
R Package distrMod: S4 Classes and Methods for

Probability Models

Matthias Kohl
FH Furtwangen

Peter Ruckdeschel
Carl von Ossietzky University, Oldenburg

Abstract

This vignette is published as BlueKohl and Ruckdeschel (Blue2010c). Package distr-
Mod provides an object oriented (more specifically S4-style) implementation of probability
models. Moreover, it contains functions and methods to compute minimum criterion es-
timators – in particular, maximum likelihood and minimum distance estimators.

Keywords: probability models, minimum criterion estimators, minimum distance estimators,
maximum likelihood estimators, S4 classes, S4 methods.

1. Introduction

1.1. Aims of package distrMod

What is distrMod? It is an extension package for the statistical software R, (R Develop-
ment Core Team 2010a) and is the latest member of a family of packages, which we call
distr-family. The family so far consists of packages distr, distrEx, distrEllipse, distrSim,
distrTEst, distrTeach, and distrDoc; see Ruckdeschel, Kohl, Stabla, and Camphausen (2006)
and Ruckdeschel, Kohl, Stabla, and Camphausen (2010).
Package distrMod makes extensive use of the distribution classes of package distr as well as
the functions and methods of package distrEx. Its purpose is to extend support in base R for
distributions and in particular for parametric modelling by “object oriented” implementation
of probability models via several new S4 classes and methods; see Section 2 and Chambers
(1998) for more details. In addition, it includes functions and methods to compute minimum
criterion estimators – in particular, maximum likelihood (ML[E]) (i.e. minimum negative log-
likelihood) and minimum distance estimators (MDE).
Admittedly, distrMod is not the first package to provide infrastructure for ML estimation,
we compete in some sense with such prominent functions as fitdistr from package MASS
(Venables and Ripley 2002) and, already using the S4 paradigm, mle from package stats4 (R
Development Core Team 2010a).
Our implementation however, goes beyond the scope of these packages, as we work with
distribution objects and have quite general methods available to operate on these objects.

Who should use it? It is aimed at users who want to use non-standard parametric models,
allowing them to either explore these models, or fit them to data by non-standard techniques.
The user will receive standardized output on which she/he may apply standard R functions

2 R Package distrMod

like plot, show, confint, profile.
By non-standard parametric models we mean models not in the list of explicit models cov-
ered by fitdistr; that is, "Poisson", "beta", "cauchy", "chi-squared", "exponential",
"gamma", "geometric", "lognormal", "logistic", "negative binomial", "normal", "f",
"t", "weibull". Standard as well as non-standard models can easily be implemented based
on the infrastructure provided by packages distr and distrEx. We will demonstrate this using
examples (M2) and (M4) specified in Section 1.2.
Non-standard techniques may include minimum criterion estimation, minimum distance esti-
mation, a particular optimization routine not covered by optim/optimize in the MLE case,
or some explicit expression for the MLE not covered by the standard class-room examples.
Non-standard techniques may also stand for estimation of a (differentiable) function of the
parameter as illustrated in example (M3).
Despite this flexibility, we need not modify our code to cover all this. In short, we are able
to implement one static algorithm which by S4 method dispatch dynamically takes care of
various models and optimization techniques, thus avoiding redundancy and simplifying main-
tenance. We will explain this more precisely in Section 4.1.
All information relevant for a specific parametric model is grouped within an object of class
ParamFamily or subclasses for which it may for instance be of interest to explore the (perhaps
automatically derived, as in the case of example (M2)) score function and the corresponding
Fisher information. The return value of the model fit, an estimate of the parameter, is an
object of class Estimator or subclasses for which one may want to have confidence intervals,
some profiling, etc. For objects of these classes we provide various methods for standard R
functions; see Sections 3 and 4 for more details.

Availability The current version of package distrMod is 2.8 and can be found on the Com-
prehensive R Archive Network at https://CRAN.R-project.org/package=distrMod. The
development version of the distr-family is located at R-Forge; see Theußl and Zeileis (2009).

1.2. Running examples

For illustrating the functionality of distrMod, we will use four running examples for each of
which we assume i.i.d. observations Xi (i = 1, . . . , n, n ∈ N) distributed according to the
respective Pθ:

(M1) the one-dimensional normal location family P := {Pθ | θ ∈ R} with Pθ = N (θ, 1). This
model is L2-differentiable (i.e. smoothly parametrized) with scores Λθ(x) = x− θ.

(M2) a one-dimensional location and scale family P := {Pθ | θ = (µ, σ)′ ∈ R × (0,∞)} with
some non-standard Pθ. More precisely we assume,

Xi = µ+ σVi for Vi
i.i.d∼ P (1)

where P = Pθ0 (θ0 = (0, 1)′) is the following central distribution

P (dx) = p(x) dx, p(x) ∝ e−|x|3 (2)

P is L2-differentiable with scores Λθ(x) = (3 sign(y)y2, 3|y|3 − 1)/σ for y = (x− µ)/σ.

(M3) the gamma family P := {Pθ = gamma(θ) | θ = (β, ξ)′ ∈ (0,∞)2} for scale param-
eter β and shape parameter ξ. This model is L2-differentiable with scores Λθ(x) =
(y−ξ

β , log(y)− (log Γ)′(ξ)) for y = x/β and

https://CRAN.R-project.org/package=distrMod

Matthias Kohl, Peter Ruckdeschel 3

(M4) a censored Poisson family: P := {Pθ | θ ∈ (0,∞)} where Pθ = Lθ(X|X > 1) for
X ∼ Pois(θ), that is, we only observe counts larger or equal to 2 in a Poisson model.
This model is L2-differentiable with scores Λθ(x) = x/θ − (1− e−θ)/(1− (1 + θ)e−θ) .

We will estimate θ from X1, . . . , Xn with mean squared error (MSE) as risk. This makes the
MLE asymptotically optimal. Other considerations, in particular robustness issues, suggest
that one should also look at alternatives. For the sake of this paper, we will limit ourselves
to one alternative in each model. In model (M1) we will use the median as most-robust
estimator, in model (M2) we will look at the very robust estimator θr = (median,mad) (mad
= suitable standardized MAD), while in models (M3) and (M4) we use minimum distance
estimators (MDE) to the Cramér-von-Mises distance.
The four examples were chosen for the following reasons:
In Example (M1), nothing has to be redefined. Estimation by MDE or MLE is straightfor-
ward: We define an object of class NormLocationFamily and generate some data.

R> (N <- NormLocationFamily(mean = 3))

An object of class "NormLocationFamily"

name: normal location family

distribution: Distribution Object of Class: Norm

mean: 3

sd: 1

param: An object of class "ParamFamParameter"

name: loc

mean: 3

props:

[1] "The normal location family is invariant under"

[2] "the group of transformations 'g(x) = x + loc'"

[3] "with location parameter 'loc'"

R> x <- r(N)(20)

We compute the MLE and the Cramér-von-Mises MDE using some (preliminary) method for
the computation of the asymptotic covariance of the MDE.

