

**Sigmoid Kernel**

**Description**

Mathematical and statistical functions for the Sigmoid kernel defined by the pdf,

\[ f(x) = \frac{2}{\pi} \left( e^{x} + e^{-x} \right)^{-1} \]

over the support \( x \in \mathbb{R} \).

**Details**

The cdf and quantile functions are omitted as no closed form analytic expressions could be found, decorate with FunctionImputation for numeric results.

**Super classes**

\[ \text{distr6::Distribution} \rightarrow \text{distr6::Kernel} \rightarrow \text{Sigmoid} \]

**Public fields**

- name Full name of distribution.
- short_name Short name of distribution for printing.
- description Brief description of the distribution.

**Methods**

**Public methods:**

- Sigmoid$new()
- Sigmoid$pdfSquared2Norm()
- Sigmoid$variance()
- Sigmoid$clone()
**Method** `new()`: Creates a new instance of this R6 class.

*Usage:*

```r
Sigmoid$new(decorators = NULL)
```

*Arguments:*

- `decorators` (character()): Decorators to add to the distribution during construction.

**Method** `pdfSquared2Norm()`: The squared 2-norm of the pdf is defined by

\[
\int_{a}^{b} (f_X(u))^2 du
\]

where \(X\) is the Distribution, \(f_X\) is its pdf and \(a, b\) are the distribution support limits.

*Usage:*

```r
Sigmoid$pdfSquared2Norm(x = 0, upper = Inf)
```

*Arguments:*

- `x` (numeric(1)): Amount to shift the result.
- `upper` (numeric(1)): Upper limit of the integral.

**Method** `variance()`: The variance of a distribution is defined by the formula

\[
\text{var}_X = E[X^2] - E[X]^2
\]

where \(E_X\) is the expectation of distribution \(X\). If the distribution is multivariate the covariance matrix is returned.

*Usage:*

```r
Sigmoid$variance(...)
```

*Arguments:*

... Unused.

**Method** `clone()`: The objects of this class are cloneable with this method.

*Usage:*

```r
Sigmoid$clone(deep = FALSE)
```

*Arguments:*

- `deep` Whether to make a deep clone.

**See Also**

Other kernels: Cosine, Epanechnikov, LogisticKernel, NormalKernel, Quartic, Silverman, TriangularKernel, Tricube, Triweight, UniformKernel
Silverman Kernel

Description

Mathematical and statistical functions for the Silverman kernel defined by the pdf,
\[ f(x) = \exp(-|x|/\sqrt{2})/2 \ast \sin(|x|/\sqrt{2} + \pi/4) \]
over the support \( x \in \mathbb{R} \).

Details

The cdf and quantile functions are omitted as no closed form analytic expressions could be found, decorate with FunctionImputation for numeric results.

Super classes

distr6::Distribution -> distr6::Kernel -> Silverman

Public fields

- name  Full name of distribution.
- short_name  Short name of distribution for printing.
- description  Brief description of the distribution.

Methods

**Public methods:**
- Silverman$new()
- Silverman$pdfSquared2Norm()
- Silverman$cdfSquared2Norm()
- Silverman$variance()
- Silverman$clone()

**Method new():** Creates a new instance of this R6 class.

**Usage:**
Silverman$new(decorators = NULL)

**Arguments:**
- decorators  (character())
  Decorators to add to the distribution during construction.

**Method pdfSquared2Norm():** The squared 2-norm of the pdf is defined by

\[ \int_a^b (f_X(u))^2\,du \]

where X is the Distribution, \( f_X \) is its pdf and \( a, b \) are the distribution support limits.
Usage:
Silverman$pdfSquared2Norm(x = 0, upper = Inf)

Arguments:
x (numeric(1))
    Amount to shift the result.
upper (numeric(1))
    Upper limit of the integral.

Method cdfSquared2Norm(): The squared 2-norm of the cdf is defined by
\[
\int_a^b (F_X(u))^2 du
\]
where X is the Distribution, \( F_X \) is its pdf and \( a, b \) are the distribution support limits.

Usage:
Silverman$cdfSquared2Norm(x = 0, upper = 0)

Arguments:
x (numeric(1))
    Amount to shift the result.
upper (numeric(1))
    Upper limit of the integral.

Method variance(): The variance of a distribution is defined by the formula
\[
\text{var}_X = E[X^2] - E[X]^2
\]
where \( E_X \) is the expectation of distribution X. If the distribution is multivariate the covariance matrix is returned.

Usage:
Silverman$variance(...)

Arguments:
... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Silverman$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also
Other kernels: Cosine, Epanechnikov, LogisticKernel, NormalKernel, Quartic, Sigmoid, TriangularKernel, Tricube, Triweight, UniformKernel
simulateEmpiricalDistribution

*Sample Empirical Distribution Without Replacement*

**Description**

Function to sample *Empirical* Distributions without replacement, as opposed to the `rand` method which samples with replacement.

**Usage**

```r
simulateEmpiricalDistribution(EmpiricalDist, n, seed = NULL)
```

**Arguments**

- `EmpiricalDist` : `Empirical` Distribution
- `n` : Number of samples to generate. See Details.
- `seed` : Numeric passed to `set.seed`. See Details.

**Details**

This function can only be used to sample from the *Empirical* distribution without replacement, and will return an error for other distributions.

The `seed` param ensures that the same samples can be reproduced and is more convenient than using the `set.seed()` function each time before use. If `set.seed` is `NULL` then the seed is left unchanged (NULL is not passed to the `set.seed` function).

If `n` is of length greater than one, then `n` is taken to be the length of `n`. If `n` is greater than the number of observations in the *Empirical* distribution, then `n` is taken to be the number of observations in the distribution.

**Value**

A vector of length `n` with elements drawn without replacement from the given *Empirical* distribution.

---

**skewType**

*Skewness Type*

**Description**

Gets the type of skewness

**Usage**

```r
skewType(skew)
```
StudentT

Arguments

skew numeric

Details

Skewness is a measure of asymmetry of a distribution.
A distribution can either have negative skew, no skew or positive skew. A symmetric distribution will always have no skew but the reverse relationship does not always hold.

Value

Returns one of 'negative skew', 'no skew' or 'positive skew'.

Examples

skewType(1)
skewType(0)
skewType(-1)

StudentT Student’s T Distribution Class

Description

Mathematical and statistical functions for the Student’s T distribution, which is commonly used to estimate the mean of populations with unknown variance from a small sample size, as well as in t-testing for difference of means and regression analysis.

Details

The Student’s T distribution parameterised with degrees of freedom, \( \nu \), is defined by the pdf,

\[
 f(x) = \frac{\Gamma((\nu + 1)/2)/\left(\sqrt{\nu \pi} \Gamma(\nu/2)\right) \ast (1 + (x^2)/\nu)^{-(\nu + 1)/2}}
\]

for \( \nu > 0 \).

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on the Reals.

Default Parameterisation

T(df = 1)
Omitted Methods

N/A

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> StudentT

Public fields

name Full name of distribution.
short_name Short name of distribution for printing.
description Brief description of the distribution.
packages Packages required to be installed in order to construct the distribution.

Methods

Public methods:

• StudentT$new()
• StudentT$mean()
• StudentT$mode()
• StudentT$variance()
• StudentT$skewness()
• StudentT$kurtosis()
• StudentT$entropy()
• StudentT$mgf()
• StudentT$cf()
• StudentT$pgf()
• StudentT$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
StudentT$new(df = NULL, decorators = NULL)

Arguments:
df (integer(1))
  Degrees of freedom of the distribution defined on the positive Reals.
decorators (character())
  Decorators to add to the distribution during construction.

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

\[ E_X(X) = \sum p_X(x) * x \]

with an integration analogue for continuous distributions.
Usage:
StudentT$mean(...)

Arguments:
... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
StudentT$mode(which = "all")

Arguments:
which (character(1) | numeric(1))
Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies which mode to return.

Method variance(): The variance of a distribution is defined by the formula

\[ var_X = E[X^2] - E[X]^2 \]

where \( E_X \) is the expectation of distribution X. If the distribution is multivariate the covariance matrix is returned.

Usage:
StudentT$variance(...)

Arguments:
... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised moment,

\[ sk_X = E_X \left[ \frac{x - \mu}{\sigma} \right]^3 \]

where \( E_X \) is the expectation of distribution X, \( \mu \) is the mean of the distribution and \( \sigma \) is the standard deviation of the distribution.

Usage:
StudentT$skewness(...)

Arguments:
... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised moment,

\[ k_X = E_X \left[ \frac{x - \mu}{\sigma} \right]^4 \]

where \( E_X \) is the expectation of distribution X, \( \mu \) is the mean of the distribution and \( \sigma \) is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
StudentT$kurtosis(excess = TRUE, ...)

Arguments:
excess (logical(1))
    If TRUE (default) excess kurtosis returned.
... Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

$$- \sum (f_X) \log(f_X)$$

where $f_X$ is the pdf of distribution $X$, with an integration analogue for continuous distributions.

Usage:
StudentT$entropy(base = 2, ...)

Arguments:
base (integer(1))
    Base of the entropy logarithm, default = 2 (Shannon entropy)
... Unused.

Method mgf(): The moment generating function is defined by

$$mgf_X(t) = E_X[exp(xt)]$$

where $X$ is the distribution and $E_X$ is the expectation of the distribution $X$.

Usage:
StudentT$mgf(t, ...)

Arguments:
t (integer(1))
    t integer to evaluate function at.
... Unused.

Method cf(): The characteristic function is defined by

$$cf_X(t) = E_X[exp(xti)]$$

where $X$ is the distribution and $E_X$ is the expectation of the distribution $X$.

Usage:
StudentT$cf(t, ...)

Arguments:
t (integer(1))
    t integer to evaluate function at.
... Unused.

Method pgf(): The probability generating function is defined by

$$pgf_X(z) = E_X[exp(z^x)]$$

where $X$ is the distribution and $E_X$ is the expectation of the distribution $X$.

Usage:
StudentT$pgf(z, ...
Arguments:
z (integer(1))
   z integer to evaluate probability generating function at.
   ... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
StudentT$clone(deep = FALSE)

Arguments:
   deep  Whether to make a deep clone.

Author(s)
Chijing Zeng

References
Michael P. McLaughlin.

See Also

Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral,
ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution,
Frechet, Gamma, Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal,
MultivariateNormal, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTN,noncentral,
Triangular, Uniform, Wald, Weibull

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical,
Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang,
Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz,
Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal,
NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTN,noncentral,
Triangular, Uniform, Wald, Weibull, WeightedDiscrete

Description

Mathematical and statistical functions for the Noncentral Student’s T distribution, which is commonly used to estimate the mean of populations with unknown variance from a small sample size, as well as in t-tested for difference of means and regression analysis.
Details

The Noncentral Student’s T distribution parameterised with degrees of freedom, $\nu$ and location, $\lambda$, is defined by the pdf,

$$f(x) = \left(\frac{\nu^{\nu/2}}{\sqrt{\pi}} \frac{\exp\left(-\frac{\nu \lambda^2}{2(x^2+\nu)}\right)}{\Gamma\left(\nu/2\right)2^{(\nu-1)/2}(x^2+\nu)^{(\nu+1)/2}}\right) \int_0^\infty y^\nu \exp\left(-\frac{1}{2} \frac{y-x \lambda}{\sqrt{x^2+\nu}}\right)^2 dy$$

for $\nu > 0$, $\lambda \in \mathbb{R}$.

