Package ‘diversityForest’

April 3, 2021

Type Package
Title Complex Split Procedures in Random Forests Through Candidate Split Sampling
Version 0.3.1
Date 2021-04-02
Author Roman Hornung [aut, cre], Marvin N. Wright [ctb, cph]
Maintainer Roman Hornung <hornung@ibe.med.uni-muenchen.de>
Description Implements interaction forests [1], which are specific diversity forests, and the basic form of diversity forests that uses univariable, binary splitting [2]. Interaction forests (IFs) are ensembles of decision trees that model quantitative and qualitative interaction effects using bivariable splitting. IFs come with the Effect Importance Measure (EIM), which can be used to identify variable pairs that feature quantitative and qualitative interaction effects with high predictive relevance. IFs and EIM focus on well interpretable forms of interactions. The package also offers plot functions for visualising the estimated forms of interaction effects. Categorical, metric, and survival outcomes are supported. This is a fork of the R package ‘ranger’ (main author: Marvin N. Wright) that implements random forests using an efficient C++ implementation.

References:

SystemRequirements C++11
Encoding UTF-8
License GPL-3
Imports Rcpp (>= 0.11.2), Matrix, ggplot2, ggpubr, scales, nnet, sgeostat, rms, MapGAM, gam, rlang, grDevices, RColorBrewer, RcppEigen, survival
LinkingTo Rcpp, RcppEigen
Diversity Forests

Description

The diversity forest algorithm is not a specific algorithm, but an alternative candidate split sampling scheme that makes complex split procedures in random forests possible computationally by drastically reducing the numbers of candidate splits that need to be evaluated for each split. It also avoids the well-known variable selection bias in conventional random forests that has the effect that variables with many possible splits are selected too frequently for splitting (Strobl et al., 2007). For details, see Hornung (2020).

Details

This package currently features two types of diversity forests:

- the basic form of diversity forests that uses univariable, binary splitting, which is also used in conventional random forests
• interaction forests (IFs) (Hornung & Boulesteix, 2021), which use bivariable splitting to model quantitative and qualitative interaction effects. IFs feature the Effect Importance Measure (EIM), which ranks the variable pairs with respect to the predictive importance of their quantitative and qualitative interaction effects. The individual variables can be ranked as well using EIM. For details, see Hornung & Boulesteix (2021).

Diversity forests with univariable splitting can be constructed using the function `divfor` and interaction forests using the function `interactionfor`. Both functions support categorical, metric, and survival outcomes.

This package is a fork of the R package 'ranger' that implements random forests using an efficient C++ implementation. The documentation is in large parts taken from 'ranger', where some parts of the documentation may not apply to (the current version of) the 'diversityForest' package.

Details on further functionalities of the code that are not presented in the help pages of 'diversityForest' are found in the help pages of 'ranger', version 0.11.0, because 'diversityForest' is based on the latter version of 'ranger'. The code in the example sections can be used as a template for all basic application scenarios with respect to classification, regression and survival prediction.

References

divfor

Construct a basic diversity forest prediction rule that uses univariable, binary splitting.

Description

Implements the most basic form of diversity forests that uses univariable, binary splitting. Currently, categorical, metric, and survival outcomes are supported.