R> MLEstimator(x,N)

Evaluations of Maximum likelihood estimate:

3.1202926

(0.2236068)

R> MDEstimator(x,N,distance=CvMDist,

+ asvar.fct = distrMod:::.CvMMDCovariance)

4 R Package distrMod

Evaluations of Minimum CvM distance estimate (mu = emp. cdf) :

mean

2.9856921

(0.3048226)

Example (M2) illustrates the use of a “parametric group model” in the sense of Lehmann
(1983, Section 1.3, pp. 19–26), and as this model is quite non-standard, we use it to demon-
strate some capabilities of our generating functions. Example (M3) illustrates the use of
a predefined S4 class; specifically, class GammaFamily. In this case there are various equiv-
alent parameterizations, which in our setup can easily be transformed into each other; see
Section 3.2. Example (M4), also available in package distrMod as demo censoredPois,
illustrates a situation where we have to set up a model completely anew.

1.3. Organization of the paper

We first explain some aspects of the specific way object orientation (OO) is realized in R. We
then present the new model S4 classes and demonstrate how package distrMod can be used to
compute minimum criterion estimators. The global options which may be set in our package
and some general programming practices are given in the appendix.

2. Object orientation in S4

In R, OO is realized in the S3 class concept as introduced in Chambers (1993a,b) and by its
successor, the S4 class concept, as developed in Chambers (1998, 1999, 2001) and described
in detail in Chambers (2008). Of course, also R Development Core Team (2010b, Section 5)
may serve as reference.
An account of some of the differences to standard OO may be found in Chambers and Tem-
ple Lang (2001), Bengtsson (2003), and Chambers (2006).
Using the terminology of Bengtsson (2003), mainstream software engineering (e.g. C++)
uses COOP (class-object-oriented programming) style whereas the S3/S4 concept of R uses
FOOP (function-object-oriented programming) style or, according to Chambers (2006), at
least F+COOP (i.e. both styles).
In COOP style, methods providing access to or manipulation of an object are part of the
object, while in FOOP style, they are not, but belong to generic functions – abstract func-
tions which allow for arguments of varying type/class. A dispatching mechanism then decides
on run-time which method best fits the signature of the function, that is, the types/classes
of (a certain subset of) its arguments. C++ has a similar concept, “overloaded functions” as
discussed by Stroustrup (1997, Section 4.6.6).

In line with the different design of OO within R, some notions have different names in R
context as well. This is in part justified by slightly different meanings; e.g., members in R
are called slots, and constructors are called generating functions. In the case of the latter,
the notion does mean something similar but not identical to a constructor: a generating
function according to Chambers (2001) is a user-friendly wrapper to a call to new(), the
actual constructor in the S4 system. In general it does not have the same flexibility as the
full-fledged constructor in that some calling possibilities will still be reserved to a call to

Matthias Kohl, Peter Ruckdeschel 5

new().

Following the (partial) FOOP style of R, we sometimes have to deviate from best practice
in mainstream OO, namely documenting the methods of each class hierarchy together as a
group. Instead we document the corresponding particular methods in the help file for the
corresponding generic.
Although the use of OO in the R context will certainly not be able to gain benefits using object
identity, information hiding and encapsulation, the mere use of inheritance and polymorphism
does provide advantages:
Polymorphism is a very important feature in interactively used languages as the user will not
have to remember a lot of different function names but instead is able to say plot to many
different objects of classes among which there need not be any inheritance structure. On the
other hand, inheritance will make it possible to have a general (default) code which applies
if nothing else is known while still any user may register his own particular method for a
derived class, without interference of the authors of the class and generic function definitions.
Of course, this could also be achieved by functional arguments, but using method dispatch
we have much more control on the input and output types of the corresponding function.
This is important, as common R functions neither have type checking for input arguments
nor for return values. In addition to simple type checking we could even impose some refined
checking by means of the S4 validity checking.

3. S4 classes: Models and parameters

3.1. Model classes

Models in Statistics and in R In Statistics, a probability model or shortly model is a family
of probability distributions. More precisely, a subset P ⊂ M1(A) of all probability measures
on some sample space (Ω,A). In case we are dealing with a parametric model, there is
a finite-dimensional parameter domain Θ (usually an open subset of Rk) and a mapping
θ 7→ Pθ, assigning each parameter θ ∈ Θ a corresponding member of the family P. If this
parametrization is smooth, more specifically L2-differentiable, see Rieder (1994, Section 2.3),
we additionally have an L2-derivative Λθ for each θ ∈ Θ; that is, some random variable
(RV) in L2(Pθ) and its corresponding (co)variance, the Fisher information Iθ. In most cases,
Λθ = d

dθ log pθ (the classical scores) for pθ the density of Pθ w.r.t. Lebesgue or counting
measure.

One of the strengths of R (or more accurately of S) right from the introduction of S3 in
Becker, Chambers, and Wilks (1988) is that models, more specifically [generalized] linear
models (see functions lm and glm in package stats) may be explicitly formulated in terms of
the language. The key advantage of this is grouping of relevant information, re-usability, and
of course the formula interface (see formula in package stats) by which computations on the
model are possible in S.
From a mathematical point of view however, these models are somewhat incomplete: In the
case of lm, there is an implicit assumption of Gaussian errors, while in the case of glm only
a limited number of explicit families and explicit link functions are “hard-coded”. So in fact,
again the user will not enter any distributional assumption.
Other models like the more elementary location and scale family (with general central distri-

6 R Package distrMod

bution) so far have not even been implemented.

With our distribution classes available from package distr we go ahead in this direction in
package distrMod, although admittedly, up to now, we have not yet implemented any re-
gression model or integrated any formula interface, but this will hopefully be done in the
future.

Packages distr and distrEx Much of our infrastructure relies on our R packages distr and
distrEx available on CRAN. Package distr, see Ruckdeschel et al. (2006, 2010), aims to provide
a conceptual treatment of distributions by means of S4 classes. A mother class Distribution
is introduced with slots for a parameter and for functions r, d, p and q for simulation,
for evaluation of density, c.d.f. and quantile function of the corresponding distribution, re-
spectively. All distributions of the stats package are implemented as subclasses of either
AbscontDistribution or DiscreteDistribution, which themselves are again subclasses of
UnivariateDistribution. As usual in stochastics, we identify distributions with RVs dis-
tributed accordingly. By means of these classes, we may automatically generate new objects of
these classes for the laws of RVs under standard univariate mathematical transformations and
under standard bivariate arithmetical operations acting on independent RVs. Here is a short
example: We create objects of N (2, 1.69) and Pois (1.2) and convolve an affine transformation
of them.

R> library(distr)

R> N <- Norm(mean = 2, sd = 1.3)

R> P <- Pois(lambda = 1.2)

R> Z <- 2*N + 3 + P

R> Z

Distribution Object of Class: AbscontDistribution

R> plot(Z, cex.inner = 0.9)

The new distribution has corresponding slots r, d, p and q.