Value

Returns an R6 object inheriting from class `SDistribution`.

Distribution support

The distribution is supported on the Reals.

Default Parameterisation

TNS(df = 1, location = 0)

Omitted Methods

N/A

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> StudentTNoncentral

Public fields

- name: Full name of distribution.
- short_name: Short name of distribution for printing.
- description: Brief description of the distribution.
- packages: Packages required to be installed in order to construct the distribution.

Methods

Public methods:
- `StudentTNoncentral$new()`
- `StudentTNoncentral$mean()`
- `StudentTNoncentral$variance()`
- `StudentTNoncentral$clone()`

Method `new()`: Creates a new instance of this R6 class.
**Usage:**
```
StudentTNoncentral$new(df = NULL, location = NULL, decorators = NULL)
```

**Arguments:**
- **df** (integer(1))
  Degrees of freedom of the distribution defined on the positive Reals.
- **location** (numeric(1))
  Location parameter, defined on the Reals.
- **decorators** (character())
  Decorators to add to the distribution during construction.

**Method** `mean()`: The arithmetic mean of a (discrete) probability distribution \(X\) is the expectation

\[
E_X(X) = \sum p_X(x) \times x
\]

with an integration analogue for continuous distributions.

**Usage:**
```
StudentTNoncentral$mean(...)
```

**Arguments:**
- ... Unused.

**Method** `variance()`: The variance of a distribution is defined by the formula

\[
var_X = E[X^2] - E[X]^2
\]

where \(E_X\) is the expectation of distribution \(X\). If the distribution is multivariate the covariance matrix is returned.

**Usage:**
```
StudentTNoncentral$variance(...)
```

**Arguments:**
- ... Unused.

**Method** `clone()`: The objects of this class are cloneable with this method.

**Usage:**
```
StudentTNoncentral$clone(deep = FALSE)
```

**Arguments:**
- `deep` Whether to make a deep clone.

**Author(s)**

Jordan Deenichin

**References**

testContinuous

Description

Validation checks to test if Distribution is continuous.

Usage

testContinuous(
  object,
  errmsg = paste(object$short_name, "is not continuous")
)

cHECKContinuous(
  object,
  errmsg = paste(object$short_name, "is not continuous")
)

assertContinuous(
  object,
  errmsg = paste(object$short_name, "is not continuous")
)

Arguments

object Distribution
errmsg custom error message to return if assert/check fails

Value

If check passes then assert returns invisibly and test/check return TRUE. If check fails, assert stops code with error, check returns an error message as string, test returns FALSE.

See Also

Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral, ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal, MultivariateNormal, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentT, Triangular, Uniform, Wald, Weibull

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical, Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz, Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal, NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete
**Examples**

testContinuous(Binomial$new()) # FALSE

testDiscrete(Binomial$new()) # FALSE

testDistribution

**Description**

Validation checks to test if Distribution is discrete.

**Usage**

testDiscrete(object, errmsg = paste(object$short_name, "is not discrete"))
checkDiscrete(object, errmsg = paste(object$short_name, "is not discrete"))
assertDiscrete(object, errmsg = paste(object$short_name, "is not discrete"))

**Arguments**

<table>
<thead>
<tr>
<th>object</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>errmsg</td>
<td>custom error message to return if assert/check fails</td>
</tr>
</tbody>
</table>

**Value**

If check passes then assert returns invisibly and test/check return TRUE. If check fails, assert stops code with error, check returns an error message as string, test returns FALSE.

**Examples**

testDiscrete(Binomial$new()) # FALSE
testDistribution

Usage

testDistribution(
  object,
  errmsg = paste(object, "is not an R6 Distribution object")
)

checkDistribution(
  object,
  errmsg = paste(object, "is not an R6 Distribution object")
)

assertDistribution(
  object,
  errmsg = paste(object, "is not an R6 Distribution object")
)

Arguments

object object to test
errmsg custom error message to return if assert/check fails

Value

If check passes then assert returns invisibly and test/check return TRUE. If check fails, assert stops code with error, check returns an error message as string, test returns FALSE.

Examples

testDistribution(5) # FALSE
testDistribution(Binomial$new()) # TRUE

testDistributionList

assert/check/test/DistributionList

Validation checks to test if a given object is a list of Distributions.

Usage

testDistributionList(
  object,
  errmsg = "One or more items in the list are not Distributions"
)

checkDistributionList(
  object,
testLeptokurtic

   errmsg = "One or more items in the list are not Distributions"
)

assertDistributionList(
   object,
   errmsg = "One or more items in the list are not Distributions"
)

Arguments

   object       object to test
   errmsg       custom error message to return if assert/check fails

Value

   If check passes then assert returns invisibly and test/check return TRUE. If check fails, assert stops code with error, check returns an error message as string, test returns FALSE.

Examples

   testDistributionList(list(Binomial$new(), 5)) # FALSE
   testDistributionList(list(Binomial$new(), Exponential$new())) # TRUE


testLeptokurtic assertions/check/test/Leptokurtic

Description

   Validation checks to test if Distribution is leptokurtic.

Usage

   testLeptokurtic(
      object,
      errmsg = paste(object$short_name, "is not leptokurtic")
   )

   checkLeptokurtic(
      object,
      errmsg = paste(object$short_name, "is not leptokurtic")
   )

   assertLeptokurtic(
      object,
      errmsg = paste(object$short_name, "is not leptokurtic")
   )
Arguments

object Distribution
errmsg custom error message to return if assert/check fails

Value

If check passes then assert returns invisibly and test/check return TRUE. If check fails, assert stops code with error, check returns an error message as string, test returns FALSE.

Examples

testLeptokurtic(Binomial$new())

testMatrixvariate object Distribution
errmsg custom error message to return if assert/check fails

Value

If check passes then assert returns invisibly and test/check return TRUE. If check fails, assert stops code with error, check returns an error message as string, test returns FALSE.
testMesokurtic

**Examples**

testMatrixvariate(Binomial$new()) # FALSE

testMesokurtic # assert/check/test/Mesokurtic

**Description**

Validation checks to test if Distribution is mesokurtic.

**Usage**

testMesokurtic(  
  object,  
  errmsg = paste(object$short_name, "is not mesokurtic")  
)

cHECKMesokurtic(  
  object,  
  errmsg = paste(object$short_name, "is not mesokurtic")  
)

assertMesokurtic(  
  object,  
  errmsg = paste(object$short_name, "is not mesokurtic")  
)

**Arguments**

<table>
<thead>
<tr>
<th>object</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>errmsg</td>
<td>custom error message to return if assert/check fails</td>
</tr>
</tbody>
</table>

**Value**

If check passes then assert returns invisibly and test/check return TRUE. If check fails, assert stops code with error, check returns an error message as string, test returns FALSE.

**Examples**

testMesokurtic(Binomial$new())
Description

Validation checks to test if Distribution is mixture.

Usage

testMixture(object, errormsg = paste(object$short_name, "is not mixture"))
checkMixture(object, errormsg = paste(object$short_name, "is not mixture"))
assertMixture(object, errormsg = paste(object$short_name, "is not mixture"))

Arguments

object Distribution
errormsg custom error message to return if assert/check fails

Value

If check passes then assert returns invisibly and test/check return TRUE. If check fails, assert stops code with error, check returns an error message as string, test returns FALSE.

Examples

testMixture(Binomial$new()) # FALSE

descript
testNegativeSkew

)  
assertMultivariate(
object,
errormsg = paste(object$short_name, "is not multivariate")
)

Arguments

object Distribution
errormsg custom error message to return if assert/check fails

Value

If check passes then assert returns invisibly and test/check return TRUE. If check fails, assert stops code with error, check returns an error message as string, test returns FALSE.

Examples

testMultivariate(Binomial$new()) # FALSE

Description

Validation checks to test if Distribution is negative skew.

Usage

testNegativeSkew(
object,
errormsg = paste(object$short_name, "is not negative skew")
)

checkNegativeSkew(
object,
errormsg = paste(object$short_name, "is not negative skew")
)

assertNegativeSkew(
object,
errormsg = paste(object$short_name, "is not negative skew")
)
Arguments

object Distribution
errormsg custom error message to return if assert/check fails

Value

If check passes then assert returns invisibly and test/check return TRUE. If check fails, assert stops code with error, check returns an error message as string, test returns FALSE.

Examples

testNegativeSkew(Binomial$new())

testNoSkew 
assert/check/test/NoSkew

Description

Validation checks to test if Distribution is no skew.

Usage

testNoSkew(object, errormsg = paste(object$short_name, "is not no skew"))
checkNoSkew(object, errormsg = paste(object$short_name, "is not no skew"))
assertNoSkew(object, errormsg = paste(object$short_name, "is not no skew"))

Arguments

object Distribution
errormsg custom error message to return if assert/check fails

Value

If check passes then assert returns invisibly and test/check return TRUE. If check fails, assert stops code with error, check returns an error message as string, test returns FALSE.

Examples

testNoSkew(Binomial$new())
Description

Validation checks to test if a given object is a ParameterSet.

Usage

testParameterSet(
  object,
  errormsg = paste(object, "is not an R6 ParameterSet object")
)

checkParameterSet(
  object,
  errormsg = paste(object, "is not an R6 ParameterSet object")
)

assertParameterSet(
  object,
  errormsg = paste(object, "is not an R6 ParameterSet object")
)

Arguments

  object        object to test
  errormsg      custom error message to return if assert/check fails

Value

If check passes then assert returns invisibly and test/check return TRUE. If check fails, assert stops code with error, check returns an error message as string, test returns FALSE.

Examples

testParameterSet(5) # FALSE
testParameterSet(Binomial$new()$parameters()) # TRUE
Description

Validation checks to test if a given object is a list of ParameterSets.

Usage

testParameterSetList(
  object,
  errormsg = "One or more items in the list are not ParameterSets"
)

checkParameterSetList(
  object,
  errormsg = "One or more items in the list are not ParameterSets"
)

assertParameterSetList(
  object,
  errormsg = "One or more items in the list are not ParameterSets"
)

Arguments

object object to test
errormsg custom error message to return if assert/check fails

Value

If check passes then assert returns invisibly and test/check return TRUE. If check fails, assert stops code with error, check returns an error message as string, test returns FALSE.

Examples

testParameterSetList(list(Binomial$new(), 5)) # FALSE
testParameterSetList(list(Binomial$new(), Exponential$new())) # TRUE
Description

Validation checks to test if Distribution is platykurtic.

Usage

testPlatykurtic(
  object,
  errormsg = paste(object$short_name, "is not platykurtic")
)

cHECKPlatykurtic(
  object,
  errormsg = paste(object$short_name, "is not platykurtic")
)

assertPlatykurtic(
  object,
  errormsg = paste(object$short_name, "is not platykurtic")
)

Arguments

object Distribution
errormsg custom error message to return if assert/check fails

Value

If check passes then assert returns invisibly and test/check return TRUE. If check fails, assert stops code with error, check returns an error message as string, test returns FALSE.

Examples

testPlatykurtic(Binomial$new())
Description

Validation checks to test if Distribution is positive skew.

Usage

testPositiveSkew(
  object,
  errmsg = paste(object$short_name, "is not positive skew")
)

checkPositiveSkew(
  object,
  errmsg = paste(object$short_name, "is not positive skew")
)

assertPositiveSkew(
  object,
  errmsg = paste(object$short_name, "is not positive skew")
)

Arguments

object   Distribution
errmsg   custom error message to return if assert/check fails

Value

If check passes then assert returns invisibly and test/check return TRUE. If check fails, assert stops code with error, check returns an error message as string, test returns FALSE.

Examples

testPositiveSkew(Binomial$new())
Description

Validation checks to test if Distribution is symmetric.

Usage

testSymmetric(object, errormsg = paste(object$short_name, "is not symmetric"))
checkSymmetric(object, errormsg = paste(object$short_name, "is not symmetric"))
assertSymmetric(
    object,
    errormsg = paste(object$short_name, "is not symmetric")
)

Arguments

<table>
<thead>
<tr>
<th>object</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>errmsg</td>
<td>custom error message to return if assert/check fails</td>
</tr>
</tbody>
</table>

Value

If check passes then assert returns invisibly and test/check return TRUE. If check fails, assert stops code with error, check returns an error message as string, test returns FALSE.

Examples

testSymmetric(Binomial$new()) # FALSE

Description

Validation checks to test if Distribution is univariate.
Usage

testUnivariate(
    object,
    errmsg = paste(object$short_name, "is not univariate")
)

checkUnivariate(
    object,
    errmsg = paste(object$short_name, "is not univariate")
)

assertUnivariate(
    object,
    errmsg = paste(object$short_name, "is not univariate")
)

Arguments

object : Distribution
errmsg : custom error message to return if assert/check fails

Value

If check passes then assert returns invisibly and test/check return TRUE. If check fails, assert stops code with error, check returns an error message as string, test returns FALSE.

Examples

testUnivariate(Binomial$new()) # TRUE

---

### Triangular Distribution Class

**Description**

Mathematical and statistical functions for the Triangular distribution, which is commonly used to model population data where only the minimum, mode and maximum are known (or can be reliably estimated), also to model the sum of standard uniform distributions.

**Details**

The Triangular distribution parameterised with lower limit, $a$, upper limit, $b$, and mode, $c$, is defined by the pdf,

\[
\begin{align*}
    f(x) &= 0, x < a \\
    f(x) &= \frac{2(x-a)}{(b-a)(c-a)}, a \leq x < c \\
    f(x) &= \frac{2}{(b-a)}, x = c
\end{align*}
\]
\[ f(x) = \frac{2(b - x)}{((b - a)(b - c))}, \quad c < x \leq b \]
\[ f(x) = 0, \quad x > b \]
for \( a, b, c \in \mathbb{R}, \quad a \leq c \leq b \).

**Value**

Returns an R6 object inheriting from class `SDistribution`.

**Distribution support**

The distribution is supported on \([a, b]\).

**Default Parameterisation**

Tri(lower = 0, upper = 1, mode = 0.5, symmetric = FALSE)

**Omitted Methods**

N/A

**Also known as**

N/A

**Super classes**

\[ \text{distr6::Distribution} \rightarrow \text{distr6::SDistribution} \rightarrow \text{Triangular} \]

**Public fields**

- **name**  Full name of distribution.
- **short_name**  Short name of distribution for printing.
- **description**  Brief description of the distribution.
- **packages**  Packages required to be installed in order to construct the distribution.

**Active bindings**

- **properties**  Returns distribution properties, including skewness type and symmetry.

**Methods**

**Public methods:**

- `Triangular$new()`
- `Triangular$mean()`
- `Triangular$mode()`
- `Triangular$median()`
- `Triangular$variance()`
- `Triangular$skewness()`
- `Triangular$kurtosis()`
Method `new()`: Creates a new instance of this R6 class.

Usage:
```r
Triangular$new(
 lower = NULL,
 upper = NULL,
 mode = NULL,
 symmetric = NULL,
 decorators = NULL
)
```

Arguments:
- `lower` (numeric(1))
  Lower limit of the Distribution, defined on the Reals.
- `upper` (numeric(1))
  Upper limit of the Distribution, defined on the Reals.
- `mode` (numeric(1))
  Mode of the distribution, if `symmetric = TRUE` then determined automatically.
- `symmetric` (logical(1))
  If `TRUE` then the symmetric Triangular distribution is constructed, where the mode is automatically calculated. Otherwise mode can be set manually. Cannot be changed after construction.
- `decorators` (character())
  Decorators to add to the distribution during construction.

Examples:
```r
Triangular$new(lower = 2, upper = 5, symmetric = TRUE)
Triangular$new(lower = 2, upper = 5, symmetric = FALSE)
Triangular$new(lower = 2, upper = 5, mode = 4)
```

# You can view the type of Triangular distribution with `$description`
```r
Triangular$new(lower = 2, upper = 5, symmetric = TRUE)$description
Triangular$new(lower = 2, upper = 5, symmetric = FALSE)$description
```

Method `mean()`: The arithmetic mean of a (discrete) probability distribution $X$ is the expectation

$$E_X(X) = \sum p_X(x) * x$$

with an integration analogue for continuous distributions.

Usage:
```r
Triangular$mean(...)
```

Arguments:
Method mode(): The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
Triangular$mode(which = "all")

Arguments:
which (character(1) | numeric(1))
   Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies which mode to return.

Method median(): Returns the median of the distribution. If an analytical expression is available returns distribution median, otherwise if symmetric returns self$mean, otherwise returns self$quantile(0.5).

Usage:
Triangular$median()

Method variance(): The variance of a distribution is defined by the formula

\[ \text{var}_X = E[X^2] - E[X]^2 \]

where \( E_X \) is the expectation of distribution \( X \). If the distribution is multivariate the covariance matrix is returned.

Usage:
Triangular$variance(...)

Arguments:
... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised moment,

\[ \text{sk}_X = E_X \left[ \frac{x - \mu}{\sigma} \right]^3 \]

where \( E_X \) is the expectation of distribution \( X \), \( \mu \) is the mean of the distribution and \( \sigma \) is the standard deviation of the distribution.

Usage:
Triangular$skewness(...)

Arguments:
... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised moment,

\[ k_X = E_X \left[ \frac{x - \mu}{\sigma} \right]^4 \]

where \( E_X \) is the expectation of distribution \( X \), \( \mu \) is the mean of the distribution and \( \sigma \) is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
Triangular$kurtosis(excess = TRUE, ...)  

Arguments:  
excess (logical(1))  
    If TRUE (default) excess kurtosis returned.  
... Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

\[- \sum (f_X) \log(f_X)\]

where $f_X$ is the pdf of distribution X, with an integration analogue for continuous distributions.

Usage:  
Triangular$entropy(base = 2, ...)  

Arguments:  
base (integer(1))  
    Base of the entropy logarithm, default = 2 (Shannon entropy)  
... Unused.

Method mgf(): The moment generating function is defined by

\[mgf_X(t) = E_X[exp(xt)]\]

where X is the distribution and $E_X$ is the expectation of the distribution X.

Usage:  
Triangular$mgf(t, ...)  

Arguments:  
t (integer(1))  
    t integer to evaluate function at.  
... Unused.

Method cf(): The characteristic function is defined by

\[cf_X(t) = E_X[exp(xti)]\]

where X is the distribution and $E_X$ is the expectation of the distribution X.

Usage:  
Triangular$cf(t, ...)  

Arguments:  
t (integer(1))  
    t integer to evaluate function at.  
... Unused.

Method pgf(): The probability generating function is defined by

\[pgf_X(z) = E_X[exp(zx)]\]

where X is the distribution and $E_X$ is the expectation of the distribution X.
**Usage:**

Triangular$pgf(z, ...)

**Arguments:**

z (integer(1))

z integer to evaluate probability generating function at.

... Unused.

**Method clone():** The objects of this class are cloneable with this method.

**Usage:**

Triangular$clone(deep = FALSE)

**Arguments:**

depth Whether to make a deep clone.

**References**

Michael P. McLaughlin.

**See Also**

Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral, ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal, MultivariateNormal, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Uniform, Wald, Weibull

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical, Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz, Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal, NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Uniform, Wald, Weibull, WeightedDiscrete

**Examples**

```r
Method 'Triangular$new'

Triangular$new(lower = 2, upper = 5, symmetric = TRUE)
Triangular$new(lower = 2, upper = 5, symmetric = FALSE)
Triangular$new(lower = 2, upper = 5, mode = 4)

You can view the type of Triangular distribution with $description
Triangular$new(lower = 2, upper = 5, symmetric = TRUE)$description
Triangular$new(lower = 2, upper = 5, symmetric = FALSE)$description
```
Description

Mathematical and statistical functions for the Triangular kernel defined by the pdf,

\[ f(x) = 1 - |x| \]

over the support \( x \in (-1, 1) \).

Super classes

distr6::Distribution -> distr6::Kernel -> TriangularKernel

Public fields

name Full name of distribution.
short_name Short name of distribution for printing.
description Brief description of the distribution.

Methods

Public methods:

- TriangularKernel$pdfSquared2Norm()
- TriangularKernel$cdfSquared2Norm()
- TriangularKernel$variance()
- TriangularKernel$clone()

Method pdfSquared2Norm(): The squared 2-norm of the pdf is defined by

\[ \int_a^b (f_X(u))^2 du \]

where \( X \) is the Distribution, \( f_X \) is its pdf and \( a, b \) are the distribution support limits.

Usage:

TriangularKernel$pdfSquared2Norm(x = 0, upper = Inf)

Arguments:

- \( x \) (numeric(1))
  Amount to shift the result.
- \( upper \) (numeric(1))
  Upper limit of the integral.

Method cdfSquared2Norm(): The squared 2-norm of the cdf is defined by

\[ \int_a^b (F_X(u))^2 du \]

where \( X \) is the Distribution, \( F_X \) is its pdf and \( a, b \) are the distribution support limits.
Usage:
TriangularKernel$cdfSquared2Norm(x = 0, upper = 0)

Arguments:
x (numeric(1))
   Amount to shift the result.
upper (numeric(1))
   Upper limit of the integral.

Method variance(): The variance of a distribution is defined by the formula

\[ \text{var}_X = E[X^2] - E[X]^2 \]

where \( E_X \) is the expectation of distribution \( X \). If the distribution is multivariate the covariance matrix is returned.

Usage:
TriangularKernel$variance(...)

Arguments:
... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
TriangularKernel$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also
Other kernels: Cosine, Epanechnikov, LogisticKernel, NormalKernel, Quartic, Sigmoid, Silverman, Tricube, Triweight, UniformKernel

---

### Description

Mathematical and statistical functions for the Tricube kernel defined by the pdf,

\[ f(x) = \frac{70}{81}(1 - |x|^3)^3 \]

over the support \( x \in (-1, 1) \).

### Details

The quantile function is omitted as no closed form analytic expressions could be found, decorate with FunctionImputation for numeric results.
Super classes

distr6::Distribution -> distr6::Kernel -> Tricube

Public fields

name  Full name of distribution.
short.name  Short name of distribution for printing.
description  Brief description of the distribution.

Methods

Public methods:

• Tricube$pdfSquared2Norm()
• Tricube$cdfSquared2Norm()
• Tricube$variance()
• Tricube$clone()

Method pdfSquared2Norm(): The squared 2-norm of the pdf is defined by

\[ \int_a^b (f_X(u))^2 du \]

where \( X \) is the Distribution, \( f_X \) is its pdf and \( a, b \) are the distribution support limits.