R> p(Z)(0.4)

[1] 0.002415402

R> q(Z)(0.3)

[1] 6.705068

R> ## in RStudio or Jupyter IRKernel, use q.l(.)(.) instead of q(.)(.)

R> r(Z)(5)

[1] 5.576786 10.626535 8.843898 9.208322 6.224140

Package distrEx extends distr by covering statistical functionals like expectation, variance or
the median evaluated at distributions, as well as distances between distributions and basic
support for multivariate and conditional distributions. E.g., using the distributions generated
above, we can write

https://cran.r-project.org/

Matthias Kohl, Peter Ruckdeschel 7

−5 0 5 10 20

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

x

d(
x)

Density of AbscontDistribution

−5 0 5 10 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q

p(
q)

CDF of AbscontDistribution

0.0 0.4 0.8

0
5

10
15

20

p

q(
p)

Quantile function of AbscontDistribution

Figure 1: Plot of Z, an object of class AbscontDistribution.

R> library(distrEx)

R> E(N)

[1] 2

R> E(P)

[1] 1.2

R> E(Z)

[1] 8.200031

R> E(Z, fun=function(x) sin(x))

[1] 0.01937089

where E(N) and E(P) return the analytic value whereas the last two calls invoke some numer-
ical computations.

Models in distrMod Based on class Distribution of package distr and its subclasses we define
classes for families of probability measures in package distrMod. So far, we specialized this to
parametric families of probability measures in class ParamFamily; see Figure 2. The concept
however, also allows the derivation of subclasses for other (e.g. semiparametric) families of
probability measures. In the case of L2-differentiable parametric families we introduce several
additional slots for scores Λθ and Fisher information Iθ. In particular, slot L2deriv for the

8 R Package distrMod

ProbFamily

+name: character

+distribution: Distribution

+distrSymm: DistributionSymmetry

+props: character

ParamFami ly

+param: ParamFamParameter

+modifyParam: function

L2ParamFami ly

+L2deriv: EuclRandVarList

+L2deriv.fct: function

+L2derivSymm: FunSymmList

+L2derivDistr: DistrList

+L2derivDistrSymm: DistrSymmList

+FisherInfo: PosSemDefSymmMatrix

+FisherInfo.fct: function

L2GroupParamFami ly

+LogDeriv: function

L2LocationFamily L2ScaleFamily L2LocationScaleFamily

Figure 2: Inheritance relations and slots of the corresponding (sub-)classes for ProbFamily
where we do not repeat inherited slots.

score function is of class EuclRandVarList, a class defined in package RandVar (Kohl and
Ruckdeschel 2010a). The mother class ProbFamily is virtual and objects can only be created
for all derived classes.

Class ParamFamily and all its subclasses have pairs of slots: actual value slots and functional
slots, the latter following the COOP paradigm. The actual value slots like distribution,
param, L2deriv, and FisherInfo are used for computations at a certain value of the param-
eter, while functional slots like modifyParam, L2deriv.fct, and FisherInfo.fct provide
mappings Θ → M1(B), θ 7→ Pθ, Θ →

⋃
θ∈Θ L2(Pθ), θ 7→ Λθ, and Θ → Rk×k, θ 7→ Iθ, respec-

tively, and are needed to modify the actual parameter of the model, or to move the model
from one parameter value to another. The different modifications due after a change in the
parameter are grouped in S4 method modifyModel.

Generating functions Generating objects of class L2ParamFamily and derived classes involves

Matthias Kohl, Peter Ruckdeschel 9

filling a considerable number of slots. Hence, for convenience, there are several user-friendly
generating functions as displayed in Table 1.

Name Family
ParamFamily general parametric family

L2ParamFamily general L2 differentiable parametric family
L2LocationFamily general L2 differentiable location family

L2LocationUnknownScaleFamily general L2 differentiable location family
with unknown scale (nuisance parameter)

L2ScaleFamily general L2 differentiable scale family
L2ScaleUnknownLocationFamily general L2 differentiable scale family

with unknown location (nuisance parameter)
L2LocationScaleFamily general L2 differentiable location and

scale family
BetaFamily beta family
BinomFamily binomial family
GammaFamily gamma family
PoisFamily Poisson family

ExpScaleFamily exponential scale family
LnormScaleFamily log-normal scale family

NormLocationFamily normal location family
NormLocationUnknownScaleFamily normal location family with

unknown scale (nuisance parameter)
NormScaleFamily normal scale family

NormScaleUnknownLocationFamily normal scale family with
unknown location (nuisance parameter)

NormLocationScaleFamily normal location and scale family

Table 1: Generating functions for ParamFamily and derived classes.

Examples In order to follow our running example (M2), consider the following code: we
first define the (non-standard) central distribution myD and then generate the location and
scale model. For the central distribution, the corresponding standardizing constant could be
expressed in closed form in terms of the gamma function, but instead we present the more
general approach in which (by argument withS) standardization to mass 1 is enforced by
numerical integration.

R> myD <- AbscontDistribution(d = function(x) exp(-abs(x)^3),

+ withS = TRUE)

The logarithmic derivative of the density d/dx log p(x) is determined by numerical differen-
tiation (but could have been given explicitly, too, by specifying argument LogDeriv). The
L2-derivative is calculated automatically using this derivative, and the corresponding Fisher
information is then determined by numerical integration (but could also be specified explicitly
using argument FisherInfo.0); see also the help file for function L2LocationScaleFamily.
In this case we have checked accuracy to be of order 1e− 6.

R> (myFam <- L2LocationScaleFamily(loc = 3, scale = 2,

+ name = "location and scale family",

+ centraldistribution = myD))

10 R Package distrMod

An object of class "L2LocationScaleFamily"

name: location and scale family

distribution: Distribution Object of Class: AffLinAbscontDistribution

param: An object of class "ParamWithScaleFamParameter"

name: location and scale

loc: 3

scale: 2

props:

[1] "The location and scale family is invariant under"

[2] "the group of transformations 'g(x) = scale*x + loc'"

[3] "with location parameter 'loc' and scale parameter 'scale'"

In the already implemented gamma family of example (M3), a corresponding object for this
model is readily defined as

R> (G <- GammaFamily(scale = 1, shape = 2))

An object of class "GammaFamily"

name: Gamma family

distribution: Distribution Object of Class: Gammad

shape: 2

scale: 1

param: An object of class "ParamWithScaleAndShapeFamParameter"

name: scale and shape

scale: 1

shape: 2

Shape parameter must not be negative.

props:

[1] "The Gamma family is scale invariant via the parametrization"

[2] "'(nu,shape)=(log(scale),shape)'"

In example (M4), we have to set up the model completely anew. Still, it is not too complicated,
as we may use the generating function L2ParamFamily as illustrated in the following code:

R> CensoredPoisFamily <- function(lambda = 1, trunc.pt = 2){

+ name <- "Censored Poisson family"

+ distribution <- Truncate(Pois(lambda = lambda),

+ lower = trunc.pt)