Usage:
Tricube$pdfSquared2Norm(x = 0, upper = Inf)

Arguments:

x (numeric(1))
  Amount to shift the result.
upper (numeric(1))
  Upper limit of the integral.

Method cdfSquared2Norm(): The squared 2-norm of the cdf is defined by

\[ \int_a^b (F_X(u))^2 du \]

where \( X \) is the Distribution, \( F_X \) is its pdf and \( a, b \) are the distribution support limits.

Usage:
Tricube$cdfSquared2Norm(x = 0, upper = 0)

Arguments:

x (numeric(1))
  Amount to shift the result.
upper (numeric(1))
  Upper limit of the integral.
Method variance(): The variance of a distribution is defined by the formula

\[ \text{var}_X = E[X^2] - E[X]^2 \]

where \( E_X \) is the expectation of distribution \( X \). If the distribution is multivariate the covariance matrix is returned.

Usage:
Tricube$variance(...)

Arguments:
... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Tricube$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Other kernels: Cosine, Epanechnikov, LogisticKernel, NormalKernel, Quartic, Sigmoid, Silverman, TriangularKernel, Triweight, UniformKernel

---

Triweight

Triweight Kernel

Description

Mathematical and statistical functions for the Triweight kernel defined by the pdf,

\[ f(x) = \frac{35}{32}(1 - x^2)^3 \]

over the support \( x \in (-1, 1) \).

Details

The quantile function is omitted as no closed form analytic expression could be found, decorate with FunctionImputation for numeric results.

Super classes

distr6::Distribution -> distr6::Kernel -> Triweight

Public fields

name Full name of distribution.
short_name Short name of distribution for printing.
description Brief description of the distribution.
Methods

Public methods:
• Triweight$pdfSquared2Norm()
• Triweight$cdfSquared2Norm()
• Triweight$variance()
• Triweight$clone()

Method pdfSquared2Norm(): The squared 2-norm of the pdf is defined by
\[ \int_a^b (f_X(u))^2 \, du \]
where X is the Distribution, \( f_X \) is its pdf and \( a, b \) are the distribution support limits.

Usage:
Triweight$pdfSquared2Norm(x = 0, upper = Inf)

Arguments:
\( x \) (numeric(1))
    Amount to shift the result.
\( upper \) (numeric(1))
    Upper limit of the integral.

Method cdfSquared2Norm(): The squared 2-norm of the cdf is defined by
\[ \int_a^b (F_X(u))^2 \, du \]
where X is the Distribution, \( F_X \) is its pdf and \( a, b \) are the distribution support limits.

Usage:
Triweight$cdfSquared2Norm(x = 0, upper = 0)

Arguments:
\( x \) (numeric(1))
    Amount to shift the result.
\( upper \) (numeric(1))
    Upper limit of the integral.

Method variance(): The variance of a distribution is defined by the formula
\[ \text{var}_X = E[X^2] - E[X]^2 \]
where \( E_X \) is the expectation of distribution X. If the distribution is multivariate the covariance matrix is returned.

Usage:
Triweight$variance(...)

Arguments:
... Unused.
Method `clone()`: The objects of this class are cloneable with this method.

Usage:
Triweight$clone(deep = FALSE)

Arguments:
depth Whether to make a deep clone.

See Also

Other kernels: Cosine, Epanechnikov, LogisticKernel, NormalKernel, Quartic, Sigmoid, Silverman, TriangularKernel, Tricube, UniformKernel

---

truncate

Truncate a Distribution

Description

S3 functionality to truncate an R6 distribution.

Usage

  truncate(x, lower = NULL, upper = NULL)

Arguments

  x    Distribution.
lower lower limit for truncation.
upper upper limit for truncation.

See Also

  TruncatedDistribution

---

TruncatedDistribution

Distribution Truncation Wrapper

Description

A wrapper for truncating any probability distribution at given limits.
Details

The pdf and cdf of the distribution are required for this wrapper, if unavailable decorate with FunctionImputation first.

Truncates a distribution at lower and upper limits on a left-open interval, using the formulae

\[
\begin{align*}
    f_T(x) &= f_X(x)/(F_X(upper) - F_X(lower)) \\
    F_T(x) &= (F_X(x) - F_X(lower))/(F_X(upper) - F_X(lower))
\end{align*}
\]

where \(f_T/F_T\) is the pdf/cdf of the truncated distribution \(T = \text{Truncate}(X, \text{lower}, \text{upper})\) and \(f_X, F_X\) is the pdf/cdf of the original distribution. \(T\) is supported on (].

Super classes

distr6::Distribution -> distr6::DistributionWrapper -> TruncatedDistribution

Active bindings

properties

Returns distribution properties, including skewness type and symmetry.

Methods

Public methods:

- \text{TruncatedDistribution}\$new()
- \text{TruncatedDistribution}\$clone()

Method \text{new}(): Creates a new instance of this R6 class.

Usage:

\text{TruncatedDistribution}\$new(distribution, lower = \text{NULL}, upper = \text{NULL})

Arguments:

distribution \([\text{Distribution}]\)

\text{Distribution} to wrap.

lower \((\text{numeric}(1))\)

Lower limit to huberize the distribution at. If \text{NULL} then the lower bound of the \text{Distribution} is used.

upper \((\text{numeric}(1))\)

Upper limit to huberize the distribution at. If \text{NULL} then the upper bound of the \text{Distribution} is used.

Examples:

\[
\begin{align*}
    \text{TruncatedDistribution}\$new( \\
        \text{Binomial}\$new(prob = 0.5, size = 10), \\
        \text{lower} = 2, \text{upper} = 4
    )
\end{align*}
\]

# alternate constructor

\text{truncate}(\text{Binomial}\$new(), \text{lower} = 2, \text{upper} = 4)
**Method** `clone()`: The objects of this class are cloneable with this method.

**Usage:**

```r
TruncatedDistribution$clone(deep = FALSE)
```

**Arguments:**

- `deep` Whether to make a deep clone.

**See Also**

Other wrappers: `Convolution`, `DistributionWrapper`, `HuberizedDistribution`, `MixtureDistribution`, `ProductDistribution`, `VectorDistribution`

**Examples**

```r
--
Method `\texttt{\`TruncatedDistribution\$new'}`
--

TruncatedDistribution$new(
 Binomial$new(prob = 0.5, size = 10),
 lower = 2, upper = 4
)

alternate constructor
truncat(Binomial$new(), lower = 2, upper = 4)
```

---

**Uniform**

**Uniform Distribution Class**

**Description**

Mathematical and statistical functions for the Uniform distribution, which is commonly used to model continuous events occurring with equal probability, as an uninformed prior in Bayesian modelling, and for inverse transform sampling.

**Details**

The Uniform distribution parameterised with lower, `a`, and upper, `b`, limits is defined by the pdf,

$$f(x) = 1/(b - a)$$

for $-\infty < a < b < \infty$.

**Value**

Returns an R6 object inheriting from class `SDistribution`. 
**Distribution support**

The distribution is supported on \([a, b]\).

**Default Parameterisation**

Unif(lower = 0, upper = 1)

**Omitted Methods**

N/A

**Also known as**

N/A

**Super classes**

distr6::Distribution -> distr6::SDistribution -> Uniform

**Public fields**

- `name` Full name of distribution.
- `short_name` Short name of distribution for printing.
- `description` Brief description of the distribution.
- `packages` Packages required to be installed in order to construct the distribution.

**Active bindings**

- `properties` Returns distribution properties, including skewness type and symmetry.

**Methods**

**Public methods:**

- `Uniform$new()`
- `Uniform$mean()`
- `Uniform$mode()`
- `Uniform$variance()`
- `Uniform$skewness()`
- `Uniform$kurtosis()`
- `Uniform$entropy()`
- `Uniform$mgf()`
- `Uniform$cf()`
- `Uniform$pgf()`
- `Uniform$clone()`

**Method** `new()`: Creates a new instance of this R6 class.

**Usage:**
Uniform$new(lower = NULL, upper = NULL, decorators = NULL)

Arguments:
lower (numeric(1))
   Lower limit of the Distribution, defined on the Reals.
upper (numeric(1))
   Upper limit of the Distribution, defined on the Reals.
decorators (character())
   Decorators to add to the distribution during construction.

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

$$E_X(X) = \sum p_X(x) \cdot x$$

with an integration analogue for continuous distributions.

Usage:
Uniform$mean(...)

Arguments:
... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
Uniform$mode(which = "all")

Arguments:
which (character(1) | numeric(1))
   Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies which mode to return.

Method variance(): The variance of a distribution is defined by the formula

$$\text{var}_X = E[X^2] - E[X]^2$$

where $E_X$ is the expectation of distribution X. If the distribution is multivariate the covariance matrix is returned.

Usage:
Uniform$variance(...)

Arguments:
... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised moment,

$$sk_X = E_X\left[\frac{x - \mu^3}{\sigma}\right]$$

where $E_X$ is the expectation of distribution X, $\mu$ is the mean of the distribution and $\sigma$ is the standard deviation of the distribution.
Usage:
Uniform\$skewness(\ldots)

Arguments:
\ldots Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised moment,

\[ k_X = E_X \left[ \frac{x - \mu}{\sigma} \right]^4 \]

where \( E_X \) is the expectation of distribution \( X \), \( \mu \) is the mean of the distribution and \( \sigma \) is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
Uniform\$kurtosis(excess = TRUE, \ldots)

Arguments:
excess (logical(1))
\quad If TRUE (default) excess kurtosis returned.
\ldots Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

\[-\sum (f_X) \log(f_X)\]

where \( f_X \) is the pdf of distribution \( X \), with an integration analogue for continuous distributions.

Usage:
Uniform\$entropy(base = 2, \ldots)

Arguments:
base (integer(1))
\quad Base of the entropy logarithm, default = 2 (Shannon entropy)
\ldots Unused.

Method mgf(): The moment generating function is defined by

\[ mgf_X(t) = E_X[\exp(xt)] \]

where \( X \) is the distribution and \( E_X \) is the expectation of the distribution \( X \).

Usage:
Uniform\$mgf(t, \ldots)

Arguments:
t (integer(1))
\quad t integer to evaluate function at.
\ldots Unused.

Method cf(): The characteristic function is defined by

\[ cf_X(t) = E_X[\exp(xti)] \]

where \( X \) is the distribution and \( E_X \) is the expectation of the distribution \( X \).
Usage:
Uniform$cf(t, ...)

Arguments:
t (integer(1))
    t integer to evaluate function at.
... Unused.

Method pgf(): The probability generating function is defined by
\[ pgf_X(z) = E_X[exp(z^X)] \]
where X is the distribution and \( E_X \) is the expectation of the distribution X.

Usage:
Uniform$pgf(z, ...)

Arguments:
z (integer(1))
    z integer to evaluate probability generating function at.
... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Uniform$clone(deep = FALSE)

Arguments:
deeep Whether to make a deep clone.

Author(s)
Yumi Zhou

References

See Also
Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral, ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal, MultivariateNormal, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Wald, Weibull

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical, Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz, Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal, NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Wald, Weibull, WeightedDiscrete
UniformKernel  

**Description**

Mathematical and statistical functions for the Uniform kernel defined by the pdf,

\[ f(x) = \frac{1}{2} \]

over the support \( x \in (-1, 1) \).