+ param0 <- lambda

+ names(param0) <- "lambda"

+ param <- ParamFamParameter(name = "positive mean",

Matthias Kohl, Peter Ruckdeschel 11

+ main = param0,

+ fixed = c(trunc.pt=trunc.pt))

+ modifyParam <- function(theta){

+ Truncate(Pois(lambda = theta),

+ lower = trunc.pt)}

+ startPar <- function(x,...) c(.Machine$double.eps,max(x))

+ makeOKPar <- function(param){

+ if(param<=0) return(.Machine$double.eps)

+ return(param)

+ }

+ L2deriv.fct <- function(param){

+ lambda <- main(param)

+ fct <- function(x){}

+ body(fct) <- substitute({

+ x/lambda-ppois(trunc.pt-1,

+ lambda = lambda,

+ lower.tail=FALSE)/

+ ppois(trunc.pt,

+ lambda = lambda,

+ lower.tail=FALSE)},

+ list(lambda = lambda))

+ return(fct)

+ }

+ res <- L2ParamFamily(name = name,

+ distribution = distribution,

+ param = param,

+ modifyParam = modifyParam,

+ L2deriv.fct = L2deriv.fct,

+ startPar = startPar,

+ makeOKPar = makeOKPar)

+ res@fam.call <- substitute(CensoredPoisFamily(lambda = l,

+ trunc.pt = t),

+ list(l = lambda, t = trunc.pt))

+ return(res)

+ }

R> (CP <- CensoredPoisFamily(3,2))

An object of class "L2ParamFamily"

name: Censored Poisson family

distribution: Distribution Object of Class: LatticeDistribution

param: An object of class "ParamFamParameter"

name: positive mean

lambda: 3

fixed part of param.:

trunc.pt: 2

12 R Package distrMod

Function ParamFamParameter() generates the parameter of this class, and “movements” of
the model when changing the parameter are realized in function modifyParam. More on this
will be described in Section 3.2. Functions startPar and makeOKPar are helper functions
for estimation which are discussed at the end of Section 4.2. The more difficult parts in
the implementation concern the distribution of the observations – here package distr with its
powerful methods for automatic generation of image distributions is very helpful – and the
L2-derivative as a function, L2deriv.fct. Here some off-hand calculations are inevitable.

Plotting There are also quite flexible plot methods for objects of class ParamFamily. In the
case of L2ParamFamily the default plot consists of density, cumulative distribution function
(cdf), quantile function and scores. An example is given in Figure 3; for details see the help
page of plot in distrMod.

R> layout(matrix(c(1,1,2,2,3,3,4,4,4,5,5,5), nrow = 2,

+ byrow = TRUE))

R> plot(myFam, mfColRow = FALSE, cex.inner = 1,

+ inner = c("density", "cdf", "quantile function",

+ "location part", "scale part"))

−2 0 2 4 6 8

0.
00

0.
10

0.
20

x

d(
x)

density

−2 0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q

p(
q)

cdf

0.0 0.4 0.8

0
2

4
6

p

q(
p)

quantile function

−2 0 2 4 6 8

−
5

0
5

x

L 2
 d

er
iv

at
iv

e

location part

−2 0 2 4 6 8

0
5

10
15

20

x

L 2
 d

er
iv

at
iv

e

scale part

Figure 3: Plot of L2ParamFamily object.

Matthias Kohl, Peter Ruckdeschel 13

3.2. Parameter in a parametric family: class ParamFamParameter

At first glance, the fact that the distribution classes of package distr already contain a slot
param which is either NULL or of S4 class Parameter could lead us to question why we need
the infrastructure provided by package distrMod. In fact, for class ParamFamily, we define
S4-class ParamFamParameter as subclass of class Parameter since we additionally want to
allow for partitions and transformations.
As always, there is a generating function with the same name for this class; that is, a func-
tion ParamFamParameter() which already showed up in the code for the implementation of
model (M4).
This new class is needed since in many (estimation) applications, it is not the whole param-
eter of a parametric family which is of interest, but rather parts of it, while the rest of it is
either known and fixed or has to be estimated as a nuisance parameter. In other situations,
we are interested in a (smooth) transformation of the parameter. All these cases are realized
in the design of class ParamFamParameter which has slots name, the name of the parameter,
main, the interesting aspect of the parameter, nuisance, an unknown part of the parameter
of secondary interest, but which has to be estimated, for example for confidence intervals,
and fixed, a known and fixed part of the parameter (see also Figure 4). In addition, it has a

P a r a m e t e r

+name: character

ParamFamParamete r

+main: numeric

+nuisance: OptionalNumeric

+fixed: OptionalNumeric

+trafo: MatrixorFunction

Figure 4: Inheritance relations and slots of ParamFamParameter where we do not repeat
inherited slots.

slot trafo (an abbreviation of “transformation”) which is also visible in class Estimate (see
Figure 5). Slot trafo for instance may be used to realize partial influence curves, see Rieder
(1994, Definition 4.2.10), where one is only interested in some possibly lower dimensional
smooth (not necessarily linear or coordinate-wise) aspect/transformation τ of the parame-
ter θ.
To be coherent with the corresponding nuisance implementation, we use the following con-
vention: The full parameter θ is split up coordinate-wise into a main parameter θ′, a nuisance
parameter θ′′, and a fixed, known part θ′′′.
Without loss of generality, we restrict ourselves to the case that transformation τ only acts
on the main parameter θ′ – in case we want to transform the whole parameter, we have to
assume both nuisance parameter θ′′ and known part of the parameter θ′′′ have length zero.

Implementation Slot trafo can contain either a (constant) matrix Dθ or a function

τ : Θ′ → Θ̃, θ 7→ τ(θ)

mapping the main parameter θ′ to some range Θ̃.

14 R Package distrMod

If slot value trafo is a function, besides τ(θ), it will also return the corresponding derivative
matrix ∂

∂θ τ(θ). More specifically, the return value of this function is a list with entries fval,
the function value τ(θ), and mat, the derivative matrix.
In the case that trafo is a matrix D, we interpret it as such a derivative matrix ∂

∂θ τ(θ), and
correspondingly, τ(θ) is the linear mapping τ(θ) = Dθ.
According to the signature, the return value of accessor function/method trafo varies. For
signatures (ParamFamily,ParamFamParameter), (Estimate,ParamFamParameter), and
(Estimate,missing), the result is a list with entries fct, the function τ , and mat, the
matrix ∂

∂θ τ(θ). Function τ will then return a list with entries fval and mat mentioned above.
For signatures (ParamFamily,missing) and (ParamFamParameter,missing), trafo will just
return the corresponding matrix.

Movements in parameter space and model space Our implementation of models has both
function components providing mappings θ 7→ Component(θ) (like L2deriv.fct) and com-
ponents evaluated at an actual parameter value θ (like L2deriv). When we “move” a model
object from θ to θ′, i.e. when we change the reference parameter of this model object
from θ to θ′, the latter components have to be modified accordingly. To this end, there
are modifyModel methods for classes L2ParamFamily, L2LocationFamily, L2ScaleFamily,
L2LocationScaleFamily, ExpScaleFamily, and GammaFamily, where the second argument
to dispatch on has to be of class ParamFamParameter but this probably will be extended
in the future. The code for example (M3), that is to signature model="GammaFamily", for
instance, reads

R> setMethod("modifyModel",

+ signature(model = "GammaFamily",

+ param = "ParamFamParameter"),

+ function(model, param, ...){

+ M <- modifyModel(as(model, "L2ParamFamily"),

+ param = param, .withCall = FALSE)

+ M@L2derivSymm <- FunSymmList(OddSymmetric(SymmCenter =

+ prod(main(param))),

+ NonSymmetric())

+ class(M) <- class(model)

+ return(M)

+ })

Internally, the default modifyModel method makes use of slots modifParam (to move the
distribution of the observations) and L2deriv.fct (to move the L2-derivative). For in-
ternal reasons, these two functions have different implementations of the parameter as ar-
gument: L2deriv.fct, only internally used by our routines, requires an instance of class
ParamFamParameter. In contrast to this, modifyParam uses a representation of the param-
eter as slot main of class ParamFamParameter; that is, simply as a numeric vector, because
its results are passed on to non-distrMod-code. This inconsistency, which also holds for the
passed-on functional slots makeOKPar and startPar, might confuse some users and will hence
probably be changed in a subsequent package version.

Example Our implementation of the gamma family follows the parametrization of the R core
functions d/p/q/rgamma. Hence, we use the parameters ("scale","shape") (in this order).
Package MASS (Venables and Ripley 2002) however uses the (equivalent) parametrization

Matthias Kohl, Peter Ruckdeschel 15

("shape","rate"), where rate=1/scale. To be able to compare the results obtained for the
MLE by fitdistr and by our package, we therefore use the corresponding transformation
τ(scale, shape) = (shape, 1/scale). More specifically, this can be done as follows

R> mtrafo <- function(x){

+ nms0 <- c("scale","shape")

+ nms <- c("shape","rate")

+ fval0 <- c(x[2], 1/x[1])

+ names(fval0) <- nms

+ mat0 <- matrix(c(0, -1/x[1]^2, 1, 0), nrow = 2,

+ dimnames = list(nms,nms0))

+ list(fval = fval0, mat = mat0)

+ }

R> (G.MASS <- GammaFamily(scale = 1, shape = 2, trafo = mtrafo))

An object of class "GammaFamily"

name: Gamma family

distribution: Distribution Object of Class: Gammad

shape: 2

scale: 1

param: An object of class "ParamWithScaleAndShapeFamParameter"

name: scale and shape

scale: 1

shape: 2

Shape parameter must not be negative.

props:

[1] "The Gamma family is scale invariant via the parametrization"

[2] "'(nu,shape)=(log(scale),shape)'"

4. Minimum criterion estimation

4.1. Implementations in R so far

To better appreciate the generality of our object oriented approach, let us contrast it with
the two already mentioned implementations:

fitdistr Function fitdistr comes with arguments: x, densfun, start (and ...) and returns
an object of S3-class fitdistr which is a list with components estimate, sd, and loglik.
As starting estimator start in case (M2), we select median and MAD, where for the latter
we need a consistency constant to obtain a consistent estimate for scale. In package distrMod
this is adjusted automatically.
Due to symmetry about the location parameter, this constant is just the inverse of the upper
quartile of the central distribution, obtainable via

16 R Package distrMod

R> (mad.const <- 1/q(myD)(0.75))

[1] 2.187639

R> ## in RStudio or Jupyter IRKernel, use q.l(.)(.) instead of q(.)(.)

Then, function fitdistr from package MASS may be called as

R> set.seed(19)

R> x <- r(distribution(myFam))(50)

R> mydf <- function(x, loc, scale){

+ y <- (x-loc)/scale; exp(-abs(y)^3)/scale

+ }

R> Med <- median(x)

R> MAD <- mad(x, constant = mad.const)

R> c(Med, MAD)

[1] 3.088471 1.803579

R> fitdistr(x, mydf, start = list("loc" = Med, "scale" = MAD))

loc scale

3.1636282 1.6053346

(0.1269680) (0.1310642)

mle Function mle from package stats4 on the other hand, has arguments minuslogl (without
data argument!), start, method (and ...) and returns an object of S4-class mle with slots
call, coef, full, vcov, min, details, minuslogl, and method. The MLE for model (M2)
may then be computed via

R> ll <- function(loc,scale){-sum(log(mydf(x,loc,scale)))}

R> mle(ll, start = list("loc" = Med, "scale" = MAD))

Call:

mle(minuslogl = ll, start = list(loc = Med, scale = MAD))

Coefficients:

loc scale

3.163628 1.605335

There are further packages with implementations for MLE like bbmle (Bolker 2010), fit-
distrplus (Delignette-Muller, Pouillot, Denis, and Dutang 2010), and maxLik (Toomet and
Henningsen 2010). Package bbmle provides modifications and extensions for the mle classes of
the stats4 package. The implementation is very similar to package stats4 and the computation
of the MLE is based on function optim. As the name of package fitdistrplus already suggests,
it contains an extension of the function fitdistr with a very similar implementation. That

Matthias Kohl, Peter Ruckdeschel 17

is, there are analogous if clauses like in function fitdistr and if none of the special cases ap-
ply, numerical optimization via optim is performed. In addition to fitdistr, a user-supplied
function can be used for optimization. Package maxLik includes tools for computing MLEs
by means of numerical optimization via functions optim and nlm, respectively.
There is also at least one package which can be used to compute MDEs. With function mde of
package actuar (Dutang, Goulet, and Pigeon 2008) one can minimize the Cramér-von-Mises
distance for individual and grouped data. Moreover, for grouped data a modified χ2-statistic
as well as the squared difference between the theoretical and empirical limited expected value
can be chosen. The optimization is again performed by function optim.

4.2. Estimators in package distrMod

In our framework, it is possible to implement a general, dispatchable minimum criterion es-
timator (MCE); that is, an estimator minimizing a criterion incorporating the observations /
the empirical distribution and the model. Examples of MCEs comprise MLEs (with neg. Log-
likelihood as criterion) and MDEs where the criterion is some distance between the empirical
distribution and Pθ.

We have implemented MCEs in form of the function MCEstimator, and also provide functions
MDEstimator and MLEstimator – essentially just wrapper functions for MCEstimator.
MCEstimator takes as arguments the observations x, the parametric family ParamFamily, the
criterion, and a starting parameter startPar (and again some optional ones). It returns an
object of class MCEstimate (a subclass of class Estimate) with slots estimate, criterion,
samplesize, asvar (and some more); for more detailed information see the help page of class
MCEstimate.