**Super classes**

```
distr6::Distribution -> distr6::Kernel -> UniformKernel
```

**Public fields**

- `name` Full name of distribution.
- `short_name` Short name of distribution for printing.
- `description` Brief description of the distribution.

**Methods**

**Public methods:**

- `UniformKernel$pdfSquared2Norm()`
- `UniformKernel$cdfSquared2Norm()`
- `UniformKernel$variance()`
- `UniformKernel$clone()`

**Method pdfSquared2Norm()**: The squared 2-norm of the pdf is defined by

\[ \int_{a}^{b} (f_X(u))^2 \, du \]

where \( X \) is the Distribution, \( f_X \) is its pdf and \( a, b \) are the distribution support limits.

**Usage:**

`UniformKernel$pdfSquared2Norm(x = 0, upper = Inf)`

**Arguments**:

- `x` (numeric(1))
  - Amount to shift the result.
- `upper` (numeric(1))
  - Upper limit of the integral.

**Method cdfSquared2Norm()**: The squared 2-norm of the cdf is defined by

\[ \int_{a}^{b} (F_X(u))^2 \, du \]

where \( X \) is the Distribution, \( F_X \) is its pdf and \( a, b \) are the distribution support limits.
Usage:
UniformKernel$cdfSquared2Norm(x = 0, upper = 0)

Arguments:

x (numeric(1))
  Amount to shift the result.
upper (numeric(1))
  Upper limit of the integral.

Method variance(): The variance of a distribution is defined by the formula

\[ \text{var}_X = E[X^2] - E[X]^2 \]

where \( E_X \) is the expectation of distribution X. If the distribution is multivariate the covariance matrix is returned.

Usage:
UniformKernel$variance(...)

Arguments:
...
  Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
UniformKernel$clone(deep = FALSE)

Arguments:

dep  Whether to make a deep clone.

See Also
Other kernels: Cosine, Epanechnikov, LogisticKernel, NormalKernel, Quartic, Sigmoid, Silverman, TriangularKernel, Tricube, Triweight

Description
A wrapper for creating a vector of distributions.

Details
A vector distribution is intended to vectorize distributions more efficiently than storing a list of distributions. To improve speed and reduce memory usage, distributions are only constructed when methods (e.g. d/p/q/r) are called.

Super classes

\[ \text{distr6::Distribution} \rightarrow \text{distr6::DistributionWrapper} \rightarrow \text{VectorDistribution} \]
Active bindings

modelTable Returns reference table of wrapped Distributions.
distlist Returns list of constructed wrapped Distributions.
ids Returns ids of constructed wrapped Distributions.

Methods

Public methods:

- VectorDistribution$new()
- VectorDistribution$getParameterValue()
- VectorDistribution$wrappedModels()
- VectorDistribution$strprint()
- VectorDistribution$mean()
- VectorDistribution$mode()
- VectorDistribution$median()
- VectorDistribution$variance()
- VectorDistribution$skewness()
- VectorDistribution$skurtosis()
- VectorDistribution$entropy()
- VectorDistribution$mgf()
- VectorDistribution$cf()
- VectorDistribution$pgf()
- VectorDistribution$pdf()
- VectorDistribution$cdf()
- VectorDistribution$quantile()
- VectorDistribution$rand()
- VectorDistribution$clone()

Method new(): Creates a new instance of this R6 class.

Usage:

VectorDistribution$new(
  distlist = NULL,
  distribution = NULL,
  params = NULL,
  shared_params = NULL,
  name = NULL,
  short_name = NULL,
  decorators = NULL,
  vecdist = NULL,
  ids = NULL,
  ...
)

Arguments:
distlist (list())
  List of Distributions.

distribution (character(1))
  Should be supplied with params and optionally shared_params as an alternative to distlist.
  Much faster implementation when only one class of distribution is being wrapped. distribution
  is the full name of one of the distributions in listDistributions(), or "Distribution"
  if constructing custom distributions. See examples in VectorDistribution.

params (list()|data.frame())
  Parameters in the individual distributions for use with distribution. Can be supplied as
  a list, where each element is the list of parameters to set in the distribution, or as an object
  coercable to data.frame, where each column is a parameter and each row is a distribution.
  See examples in VectorDistribution.

shared_params (list())
  If any parameters are shared when using the distribution constructor, this provides a
  much faster implementation to list and query them together. See examples in VectorDistribution.

name (character(1))
  Optional name of wrapped distribution.

short_name (character(1))
  Optional short name/ID of wrapped distribution.

decorators (character())
  Decorators to add to the distribution during construction.

vecdist VectorDistribution
  Alternative constructor to directly create this object from an object inheriting from VectorDistribution.

ids (character())
  Optional ids for wrapped distributions in vector, should be unique and of same length as the
  number of distributions.

... Unused

Examples:
\dontrun{
  VectorDistribution$new(
    distribution = "Binomial",
    params = list(
      list(prob = 0.1, size = 2),
      list(prob = 0.6, size = 4),
      list(prob = 0.2, size = 6)
    )
  )
}

VectorDistribution$new(
  distribution = "Binomial",
  params = data.table::data.table(prob = c(0.1, 0.6, 0.2), size = c(2, 4, 6))
)

# Alternatively
VectorDistribution$new(
VectorDistribution

```r
list(
 Binomial$new(prob = 0.1, size = 2),
 Binomial$new(prob = 0.6, size = 4),
 Binomial$new(prob = 0.2, size = 6)
)
```

**Method** `getParameterValue()`: Returns the value of the supplied parameter.

*Usage:*

`VectorDistribution$getParameterValue(id, ...)`

*Arguments:*

- `id` character()
  - id of parameter value to return.
- `...` Unused

**Method** `wrappedModels()`: Returns model(s) wrapped by this wrapper.

*Usage:*

`VectorDistribution$wrappedModels(model = NULL)`

*Arguments:*

- `model` character(1)
  - id of wrapped Distribution to return. If NULL (default), a list of all wrapped Distributions is returned; if only one Distribution is matched then this is returned, otherwise a list of Distributions.

**Method** `strprint()`: Printable string representation of the VectorDistribution. Primarily used internally.

*Usage:*

`VectorDistribution$strprint(n = 10)`

*Arguments:*

- `n` integer(1)
  - Number of distributions to include when printing.

**Method** `mean()`: Returns named vector of means from each wrapped Distribution.

*Usage:*

`VectorDistribution$mean(...)`

*Arguments:*

- `...` Passed to `CoreStatistics$genExp` if numeric.

**Method** `mode()`: Returns named vector of modes from each wrapped Distribution.

*Usage:*

`VectorDistribution$mode(which = "all")`

*Arguments:*


which (character(1) | numeric(1))
    Ignored if distribution is unimodal. Otherwise “all” returns all modes, otherwise specifies
    which mode to return.

Method median(): Returns named vector of medians from each wrapped Distribution.
Usage:
VectorDistribution$median()

Method variance(): Returns named vector of variances from each wrapped Distribution.
Usage:
VectorDistribution$variance(...)
Arguments:
... Passed to CoreStatistics$genExp if numeric.

Method skewness(): Returns named vector of skewness from each wrapped Distribution.
Usage:
VectorDistribution$skewness(...)
Arguments:
... Passed to CoreStatistics$genExp if numeric.

Method kurtosis(): Returns named vector of kurtosis from each wrapped Distribution.
Usage:
VectorDistribution$kurtosis(excess = TRUE, ...)
Arguments:
excess (logical(1))
    If TRUE (default) excess kurtosis returned.
... Passed to CoreStatistics$genExp if numeric.

Method entropy(): Returns named vector of entropy from each wrapped Distribution.
Usage:
VectorDistribution$entropy(base = 2, ...)
Arguments:
base (integer(1))
    Base of the entropy logarithm, default = 2 (Shannon entropy)
... Passed to CoreStatistics$genExp if numeric.

Method mgf(): Returns named vector of mgf from each wrapped Distribution.
Usage:
VectorDistribution$mgf(t, ...)
Arguments:
t (integer(1))
    t integer to evaluate function at.
... Passed to CoreStatistics$genExp if numeric.
Method \texttt{cf()}: Returns named vector of \texttt{cf} from each wrapped \texttt{Distribution}.

\textit{Usage:}

\texttt{VectorDistribution$cf(t, \ldots)}

\textit{Arguments:}

\begin{itemize}
  \item \texttt{t (integer(1))}
    \begin{itemize}
      \item \texttt{t integer to evaluate function at.}
    \end{itemize}
  \item \ldots Passed to \texttt{CoreStatistics$genExp} if numeric.
\end{itemize}

Method \texttt{pgf()}: Returns named vector of \texttt{pgf} from each wrapped \texttt{Distribution}.

\textit{Usage:}

\texttt{VectorDistribution$pgf(z, \ldots)}

\textit{Arguments:}

\begin{itemize}
  \item \texttt{z (integer(1))}
    \begin{itemize}
      \item \texttt{z integer to evaluate probability generating function at.}
    \end{itemize}
  \item \ldots Passed to \texttt{CoreStatistics$genExp} if numeric.
\end{itemize}

Method \texttt{pdf()}: Returns named vector of \texttt{pdfs} from each wrapped \texttt{Distribution}.

\textit{Usage:}

\texttt{VectorDistribution$pdf(..., log = FALSE, simplify = TRUE, data = NULL)}

\textit{Arguments:}

\begin{itemize}
  \item \ldots (numeric())
    \begin{itemize}
      \item Points to evaluate the function at \texttt{Arguments} do not need to be named. The length of each argument corresponds to the number of points to evaluate, the number of arguments corresponds to the number of variables in the distribution. See examples.
    \end{itemize}
  \item \texttt{log (logical(1))}
    \begin{itemize}
      \item If \texttt{TRUE} returns the logarithm of the probabilities. Default is \texttt{FALSE}.
    \end{itemize}
  \item \texttt{simplify logical(1)}
    \begin{itemize}
      \item If \texttt{TRUE} (default) simplifies the return if possible to a \texttt{numeric}, otherwise returns a \texttt{data.table::data.table}.
    \end{itemize}
  \item \texttt{data array}
    \begin{itemize}
      \item Alternative method to specify points to evaluate. If univariate then rows correspond with number of points to evaluate and columns correspond with number of variables to evaluate. In the special case of \texttt{VectorDistributions} of multivariate distributions, then the third dimension corresponds to the distribution in the vector to evaluate.
    \end{itemize}
\end{itemize}

\textit{Examples:}

\begin{verbatim}
v <- VectorDistribution$new(
  distribution = "Binomial",
  params = data.frame(size = 9:10, prob = c(0.5,0.6)))

v$pdf(2)
# Equivalently
v$pdf(2, 2)

v$pdf(1:2, 3:4)
# or as a matrix
\end{verbatim}
vd$pdf(data = matrix(1:4, nrow = 2))

# when wrapping multivariate distributions, arrays are required
vd <- VectorDistribution$new(
  distribution = "Multinomial",
  params = list(
    list(size = 5, probs = c(0.1, 0.9)),
    list(size = 8, probs = c(0.3, 0.7))
  )
)

# evaluates Multinom1 and Multinom2 at (1, 4)
vd$pdf(1, 4)

# evaluates Multinom1 at (1, 4) and Multinom2 at (5, 3)
vd$pdf(data = array(c(1,4,5,3), dim = c(1,2,2)))

# and the same across many samples
vd$pdf(data = array(c(1,2,4,3,5,1,3,7), dim = c(2,2,2)))

**Method** `cdf()`: Returns named vector of cdfs from each wrapped Distribution. Same usage as `pdf`.

*Usage:*
VectorDistribution$cdf(
  ...,
  lower.tail = TRUE,
  log.p = FALSE,
  simplify = TRUE,
  data = NULL
)

*Arguments:*

... (numeric())
  Points to evaluate the function at Arguments do not need to be named. The length of each argument corresponds to the number of points to evaluate, the number of arguments corresponds to the number of variables in the distribution. See examples.

lower.tail (logical(1))
  If TRUE (default), probabilities are $X \leq x$, otherwise, $P(X > x)$.

log.p (logical(1))
  If TRUE returns the logarithm of the probabilities. Default is FALSE.

simplify logical(1)
  If TRUE (default) simplifies the return if possible to a numeric, otherwise returns a data.table::data.table.

data array
  Alternative method to specify points to evaluate. If univariate then rows correspond with number of points to evaluate and columns correspond with number of variables to evaluate. In the special case of VectorDistributions of multivariate distributions, then the third dimension corresponds to the distribution in the vector to evaluate.
Method `quantile()`: Returns named vector of quantiles from each wrapped Distribution. Same usage as `$cdf`.

Usage:
VectorDistribution$quantile(
  ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE, data = NULL
)

Arguments:
  ... (numeric())
    Points to evaluate the function at. Arguments do not need to be named. The length of each argument corresponds to the number of points to evaluate, the number of arguments corresponds to the number of variables in the distribution. See examples.
lower.tail (logical(1))
  If TRUE (default), probabilities are $X \leq x$, otherwise, $P(X > x)$.
log.p (logical(1))
  If TRUE returns the logarithm of the probabilities. Default is FALSE.
simplify logical(1)
  If TRUE (default) simplifies the return if possible to a numeric, otherwise returns a data.table::data.table.
data array
  Alternative method to specify points to evaluate. If univariate then rows correspond with number of points to evaluate and columns correspond with number of variables to evaluate. In the special case of VectorDistributions of multivariate distributions, then the third dimension corresponds to the distribution in the vector to evaluate.

Method `rand()`: Returns data.table::data.table of draws from each wrapped Distribution.

Usage:
VectorDistribution$rand(n, simplify = TRUE)

Arguments:
  n (numeric(1))
    Number of points to simulate from the distribution. If length greater than 1, then $n \leftarrow length(n)$.
simplify logical(1)
  If TRUE (default) simplifies the return if possible to a numeric, otherwise returns a data.table::data.table.

Method `clone()`: The objects of this class are cloneable with this method.

Usage:
VectorDistribution$clone(deep = FALSE)

Arguments:
  deep Whether to make a deep clone.

See Also
Other wrappers: Convolution, DistributionWrapper, HuberizedDistribution, MixtureDistribution, ProductDistribution, TruncatedDistribution
Examples

```
Method `VectorDistribution$new'

Not run:
VectorDistribution$new(
 distribution = "Binomial",
 params = list(
 list(prob = 0.1, size = 2),
 list(prob = 0.6, size = 4),
 list(prob = 0.2, size = 6)
)
)

VectorDistribution$new(
 distribution = "Binomial",
 params = data.table::data.table(prob = c(0.1, 0.6, 0.2), size = c(2, 4, 6))
)

Alternatively
VectorDistribution$new(
 list(
 Binomial$new(prob = 0.1, size = 2),
 Binomial$new(prob = 0.6, size = 4),
 Binomial$new(prob = 0.2, size = 6)
)
)

End(Not run)

Method `VectorDistribution$pdf'

vd <- VectorDistribution$new(
 distribution = "Binomial",
 params = data.frame(size = 9:10, prob = c(0.5,0.6)))

vd$pdf(2)
Equivalently
vd$pdf(2, 2)

vd$pdf(1:2, 3:4)
or as a matrix
vd$pdf(data = matrix(1:4, nrow = 2))

when wrapping multivariate distributions, arrays are required
vd <- VectorDistribution$new(
 distribution = "Multinomial",
 params = list(
 list(prob = c(0.3, 0.7), size = c(3, 7)),
 list(prob = c(0.2, 0.8), size = c(4, 6))
))
```

Wald Distribution Class

Description
Mathematical and statistical functions for the Wald distribution, which is commonly used for modeling the first passage time for Brownian motion.

Details
The Wald distribution parameterised with mean, $\mu$, and shape, $\lambda$, is defined by the pdf,

$$f(x) = \frac{\lambda}{(2\pi x^3)}^{1/2} e^{-\lambda(x - \mu)^2}/(2\mu^2 x)$$

for $\lambda > 0$ and $\mu > 0$.
Sampling is performed as per Michael, Schucany, Haas (1976).

Value
Returns an R6 object inheriting from class SDistribution.

Distribution support
The distribution is supported on the Positive Reals.

Default Parameterisation
Wald(mean = 1, shape = 1)

Omitted Methods
quantile is omitted as no closed form analytic expression could be found, decorate with FunctionImputation for a numerical imputation.
Also known as

Also known as the Inverse Normal distribution.

Super classes

distr6::Distribution -> distr6::SDistribution -> Wald

Public fields

name  Full name of distribution.
short_name  Short name of distribution for printing.
description  Brief description of the distribution.
packages  Packages required to be installed in order to construct the distribution.

Methods

Public methods:

• Wald$new()
• Wald$mean()
• Wald$mode()
• Wald$variance()
• Wald$skewness()
• Wald$kurtosis()
• Wald$mgf()
• Wald$cf()
• Wald$pgf()
• Wald$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Wald$new(mean = NULL, shape = NULL, decorators = NULL)

Arguments:
mean  (numeric(1))
    Mean of the distribution, location parameter, defined on the positive Reals.
shape  (numeric(1))
    Shape parameter, defined on the positive Reals.
decorators  (character())
    Decorators to add to the distribution during construction.

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

\[ E_X(X) = \sum p_X(x) \cdot x \]

with an integration analogue for continuous distributions.

Usage:
Method `mean()`: The mean of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
Wald$mean(...)

Arguments:
... Unused.

Method `mode()`: The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
Wald$mode(which = "all")

Arguments:
which (character(1) | numeric(1))
Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies which mode to return.

Method `variance()`: The variance of a distribution is defined by the formula

$\text{var}_X = E[X^2] - E[X]^2$

where $E_X$ is the expectation of distribution $X$. If the distribution is multivariate the covariance matrix is returned.

Usage:
Wald$variance(...)

Arguments:
... Unused.

Method `skewness()`: The skewness of a distribution is defined by the third standardised moment,

$sk_X = E_X\left[\frac{x - \mu}{\sigma}\right]^3$

where $E_X$ is the expectation of distribution $X$, $\mu$ is the mean of the distribution and $\sigma$ is the standard deviation of the distribution.

Usage:
Wald$skewness(...)

Arguments:
... Unused.

Method `kurtosis()`: The kurtosis of a distribution is defined by the fourth standardised moment,

$k_X = E_X\left[\frac{x - \mu}{\sigma}\right]^4$

where $E_X$ is the expectation of distribution $X$, $\mu$ is the mean of the distribution and $\sigma$ is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
Wald$kurtosis(excess = TRUE, ...)
excess (logical(1))
  If TRUE (default) excess kurtosis returned.
  ... Unused.

Method mgf(): The moment generating function is defined by

\[ mgf_X(t) = E_X[exp(xt)] \]

where \( X \) is the distribution and \( E_X \) is the expectation of the distribution \( X \).

Usage:
Wald$mgf(t, ...)

Arguments:
  t (integer(1))
    t integer to evaluate function at.
  ... Unused.

Method cf(): The characteristic function is defined by

\[ cf_X(t) = E_X[exp(xti)] \]

where \( X \) is the distribution and \( E_X \) is the expectation of the distribution \( X \).

Usage:
Wald$cf(t, ...)

Arguments:
  t (integer(1))
    t integer to evaluate function at.
  ... Unused.

Method pgf(): The probability generating function is defined by

\[ pgf_X(z) = E_X[exp(z^x)] \]

where \( X \) is the distribution and \( E_X \) is the expectation of the distribution \( X \).

Usage:
Wald$pgf(z, ...)

Arguments:
  z (integer(1))
    z integer to evaluate probability generating function at.
  ... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Wald$clone(deep = FALSE)

Arguments:
  deep Whether to make a deep clone.
References

See Also
Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral, ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal, MultivariateNormal, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Weibull
Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical, Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz, Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal, NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Weibull, WeightedDiscrete

Weibull Distribution Class
Description
Mathematical and statistical functions for the Weibull distribution, which is commonly used in survival analysis as it satisfies both PH and AFT requirements.

Details
The Weibull distribution parameterised with shape, $\alpha$, and scale, $\beta$, is defined by the pdf,

$$f(x) = \left(\frac{\alpha}{\beta}\right) \left(\frac{x}{\beta}\right)^{\alpha-1} \exp\left(-\frac{x}{\beta}\right)^{\alpha}$$

for $\alpha, \beta > 0$.

Value
Returns an R6 object inheriting from class SDistribution.

Distribution support
The distribution is supported on the Positive Reals.

Default Parameterisation
Weibull(shape = 1, scale = 1)
Weibull

Omitted Methods
N/A

Also known as
N/A

Super classes
distr6::Distribution -> distr6::SDistribution -> Weibull

Public fields

name Full name of distribution.
short_name Short name of distribution for printing.
description Brief description of the distribution.
packages Packages required to be installed in order to construct the distribution.

Methods

Public methods:
• Weibull$new()
• Weibull$mean()
• Weibull$mode()
• Weibull$median()
• Weibull$variance()
• Weibull$skewness()
• Weibull$kurtosis()
• Weibull$entropy()
• Weibull$pgf()
• Weibull$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Weibull$new(shape = NULL, scale = NULL, altscale = NULL, decorators = NULL)

Arguments:
shape (numeric(1))
  Shape parameter, defined on the positive Reals.
scale (numeric(1))
  Scale parameter, defined on the positive Reals.
altscale (numeric(1))
  Alternative scale parameter, if given then scale is ignored. altscale = scale^-shape.
decorators (character())
  Decorators to add to the distribution during construction.
Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

\[ E_X(X) = \sum p_X(x) \times x \]

with an integration analogue for continuous distributions.

Usage:

\texttt{Weibull}$\texttt{mean}(\ldots)$

Arguments:

\ldots Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:

\texttt{Weibull}$\texttt{mode}(\texttt{which} = \texttt{"all"})$

Arguments:

\texttt{which} (\texttt{character(1)} | \texttt{numeric(1)})

Ignored if distribution is unimodal. Otherwise “all” returns all modes, otherwise specifies which mode to return.

Method median(): Returns the median of the distribution. If an analytical expression is available returns distribution median, otherwise if symmetric returns self\$mean, otherwise returns self\$quantile(0.5).

Usage:

\texttt{Weibull}$\texttt{median}()$

Method variance(): The variance of a distribution is defined by the formula

\[ \text{var}_X = E[X^2] - E[X]^2 \]

where \( E_X \) is the expectation of distribution \( X \). If the distribution is multivariate the covariance matrix is returned.