The main achievement of our approach is that estimators are available for any object of
class ParamFamily (e.g., Poisson, beta, gamma and many more). At the same time, using
S4 inheritance this generality does not hinder specialization to particular models: internal
dispatch on run-time according to argument ParamFamily allows the definition of new spe-
cialized methods without modifying existing code, a feature whose importance should not be
underestimated when we are dealing with distributed collaborative package development.
Specialized methods for the computation of these MCEs can easily be established as described
below. In particular, this can be done externally to our package, and nonetheless all our infra-
structure is fully available right from the beginning; i.e., a unified interfacing/calling function,
unified plotting, printing, interface to confidence intervals etc.

Limitations of the other implementations In principle, the last few points could already have
been realized within the elder S3 approach as realized in fitdistr. However, there are some
subtle limitations which apply to function fitdistr and function mle as well as to the other
implementations: while the general R optimization routines/interfaces optim/optimize/nlm
clearly stand out for their generality and their implementation quality, “general” numerical
optimization to determine an MLE in almost all cases is bound to the use of these routines.
There are cases however, where either other optimization techniques could be more adequate
(e.g. in estimating the integer-valued degrees-of-freedom parameter in a χ2-distribution), or
where numerical optimization is not necessary, because optima can be determined analytically.
The first case may to a certain extend be handled using package fitdistrplus where one can
specify a user-supplied function for optimization. However, for the second case it would be
necessary to change existing code; e.g., convince the authors Brian Ripley and Bill Venables

18 R Package distrMod

to append another if-clause in fitdistr.
The above is also true for MDE. The numerical optimization in the case of function mde of
package actuar is restricted to optim and it would be necessary to change the existing code
if one for example wants to use another distance (e.g. Kolmogorov distance).

As already mentioned, the approach realized in package distrMod does not have these limita-
tions. As an example one can quite easily insert “intermediate” layers like group models; e.g.,
location (and/or scale) models. In the S4-inheritance structure for class ParamFamily, one
can define a corresponding subclass S and “intermediate” general methods for S which are
more special than optim/optimize/nlm, but still apply by default for more than one model,
and which – if desired – could then again be overridden by more special methods applying to
subclasses of S.
The main function for this purpose is MCEstimator. As an example we can use the negative
log-likelihood as criterion; i.e., compute the maximum likelihood estimator.

R> negLoglikelihood <- function(x, Distribution){

+ res <- -sum(log(Distribution@d(x)))

+ names(res) <- "Negative Log-Likelihood"

+ return(res)

+ }

R> MCEstimator(x = x, ParamFamily = myFam,

+ criterion = negLoglikelihood)

Evaluations of Minimum criterion estimate:

--

estimate:

loc scale

3.163589 1.605325

The user can then specialize the behaviour of MCEstimator on two layers: instance-individual
or class-individual.

Instance-individually Using the first layer, we may specify model-individual starting val-
ues/search intervals by slot startPar of class ParamFamily, pass on special control parame-
ters to functions optim/optimize by a ... argument in function MCEstimator, and we may
enforce valid parameter values by specifying function slot makeOKPar of class ParamFamily. In
addition, one can specify a penalty value penalizing invalid parameter values. For an example,
see the code to example (M4) on page 10.

Class-individually In some situations, one would rather like to define rules for groups of
models or to be even more flexible. This can be achieved using the class-individual layer: In
order to use method dispatch to find the “right” function to determine the MCE, we define
subclasses to class ParamFamily as e.g., in the case of class PoisFamily. In general, these
subclasses will not have any new slots, but merely serve as the basis for a refined method
dispatching. As an example, the code to define class PoisFamily simply is

R> setClass("PoisFamily", contains = "L2ParamFamily")

For group models, like the location and scale model, there may be additional slots and inter-
mediate classes; e.g.,

Matthias Kohl, Peter Ruckdeschel 19

R> setClass("NormLocationFamily", contains = "L2LocationFamily")

Specialized methods may then be defined for these subclases. So far, in package distr-
Mod we have particular validParameter methods for classes ParamFamily, L2ScaleFamily,
L2LocationFamily and L2LocationScaleFamily; e.g., the code to signature L2ScaleFamily
simply is

R> setMethod("validParameter",

+ signature(object = "L2ScaleFamily"),

+ function(object, param, tol=.Machine$double.eps){

+ if(is(param,"ParamFamParameter"))

+ param <- main(param)

+ if(!all(is.finite(param))) return(FALSE)

+ if(length(param)!=1) return(FALSE)

+ return(param > tol)

+ })

Class-individual routines are realized by calling mceCalc and mleCalc within function
MCEstimator and MLEstimator, respectively; e.g.,

R> setMethod("mleCalc", signature(x = "numeric",

+ PFam = "NormLocationScaleFamily"),

+ function(x, PFam){

+ n <- length(x)

+ c(mean(x), sqrt((n-1)/n)*sd(x))

+ })

and the maximum likelihood estimator in example (M2) can easily be computed as follows.

R> MLEstimator(x = x, ParamFamily = myFam)

Evaluations of Maximum likelihood estimate:

loc scale

3.1635895 1.6053251

(0.1303646) (0.1310812)

Similarly we could evaluate the Kolmogorov-MDE in this model:

R> MDEstimator(x = x, ParamFamily = myFam,

+ distance = KolmogorovDist)

Evaluations of Minimum Kolmogorov distance estimate :

--

estimate:

loc scale

3.186672 1.713888

20 R Package distrMod

Note that the last two calls would be identical (only replacing argument myFam) for exam-
ples (M3) and (M4).

Functions mceCalc and mleCalc Both mceCalc and mleCalc dispatch according to their argu-
ments x and PFam. For mceCalc, so far there is only a method for signature (numeric,ParamFamily),
while mleCalc already has several particular methods for argument PFam of classes ParamFamily,
BinomFamily, PoisFamily, NormLocationFamily,
NormScaleFamily, and NormLocationScaleFamily. To date, in both mceCalc and mleCalc,
argument x must inherit from class numeric, but we plan to allow for more general classes
(e.g. data.frames) in subsequent versions. Note that for technical reasons, mleCalc must
have an extra ... argument to cope with different callings from MLEstimator. Additional
arguments are of course possible. The return value must be a list with prescribed structure.
To this end, function meRes() can be used as a helper to produce this structure. For example
the mleCalc-method for signature numeric,NormScaleFamily is

R> setMethod("mleCalc", signature(x = "numeric",

+ PFam = "NormScaleFamily"),

+ function(x, PFam, ...){

+ n <- length(x)

+ theta <- sqrt((n - 1)/n) * sd(x)

+ mn <- mean(distribution(PFam))

+ ll <- -sum(dnorm(x, mean = mn, sd = theta, log = TRUE))

+ names(ll) <- "neg.Loglikelihood"

+ crit.fct <- function(sd) -sum(dnorm(x, mean = mn,

+ sd = sd, log = TRUE))

+ param <- ParamFamParameter(name = "scale parameter",

+ main = c("sd" = theta))

+ if(!hasArg(Infos)) Infos <- NULL

+ return(meRes(x, theta, ll, param, crit.fct,

+ Infos = Infos))

+ })

Coercion to class mle We also provide a coercion to class mle from package stats4, hence
making profiling by the profile-method therein possible. In order to be able to do so, we
need to fill a functional slot criterion.fct of class MCEstimate. In many examples this is
straightforward, but in higher dimensions, helper function get.criterion.fct can be useful;
e.g., it handles the general case for signature ParamFamily.
The values of functions MCEstimator, MDEstimator, and MLEstimator are objects of S4-class
MCEstimate which inherits from S4-class Estimate; see Figure 5 for more details.

4.3. Confidence intervals and profiling

We also provide particular methods for functions confint and, as already mentioned in the
previous section, profile of package stats. Moreover, by adding an argument method to
the signature of confint, we gain more flexibility. Note that the addition of an extra argu-
ment was only possible by masking method confint. This masking is done in a way that
it reproduces exactly the stats behaviour when called with the corresponding arguments,
however. This additional argument is for example used in package ROptEst (Kohl and Ruck-
deschel 2010b) where one can determine robust (asymptotic) confidence intervals which are

Matthias Kohl, Peter Ruckdeschel 21

Est imate

+name: character

+estimate: ANY

+samplesize: numeric

+asvar: OptionalMatrix

+Infos: matrix

+estimate.call: call

+nuis.idx: OptionalNumeric

+trafo: list

+untransformed.estimate: ANY

+untransformed.asvar: OptionalMatrix

MCEst imate

+criterion: numeric

Figure 5: Inheritance relations and slots of the corresponding (sub-)classes for Estimate

where we do not repeat inherited slots.

uniformly valid on neighborhoods and may incorporate bias in various ways. Also, in prin-
ciple, one-sided confidence intervals are possible, as well as confidence intervals produced by
other techniques like bootstrap.

To make confidence intervals available for objects of class MCEstimate, there is a method
confint, which produces confidence intervals (of class Confint). As an example consider the
following: We first generate some data and determine the Cramér-von-Mises MDE as starting
estimator for fitdistr. We then compute the MLE using fitdistr and MLEstimator.

R> set.seed(19)

R> y <- rgamma(50, scale = 3, shape = 2)

R> (MDest <- MDEstimator(x = y, ParamFamily = G.MASS,

+ distance = CvMDist))

Evaluations of Minimum CvM distance estimate (mu = emp. cdf) :

estimate:

shape rate

2.535892 0.380337

R> fitdistr(x = y, densfun = "gamma",

+ start = list("shape" = estimate(MDest)[1],

+ "rate" = estimate(MDest)[2]))

shape rate

2.61780074 0.39957930

(0.49383936) (0.08307668)

22 R Package distrMod

R> (res <- MLEstimator(x = y, ParamFamily = G.MASS))

Evaluations of Maximum likelihood estimate:

shape rate

2.61752800 0.39953520

(0.49379501) (0.08307007)

R> (ci <- confint(res))

A[n] asymptotic (CLT-based) confidence interval:

2.5 % 97.5 %

shape 1.6497076 3.5853484

rate 0.2367209 0.5623495

And we can do some profiling. The results are given in Figure 6.

R> par(mfrow=c(2,1))

R> plot(profile(res))

1.5 2.0 2.5 3.0 3.5 4.0

0.
0

1.
0

2.
0

shape

z

−0.4 −0.2 0.0 0.2 0.4

0.
0

1.
0

2.
0

rate

z

Figure 6: Profiling: behavior of objective function near the solution.

Matthias Kohl, Peter Ruckdeschel 23

Note again that only minimal changes in the preceding distrMod-code would be necessary to
also apply the code to examples (M3) and (M4).

4.4. Customizing the level of detail in output

For class Confint as well as for class Estimate we have particular show and print methods
where you may scale the output. This scaling can either be done by setting global options with
distrModOptions (see Appendix A), or, in the case of print, locally by the extra argument
show.details. The default value of show.details is "maximal".
Note that this departure from functional programming style is necessary, as show does not
allow for additional arguments.

Value of show.details Object of class MCEstimate Object of class Confint
"minimal" parameter estimates and lower and upper confidence

estimated standard errors limits for each parameter
"medium" call, sample size, asymptotic call, sample size, and type

(co)variance, and criterion of estimator
"maximal" untransformed estimate, transformation, and

asymptotic (co)variance of derivative matrix
untransformed estimate,
transformation, and derivative
matrix

Table 2: The level of detail in output. In case of "medium" and "maximal" only the additional
output is specified.

5. Conclusions

Package distrMod represents the most flexible implementation of minimum criterion esti-
mators for univariate distributions, including maximum likelihood and minimum distance
estimators, available in R so far. These estimators are provided for any object of S4 class
ParamFamily and by S4 inheritance can be adapted to particular models without modifying
existing code. In addition it contains infra-structure in terms of unified interfacing/calling
functions, unified plotting, printing, interface to confidence intervals and more.

References

Becker RA, Chambers JM, Wilks AR (1988). The New S language. A Programming Envi-
ronment for Data Analysis and Graphics. Wadsworth & Brooks/Cole Advanced Books &
Software, Pacific Grove, CA.

Bengtsson H (2003). “The R.oo package - Object-Oriented Programming with References
Using Standard R Code.” In K Hornik, F Leisch, A Zeileis (eds.), “Proceedings of the
3rd International Workshop on Distributed Statistical Computing (DSC 2003),” Vienna,
Austria. ISSN 1609-395X. URL http://www.ci.tuwien.ac.at/Conferences/DSC-2003/.

http://www.ci.tuwien.ac.at/Conferences/DSC-2003/

24 R Package distrMod

Bolker B (2010). bbmle: Tools for General Maximum Likelihood Estimation. R package
version 0.9.5.1, URL https://CRAN.R-project.org/package=bbmle.

Chambers JM (1993a). “Classes and Methods in S. I: Recent Developments.” Computational
Statistics, 8(3), 167–184.

Chambers JM (1993b). “Classes and Methods in S. II: Future Directions.” Computational
Statistics, 8(3), 185–196.

Chambers JM (1998). Programming with Data. A Guide to the S Language. Springer-Verlag.

Chambers JM (1999). “Computing with Data: Concepts and Challenges.” The American
Statistician, 53(1), 73–84.

Chambers JM (2001). “Classes and Methods in the S Language.” Technical report, omega-
hat.org. URL https://www.omegahat.net/RSMethods/Intro.pdf.

Chambers JM (2006). “How S4 Methods Work.” Technical report, r-project.org. URL https:

//developer.r-project.org/howMethodsWork.pdf.

Chambers JM (2008). Software for Data Analysis. Programming with R. Springer-Verlag.

Chambers JM, Temple Lang D (2001). “Object Oriented Programming in R.” R News, 1(3),
17–19. URL https://CRAN.R-project.org/doc/Rnews/.