Usage:

\texttt{Weibull}$\texttt{variance}(\ldots)$

Arguments:

\ldots Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised moment,

\[ sk_X = E_X \left[ \frac{x - \mu}{\sigma} \right] \]

where \( E_X \) is the expectation of distribution \( X \), \( \mu \) is the mean of the distribution and \( \sigma \) is the standard deviation of the distribution.

Usage:

\texttt{Weibull}$\texttt{skewness}(\ldots)$

Arguments:
Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised moment,

$$k_X = E_X \left[ \frac{x - \mu^4}{\sigma} \right]$$

where $E_X$ is the expectation of distribution X, $\mu$ is the mean of the distribution and $\sigma$ is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
Weibull$kurtosis(excess = TRUE, \ldots)$

Arguments:
excess (logical(1))
   If TRUE (default) excess kurtosis returned.

Method entropy(): The entropy of a (discrete) distribution is defined by

$$- \sum (f_X) \log(f_X)$$

where $f_X$ is the pdf of distribution X, with an integration analogue for continuous distributions.

Usage:
Weibull$entropy(base = 2, \ldots)$

Arguments:
base (integer(1))
   Base of the entropy logarithm, default = 2 (Shannon entropy)

Method pgf(): The probability generating function is defined by

$$pgf_X(z) = E_X[exp(z^x)]$$

where X is the distribution and $E_X$ is the expectation of the distribution X.

Usage:
Weibull$pgf(z, \ldots)$

Arguments:
z (integer(1))
   z integer to evaluate probability generating function at.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Weibull$clone(deep = FALSE)$

Arguments:
deep Whether to make a deep clone.
References


See Also

Other continuous distributions: Arscine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral, ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal, MultivariateNormal, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald

Other univariate distributions: Arscine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical, Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz, Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal, NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, WeightedDiscrete

WeightedDiscrete Distribution Class

Description

Mathematical and statistical functions for the WeightedDiscrete distribution, which is commonly used in empirical estimators such as Kaplan-Meier.

Details

The WeightedDiscrete distribution is defined by the pmf,

\[ f(x_i) = p_i \]

for \( p_i, i = 1, \ldots, k; \sum p_i = 1. \)

Sampling from this distribution is performed with the sample function with the elements given as the x values and the pdf as the probabilities. The cdf and quantile assume that the elements are supplied in an indexed order (otherwise the results are meaningless).

The number of points in the distribution cannot be changed after construction.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on \( x_1, \ldots, x_k. \)
WeightedDiscrete

Default Parameterisation
WeightDisc(x = 1, pdf = 1)

Omitted Methods
N/A

Also known as
N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> WeightedDiscrete

Public fields

- name  Full name of distribution.
- short_name  Short name of distribution for printing.
- description  Brief description of the distribution.

Active bindings

- properties  Returns distribution properties, including skewness type and symmetry.

Methods

Public methods:

- WeightedDiscrete$new()
- WeightedDiscrete$strprint()
- WeightedDiscrete$mean()
- WeightedDiscrete$mode()
- WeightedDiscrete$variance()
- WeightedDiscrete$skewness()
- WeightedDiscrete$kurtosis()
- WeightedDiscrete$entropy()
- WeightedDiscrete$mgf()
- WeightedDiscrete$cf()
- WeightedDiscrete$pgf()
- WeightedDiscrete$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
WeightedDiscrete$new(x = NULL, pdf = NULL, cdf = NULL, decorators = NULL)

Arguments:
x numeric()
   Data samples, must be ordered in ascending order.

pdf numeric()
   Probability mass function for corresponding samples, should be same length x. If cdf is not
   given then calculated as cumsum(pdf).

cdf numeric()
   Cumulative distribution function for corresponding samples, should be same length x. If
given then pdf is ignored and calculated as difference of cdfs.

decorators (character())
   Decorators to add to the distribution during construction.

   Usage:
   WeightedDiscrete$strprint(n = 2)
   Arguments:
   n (integer(1))
   Ignored.

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation
   \[ E_X(X) = \sum p_X(x) * x \]
   with an integration analogue for continuous distributions.
   Usage:
   WeightedDiscrete$mean(...)
   Arguments:
   ... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local
   maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).
   Usage:
   WeightedDiscrete$mode(which = "all")
   Arguments:
   which (character(1) | numeric(1))
           Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies
           which mode to return.

Method variance(): The variance of a distribution is defined by the formula
   \[ var_X = E[X^2] - E[X]^2 \]
   where \( E_X \) is the expectation of distribution X. If the distribution is multivariate the covariance
   matrix is returned.
   Usage:
   WeightedDiscrete$variance(...)
Arguments:
... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised moment,

\[ sk_X = E_X \left( \frac{x - \mu}{\sigma} \right)^3 \]

where \( E_X \) is the expectation of distribution \( X \), \( \mu \) is the mean of the distribution and \( \sigma \) is the standard deviation of the distribution.

Usage:
WeightedDiscrete$skewness(...)

Arguments:
... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised moment,

\[ k_X = E_X \left( \frac{x - \mu}{\sigma} \right)^4 \]

where \( E_X \) is the expectation of distribution \( X \), \( \mu \) is the mean of the distribution and \( \sigma \) is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
WeightedDiscrete$kurtosis(excess = TRUE, ...)

Arguments:
excess (logical(1))
  If TRUE (default) excess kurtosis returned.
... Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

\[- \sum (f_X) \log(f_X)\]

where \( f_X \) is the pdf of distribution \( X \), with an integration analogue for continuous distributions.

Usage:
WeightedDiscrete$entropy(base = 2, ...)

Arguments:
base (integer(1))
  Base of the entropy logarithm, default = 2 (Shannon entropy)
... Unused.

Method mgf(): The moment generating function is defined by

\[ mgf_X(t) = E_X [exp(xt)] \]

where \( X \) is the distribution and \( E_X \) is the expectation of the distribution \( X \).

Usage:
WeightedDiscrete$mgf(t, ...)
Arguments:
t (integer(1))
  t integer to evaluate function at.
... Unused.

Method cf(): The characteristic function is defined by
\[ cf_X(t) = E_X[exp(xt)] \]
where X is the distribution and \( E_X \) is the expectation of the distribution X.

Usage:
WeightedDiscrete$cf(t, ...)
Arguments:
t (integer(1))
  t integer to evaluate function at.
... Unused.

Method pgf(): The probability generating function is defined by
\[ pgf_X(z) = E_X[exp(z^x)] \]
where X is the distribution and \( E_X \) is the expectation of the distribution X.

Usage:
WeightedDiscrete$pgf(z, ...)
Arguments:
z (integer(1))
  z integer to evaluate probability generating function at.
... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
WeightedDiscrete$clone(deep = FALSE)
Arguments:
deep  Whether to make a deep clone.

References

Michael P. McLaughlin.

See Also

Other discrete distributions: Bernoulli, Binomial, Categorical, Degenerate, DiscreteUniform, EmpiricalMV, Empirical, Geometric, Hypergeometric, Logarithmic, Multinomial, NegativeBinomial
Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical, Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz, Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal, NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull
Examples

```r
x <- WeightedDiscrete$new(x = 1:3, pdf = c(1 / 5, 3 / 5, 1 / 5))
WeightedDiscrete$new(x = 1:3, cdf = c(1 / 5, 4 / 5, 1)) # equivalently

d/p/q/r
x$pdf(1:5)
x$cdf(1:5) # Assumes ordered in construction
x$quantile(0.42) # Assumes ordered in construction
x$rand(10)

Statistics
x$mean()
x$variance()
summary(x)
```

### [.VectorDistribution](#)

**Extract one or more Distributions from a VectorDistribution**

**Description**

Once a VectorDistribution has been constructed, use `[]` to extract one or more Distributions from inside it.

**Usage**

```r
S3 method for class 'VectorDistribution'
vecdist[i]
```

**Arguments**

- `vecdist` VectorDistribution from which to extract Distributions.
- `i` indices specifying distributions to extract or ids of wrapped distributions.

**Examples**

```r
v <- VectorDistribution$new(distribution = "Binom", params = data.frame(size = 1:2, prob = 0.5))
v[1]
v["Binom1"]
```
Index

* continuous distributions
  Arcsine, 7
  Beta, 18
  BetaNoncentral, 22
  Cauchy, 34
  ChiSquared, 39
  ChiSquaredNoncentral, 43
  Dirichlet, 59
  Erlang, 92
  Exponential, 101
  FDistribution, 106
  FDistributionNoncentral, 110
  Frechet, 113
  Gamma, 118
  Gompertz, 129
  Gumbel, 131
  InverseGamma, 142
  Laplace, 148
  Logistic, 161
  Loglogistic, 167
  Lognormal, 171
  MultivariateNormal, 188
  Normal, 197
  Pareto, 203
  Poisson, 210
  Rayleigh, 223
  ShiftedLoglogistic, 228
  StudentT, 237
  StudentTNoncentral, 241
  Triangular, 258
  Uniform, 271
  Wald, 286
  Weibull, 290

* decorators
  CoreStatistics, 48
  ExoticStatistics, 97
  FunctionImputation, 117

* discrete distributions
  Bernoulli, 13
  Binomial, 24
  Categorical, 29
  Degenerate, 55
  DiscreteUniform, 62
  Empirical, 82
  EmpiricalMV, 87
  Geometric, 124
  Hypergeometric, 138
  Logarithmic, 157
  Multinomial, 183
  NegativeBinomial, 192
  WeightedDiscrete, 294

* kernels
  Cosine, 52
  Epanechnikov, 90
  LogisticKernel, 165
  NormalKernel, 201
  Quartic, 221
  Sigmoid, 232
  Silverman, 234
  TriangularKernel, 264
  Tricube, 265
  Triweight, 267
  UniformKernel, 276

* multivariate distributions
  Dirichlet, 59
  EmpiricalMV, 87
  Multinomial, 183
  MultivariateNormal, 188

* univariate distributions
  Arcsine, 7
  Bernoulli, 13
  Beta, 18
  BetaNoncentral, 22
  Binomial, 24
  Categorical, 29
  Cauchy, 34
  ChiSquared, 39
  ChiSquaredNoncentral, 43
INDEX

Degenerate, 55
DiscreteUniform, 62
Empirical, 82
Erlang, 92
Exponential, 101
FDistribution, 106
FDistributionNoncentral, 110
Frechet, 113
Gamma, 118
Geometric, 124
Gompertz, 129
Gumbel, 131
Hypergeometric, 138
InverseGamma, 142
Laplace, 148
Logarithmic, 157
Logistic, 161
Loglogistic, 167
Lognormal, 171
NegativeBinomial, 192
Normal, 197
Pareto, 203
Poisson, 210
Rayleigh, 223
ShiftedLoglogistic, 228
StudentT, 237
StudentTNoncentral, 241
Triangular, 258
Uniform, 271
Wald, 286
Weibull, 290
WeightedDiscrete, 294

wrappers
Convolution, 47
DistributionWrapper, 78
HuberizedDistribution, 136
MixtureDistribution, 177
ProductDistribution, 214
TruncatedDistribution, 269
VectorDistribution, 277

.Distribution (ProductDistribution), 214
+ .Distribution (Convolution), 47
- .Distribution (Convolution), 47
[. VectorDistribution, 299

array, 72, 73, 99, 100, 179–181, 217, 218, 282–284
as.Distribution, 11
as.MixtureDistribution, 12
as.ProductDistribution, 12
as.VectorDistribution, 13
assertContinuous (testContinuous), 244
assertDiscrete (testDiscrete), 245
assertDistribution (testDistribution), 245
assertDistributionList (testDistributionList), 246
assertLeptokurtic (testLeptokurtic), 247
assertMatrixvariate (testMatrixvariate), 248
assertMesokurtic (testMesokurtic), 249
assertMixture (testMixture), 250
assertMultivariate (testMultivariate), 250
assertNegativeSkew (testNegativeSkew), 251
assertNoSkew (testNoSkew), 252
assertParameterSet (testParameterSet), 253
assertParameterSetList (testParameterSetList), 254
assertPlatykurtic (testPlatykurtic), 255
assertPositiveSkew (testPositiveSkew), 256
assertSymmetric (testSymmetric), 257
assertUnivariate (testUnivariate), 257

BetaNoncentral, 10, 11, 17, 21, 22, 28, 34, 38, 43, 46, 58, 62, 67, 87, 96, 105,
checkContinuous
checkDiscrete
checkParameterSetList
checkNoSkew
checkNegativeSkew
checkParameterSet
checkPositiveSkew
checkSymmetric
c.Distribution
Categorical
Cauchy
checkContinuous(testContinuous)
checkDiscrete(testDiscrete)
checkDistribution(testDistribution)
checkDistributionList(testDistributionList)
checkLeptokurtic(testLeptokurtic)
checkMatrixvariate(testMatrixvariate)
checkMesokurtic(testMesokurtic)
checkMixture(testMixture)
checkMultivariate(testMultivariate)
checkNegativeSkew(testNegativeSkew)
checkNoSkew(testNoSkew)
checkParameterSet(testParameterSet)
checkParameterSetList(testParameterSetList)
checkPlatykurtic(testPlatykurtic)
checkPositiveSkew(testPositiveSkew)
checkSymmetric(testSymmetric)
checkUnivariate(testUnivariate)
ChiSquared
ChiSquaredNoncentral
Chol
Convolutions
CoreStatistics
Cosine
cubature::cubintegrate
data.table::data.table()
debug
decorate
Degenerate
dirac
Dirichlet
DiscreteUniform
distr6(distr6-package)
distr6-package
distr6::Distribution
302 
INDEX


convolution, 47, 80, 137, 181, 219, 271, 284

CoreStatistics, 48, 101, 118, 280–282

Cosine, 52, 92, 167, 203, 222, 233, 235, 265, 267, 269, 277

cubature::cubintegrate, 51

data.table::data.table(), 72–74, 99, 100, 179–181, 217, 218, 220, 282–284

data.table::data.table(), 208

decorate, 54, 77


delta, 55

dirac, 55


distr6(distr6-package), 6

distr6-package, 6

distr6::Distribution, 8, 14, 18, 22, 25, 30, 35, 39, 44, 47, 52, 55, 59, 63, 78, 83, 88, 90, 93, 102, 106, 111, 113, 119,
INDEX

distr6::DistributionDecorator, 49, 97, 117
distr6::DistributionWrapper, 47, 136, 177, 214, 270, 277
distr6::Kernel, 52, 90, 165, 202, 221, 232, 234, 264, 266, 267, 276
distr6::SDistribution, 8, 14, 18, 22, 25, 30, 35, 39, 44, 53, 59, 63, 83, 88, 93, 102, 106, 111, 113, 119, 125, 129, 132, 139, 143, 149, 157, 161, 168, 172, 184, 188, 193, 198, 204, 211, 223, 229, 238, 242, 259, 272, 287, 291, 295
distr6::VectorDistribution, 177, 214
distr6News, 67
Distribution, 8, 47, 48, 54, 64, 67, 78–80, 97, 117, 137, 178, 214, 215, 227, 245, 246, 260, 270, 273, 278–284
DistributionDecorator, 54, 77, 154, 155
DistributionWrapper, 48, 78, 137, 157, 181, 219, 271, 284
distrSimulate, 80
dist, 81
dstrs(dstr), 81

EmpiricalMV, 17, 28, 34, 58, 62, 67, 87, 87, 128, 142, 161, 187, 192, 197, 298
Epanechnikov, 53, 90, 167, 203, 222, 233, 235, 265, 267, 269, 277
exkurtosisType, 96
ExoticStatistics, 51, 97, 118

FunctionImputation, 51, 59, 71–74, 101, 117, 136, 184, 188, 208, 270, 286
Gaussian (Normal), 197
generalPNorm, 123
INDEX

InverseNormal

Kernel
Logarithmic
listKernels

197, 201, 207, 214, 226, 232, 241,
244, 263, 275, 290, 294, 298
graphics::layout(), 208
graphics::par(), 208
Gumbel, 10, 11, 17, 21, 24, 28, 34, 38, 43, 46,
58, 62, 67, 87, 96, 105, 106, 110,
112, 116, 123, 128, 131, 131, 142,
146, 152, 161, 165, 171, 176, 192,
197, 201, 207, 214, 226, 232, 241,
244, 263, 275, 290, 294, 298
huberize, 136
HuberizedDistribution, 48, 80, 136, 136,
181, 219, 271, 284
Hypergeometric, 11, 17, 21, 24, 28, 34, 38,
43, 46, 58, 62, 67, 87, 96, 105, 106,
110, 112, 116, 123, 128, 131, 135,
142, 142, 152, 161, 165, 171, 176,
192, 197, 201, 207, 214, 226, 232,
241, 244, 263, 275, 290, 294, 298
integrate, 51
InverseGamma, 10, 11, 17, 21, 24, 28, 34, 38,
43, 46, 58, 62, 67, 87, 96, 105, 106,
110, 112, 116, 123, 128, 131, 135,
142, 142, 152, 161, 165, 171, 176,
192, 197, 201, 207, 214, 226, 232,
241, 244, 263, 275, 290, 294, 298
InverseGaussian (Wald), 286
InverseNormal (Wald), 286
InverseWeibull (Frechet), 113
Kernel, 146, 156
Laplace, 10, 11, 17, 21, 24, 28, 34, 38, 43, 46,
58, 62, 67, 87, 96, 105, 106, 110,
112, 116, 123, 128, 131, 135, 142,
146, 148, 161, 165, 171, 176, 192,
197, 201, 207, 214, 226, 232, 241,
244, 263, 275, 290, 294, 298
length.VectorDistribution, 153
lines.Distribution, 153, 208
listDecorators, 77, 154
listDecorators(), 54
listDistributions, 155
listDistributions(), 81, 178, 215, 279
listKernels, 156
listWrappers, 78, 156
Logarithmic, 11, 17, 21, 24, 28, 34, 38, 43,
46, 58, 67, 87, 96, 106, 110, 112,
116, 123, 128, 131, 135, 142, 146,
152, 157, 165, 171, 176, 187, 197,
201, 207, 214, 226, 232, 241, 244,
263, 275, 290, 294, 298
Loggaussian (Lognormal), 171
Logistic, 10, 11, 17, 21, 24, 28, 34, 38, 43,
46, 58, 62, 67, 87, 96, 105, 106, 110,
112, 116, 123, 128, 131, 135, 142,
146, 152, 161, 165, 171, 176, 192,
197, 201, 207, 214, 226, 232, 241,
244, 263, 275, 290, 294, 298
LogisticKernel, 53, 92, 165, 203, 222, 233,
235, 265, 267, 269, 277
Loglogistic, 10, 11, 17, 21, 24, 28, 34, 38,
43, 46, 58, 62, 67, 87, 96, 105, 106,
110, 112, 116, 123, 128, 131, 135,
142, 146, 152, 161, 165, 171, 176,
192, 197, 201, 207, 214, 226, 228,
232, 241, 244, 263, 275, 290, 294,
298
Lognormal, 10, 11, 17, 21, 24, 28, 34, 38, 43,
46, 58, 62, 67, 87, 96, 105, 106, 110,
112, 116, 123, 128, 131, 135, 142,
146, 152, 161, 165, 171, 176, 192,
197, 201, 207, 214, 226, 232, 241,
244, 263, 275, 290, 294, 298
makeUniqueDistributions, 176
matrix, 11
MixtureDistribution, 12, 13, 48, 80, 137,
177, 182, 219, 227, 271, 284
mixturseVector, 182
Multinomial, 17, 28, 34, 58, 62, 67, 87, 90,
128, 142, 161, 183, 192, 197, 298
MultivariateNormal, 10, 21, 24, 38, 43, 46,
62, 90, 96, 105, 110, 112, 116, 123,
131, 135, 146, 152, 165, 171, 176,
187, 188, 201, 207, 214, 226, 232,
241, 244, 263, 275, 290, 294, 298
NegativeBinomial, 11, 17, 21, 24, 28, 34, 38,
43, 46, 58, 67, 87, 90, 96, 106, 110,
112, 116, 123, 128, 131, 135, 142,
146, 152, 161, 165, 171, 176, 187,
192, 201, 207, 214, 226, 232, 241,
244, 263, 275, 290, 294, 298
Normal, 10, 11, 17, 21, 24, 28, 34, 38, 43, 46,
58, 62, 67, 87, 96, 105, 106, 110,
112, 116, 123, 128, 131, 135, 142,
INDEX

par, 208
ParameterSet, 253, 254
plot.Distribution, 153, 154, 207, 209, 210, 220
plot.VectorDistribution, 209
pracma::gammaz(), 134
ProductDistribution, 12, 13, 48, 80, 137, 181, 214, 227, 271, 284
qqplot, 220
quantile, 220
Quartic, 53, 92, 167, 203, 221, 233, 235, 265, 267, 269, 277
R6, 8, 14, 19, 23, 25, 30, 35, 40, 44, 47, 56, 60, 64, 69, 77, 79, 83, 88, 93, 102, 107, 111, 114, 120, 125, 130, 132, 137, 139, 143, 146, 149, 158, 162, 166, 168, 172, 177, 184, 189, 194, 198, 202, 204, 211, 215, 224, 228, 230, 233, 234, 238, 242, 260, 270, 272, 278, 287, 291, 295
rep.Distribution, 227
sample, 29, 82, 87, 294

set.seed, 81
set.seed(), 236
Sigmoid, 53, 92, 167, 203, 222, 232, 235, 265, 267, 269, 277
Silverman, 53, 92, 167, 203, 222, 233, 234, 265, 267, 269, 277
simulateEmpiricalDistribution, 82, 87, 236
skewType, 236
survival, 72
SymmetricTriangular (Triangular), 258
testContinuous, 244
testDiscrete, 245
testDistribution, 245
testDistributionList, 246
testLeptokurtic, 247
testMatrixmultivariate, 248
testMesokurtic, 249
testMixure, 250
testMultivariate, 250
testNegativeSkew, 251
testParameterSet, 252

testParameterSetList, 254

testPlatykurtic, 255

testPositiveSkew, 256

testSymmetric, 257

testUnivariate, 257


TriangularKernel, 53, 92, 167, 203, 222, 233, 235, 264, 267, 269, 277

Tricube, 53, 92, 167, 203, 222, 233, 235, 265, 265, 269, 277

Triweight, 53, 92, 167, 203, 222, 233, 235, 265, 267, 267, 277

truncate, 269

TruncatedDistribution, 48, 80, 137, 181, 219, 269, 269, 284


UniformKernel, 53, 92, 167, 203, 222, 233, 235, 265, 267, 269, 276