Delignette-Muller ML, Pouillot R, Denis JB, Dutang C (2010). fitdistrplus: Help to Fit of a
Parametric Distribution to Non-Censored or Censored Data. R package version 0.1-3, URL
https://CRAN.R-project.org/package=fitdistrplus.

Dutang C, Goulet V, Pigeon M (2008). “actuar: An R Package for Actuarial Science.” Journal
of Statistical Software, 25(7), 1–37. URL https://www.jstatsoft.org/.

Gentleman R (2008). R Programming for Bioinformatics. Chapman & Hall/CRC.

Kohl M, Ruckdeschel P (2010a). RandVar: Implementation of Random Variables. R package
version 0.7, URL https://robast.r-forge.r-project.org/.

Kohl M, Ruckdeschel P (2010b). ROptEst: Optimally Robust Estimation. R package version
0.7, URL https://robast.r-forge.r-project.org/.

Kohl M, Ruckdeschel P (2010c). “R Package distrMod: S4 Classes and Methods for Probability
Models.” Journal of Statistical Software, 35(10), 1–27. doi:10.18637/jss.v035.i10.

Lehmann E (1983). Theory of Point Estimation. John Wiley & Sons.

R Development Core Team (2010a). R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
https://www.R-project.org.

R Development Core Team (2010b). R Language definition – Version 2.11.1. URL https:

//CRAN.R-project.org/doc/manuals/R-lang.pdf.

Rieder H (1994). Robust Asymptotic Statistics. Springer-Verlag.

https://CRAN.R-project.org/package=bbmle
https://www.omegahat.net/RSMethods/Intro.pdf
https://developer.r-project.org/howMethodsWork.pdf
https://developer.r-project.org/howMethodsWork.pdf
https://CRAN.R-project.org/doc/Rnews/
https://CRAN.R-project.org/package=fitdistrplus
https://www.jstatsoft.org/
https://robast.r-forge.r-project.org/
https://robast.r-forge.r-project.org/
http://dx.doi.org/10.18637/jss.v035.i10
https://www.R-project.org
https://CRAN.R-project.org/doc/manuals/R-lang.pdf
https://CRAN.R-project.org/doc/manuals/R-lang.pdf

Matthias Kohl, Peter Ruckdeschel 25

Ruckdeschel P, Kohl M, Stabla T, Camphausen F (2006). “S4 Classes for Distributions.” R
News, 6(2), 2–6. URL https://CRAN.R-project.org/doc/Rnews.

Ruckdeschel P, Kohl M, Stabla T, Camphausen F (2010). S4 Classes for Distributions—a
Manual for Packages distr, distrSim, distrTEst, distrEx, distrMod, and distrTeach.
Vignette contained in package distrDoc, URL https://CRAN.R-project.org/package=

distrDoc.

Stroustrup B (1997). The C++ Programming Language. Addison-Wesley, 3rd edition.

Theußl S, Zeileis A (2009). “Collaborative Software Development Using R-Forge.” The R
Journal, 1(1), 9–14. URL https://journal.R-project.org/2009-1/RJournal_2009-1_

Theussl+Zeileis.pdf.

Toomet O, Henningsen A (2010). maxLik: Maximum Likelihood Estimation. With contribu-
tions from Spencer Graves. R package version 0.7-2, URL https://CRAN.R-project.org/

package=maxLik.

Venables W, Ripley B (2002). Modern Applied Statistics with S. Springer-Verlag, 4th edition.
URL https://www.stats.ox.ac.uk/pub/MASS4.

A. Global options

Analogously to the options command in R package base one may specify a number of global
“constants” to be used within the package via distrModoptions/getdistrModOption. These
include

� use.generalized.inverse.by.default which is a logical variable giving the default
value for argument generalized of our method solve in package distrMod. This
argument decides whether our method solve is to use generalized inverses if the original
solve-method from package base fails. If the option is set to FALSE, in the case of failure,
and unless argument generalized is not explicitly set to TRUE, solve will throw an error
as is the base-method behavior. The default value of the option is TRUE.

� show.details controls the level of detail of method show for objects of the classes of
the distr family of packages. Possible values are

– "maximal": all information is shown

– "minimal": only the most important information is shown

– "medium": somewhere in the middle; see actual show-methods for details.

The default value is "maximal". For more details see Table 2.

B. Following good programming practices

There are several new S4 classes in package distrMod. With respect to inspection and modifi-
cation of the class slots we follow the suggestion of Section 3.4 in Gentleman (2008). That is,

https://CRAN.R-project.org/doc/Rnews
https://CRAN.R-project.org/package=distrDoc
https://CRAN.R-project.org/package=distrDoc
https://journal.R-project.org/2009-1/RJournal_2009-1_Theussl+Zeileis.pdf
https://journal.R-project.org/2009-1/RJournal_2009-1_Theussl+Zeileis.pdf
https://CRAN.R-project.org/package=maxLik
https://CRAN.R-project.org/package=maxLik
https://www.stats.ox.ac.uk/pub/MASS4

26 R Package distrMod

there are accessor functions/methods for all slots included in the new classes. Moreover, we
implemented replacement functions/methods for those slots which are intended to be modi-
fiable by the user.
One could also use the @-operator to modify or access slots. However, this operator relies on
the implementation details of the class, and hence, this may lead to difficulties if the class
implementation has to be changed. In addition, as no checking is invoked one may easily
produce inconsistent objects.

We also implemented generating functions for all non-virtual classes which shall ease the
definition of objects for the user; see Chambers (1998, Section 1.6). These functions in most
cases have the same name as the class. By obtaining convenience via generating functions and
not via new initialize-methods, we see the advantage that the default initialize-methods
called by means of new remain valid and can be used for programming.

Finally, there are show-methods for all new S4 classes which display the essential information
of instantiated objects; see Chambers (1998, Section 1.6).

Acknowledgments

Both authors contributed equally to this work. We thank the referees and the associate editor
for their helpful comments.

Affiliation:

Matthias Kohl
Hochschule Furtwangen
Fakultät Maschinenbau und Verfahrenstechnik
Jakob-Kienzle-Strasse 17
78054 Villingen-Schwenningen, Germany
E-mail: Matthias.Kohl@hs-furtwangen.de

Peter Ruckdeschel
Institute for Mathematics
School of Mathematics and Sciences
Carl von Ossietzky University Oldenburg, Postfach 25 03
26111 Oldenburg, Germany
E-mail: peter.ruckdeschel@uni-oldenburg.de

mailto:Matthias.Kohl@hs-furtwangen.de
mailto:peter.ruckdeschel@uni-oldenburg.de

	Introduction
	Aims of package distrMod
	Running examples
	Organization of the paper

	Object orientation in S4
	S4 classes: Models and parameters
	Model classes
	Parameter in a parametric family: class ParamFamParameter

	Minimum criterion estimation
	Implementations in R so far
	Estimators in package distrMod
	Confidence intervals and profiling
	Customizing the level of detail in output

	Conclusions
	Global options
	Following good programming practices