Usage

```r
divfor(
  formula = NULL,
  data = NULL,
  num.trees = 500,
)```

---
mtry = NULL,
importance = "none",
write.forest = TRUE,
probability = FALSE,
min.node.size = NULL,
max.depth = NULL,
replace = TRUE,
sample.fraction = ifelse(replace, 1, 0.632),
case.weights = NULL,
class.weights = NULL,
splitrule = NULL,
num.random.splits = 1,
alpha = 0.5,
minprop = 0.1,
split.select.weights = NULL,
always.split.variables = NULL,
respect.unordered.factors = NULL,
scale.permutation.importance = FALSE,
keep.inbag = FALSE,
inbag = NULL,
holdout = FALSE,
quantreg = FALSE,
oob.error = TRUE,
num.threads = NULL,
save.memory = FALSE,
verbose = TRUE,
seed = NULL,
dependent.variable.name = NULL,
status.variable.name = NULL,
classification = NULL,
nsplits = 30,
proptry = 1
)

Arguments

formula Object of class formula or character describing the model to fit. Interaction terms supported only for numerical variables.
data Training data of class data.frame, matrix, dgCMatrix (Matrix) or gwaa.data (GenABEL).
num.trees Number of trees. Default is 500.
mtry Artefact from 'ranger'. NOT needed for diversity forests.
importance Variable importance mode, one of 'none', 'impurity', 'impurity_corrected', 'permutation'. The 'impurity' measure is the Gini index for classification, the variance of the responses for regression and the sum of test statistics (see splitrule) for survival. NOTE: Currently, only "permutation" (and "none") work for diversity forests.
write.forest

Save `divfor.forest` object, required for prediction. Set to `FALSE` to reduce memory usage if no prediction intended.

probability

Grow a probability forest as in Malley et al. (2012). NOTE: Not yet implemented for diversity forests!

min.node.size

Minimal node size. Default 1 for classification, 5 for regression, 3 for survival, and 5 for probability.

max.depth

Maximal tree depth. A value of `NULL` or 0 (the default) corresponds to unlimited depth, 1 to tree stumps (1 split per tree).

replace

Sample with replacement.

case.weights

Weights for sampling of training observations. Observations with larger weights will be selected with higher probability in the bootstrap (or subsampled) samples for the trees.

class.weights

Weights for the outcome classes (in order of the factor levels) in the splitting rule (cost sensitive learning). Classification and probability prediction only. For classification the weights are also applied in the majority vote in terminal nodes.

splitrule

Splitting rule. For classification and probability estimation "gini" or "extratrees" with default "gini". For regression "variance", "extratrees" or "maxstat" with default "variance". For survival "logrank", "extratrees", "C" or "maxstat" with default "logrank". NOTE: For diversity forests currently only the default splitting rules are supported.

num.random.splits

Artefact from 'ranger'. NOT needed for diversity forests.

alpha

For "maxstat" splitrule: Significance threshold to allow splitting. NOT needed for diversity forests.

minprop

For "maxstat" splitrule: Lower quantile of covariate distribution to be considered for splitting. NOT needed for diversity forests.

split.select.weights

Numeric vector with weights between 0 and 1, representing the probability to select variables for splitting. Alternatively, a list of size `num.trees`, containing split select weight vectors for each tree can be used.

always.split.variables

Currently not useable. Character vector with variable names to be always selected.

respect.unordered.factors

Handling of unordered factor covariates. One of 'ignore' and 'order' (the option 'partition' possible in 'ranger' is not (yet) possible with diversity forests). Default is 'ignore'. Alternatively TRUE (=‘order’) or FALSE (=‘ignore’) can be used.

scale.permutation.importance

Scale permutation importance by standard error as in (Breiman 2001). Only applicable if permutation variable importance mode selected.
keep.inbag  Save how often observations are in-bag in each tree.

inbag  Manually set observations per tree. List of size num.trees, containing inbag
counts for each observation. Can be used for stratified sampling.

holdout  Hold-out mode. Hold-out all samples with case weight 0 and use these for
variable importance and prediction error.

quantreg  Prepare quantile prediction as in quantile regression forests (Meinshausen 2006).
Regression only. Set keep.inbag = TRUE to prepare out-of-bag quantile prediction.

oob.error  Compute OOB prediction error. Set to FALSE to save computation time, e.g. for
large survival forests.

num.threads  Number of threads. Default is number of CPUs available.

save.memory  Use memory saving (but slower) splitting mode. No effect for survival and
GWAS data. Warning: This option slows down the tree growing, use only if you
encounter memory problems. NOT needed for diversity forests.

verbose  Show computation status and estimated runtime.

seed  Random seed. Default is NULL, which generates the seed from R. Set to 0 to
ignore the R seed.

dependent.variable.name  Name of outcome variable, needed if no formula given. For survival forests this
is the time variable.

status.variable.name  Name of status variable, only applicable to survival data and needed if no for-
mula given. Use 1 for event and 0 for censoring.

classification  Only needed if data is a matrix. Set to TRUE to grow a classification forest.

nsplits  Number of candidate splits to sample for each split. Default is 30.

proptry  Parameter that restricts the number of candidate splits considered for small
nodes. If nsplits is larger than proptry times the number of all possible splits,
the number of candidate splits to draw is reduced to the largest integer smaller
than proptry times the number of all possible splits. Default is 1, which corre-
sponds to always using nsplits candidate splits.

Value

Object of class divfor with elements

forest  Saved forest (If write.forest set to TRUE). Note that the variable IDs in the
split.varIDs object do not necessarily represent the column number in R.
predictions  Predicted classes/values, based on out-of-bag samples (classification and regres-
sion only).

variable.importance  Variable importance for each independent variable.
prediction.error  Overall out-of-bag prediction error. For classification this is the fraction of miss-
classified samples, for probability estimation the Brier score, for regression the
mean squared error and for survival one minus Harrell’s C-index.
r.squared  R squared. Also called explained variance or coefficient of determination (regression only). Computed on out-of-bag data.

confusion.matrix  Contingency table for classes and predictions based on out-of-bag samples (classification only).

unique.death.times  Unique death times (survival only).

chf  Estimated cumulative hazard function for each sample (survival only).

survival  Estimated survival function for each sample (survival only).

call  Function call.

num.trees  Number of trees.

num.independent.variables  Number of independent variables.

min.node.size  Value of minimal node size used.

treetype  Type of forest/tree. classification, regression or survival.

importance.mode  Importance mode used.

num.samples  Number of samples.

splitrule  Splitting rule.

replace  Sample with replacement.

nsplits  Value of nsplits used.

proptry  Value of proptry used.

Author(s)

Roman Hornung, Marvin N. Wright

References


See Also

predict.divfor
Examples

## Not run:
## Load package:
library("diversityForest")

## Set seed to obtain reproducible results:
set.seed(1234)

## Diversity forest with default settings (NOT recommended)
# Classification:
divfor(Species ~ ., data = iris, num.trees = 20)
# Regression:
iris2 <- iris; iris2$Species <- NULL; iris2$Y <- rnorm(nrow(iris2))
divfor(Y ~ ., data = iris2, num.trees = 20)
# Survival:
library("survival")
divfor(Surv(time, status) ~ ., data = veteran, num.trees = 20, respect.unordered.factors = "order")
# NOTE: num.trees = 20 is specified too small for practical purposes - the prediction performance of the resulting forest will be suboptimal!!
# In practice, num.trees = 500 (default value) or a larger number should be used.

## Diversity forest with specified values for nsplits and proptry (NOT recommended)
divfor(Species ~ ., data = iris, nsplits = 10, proptry = 0.4, num.trees = 20)
# NOTE again: num.trees = 20 is specified too small for practical purposes.

## Applying diversity forest after optimizing the values of nsplits and proptry (recommended)
tuneres <- tunedivfor(formula = Species ~ ., data = iris, num.trees.pre = 20)
# NOTE: num.trees.pre = 20 is specified too small for practical purposes - the out-of-bag error estimates of the forests constructed during optimization will be much too variable!!
# In practice, num.trees.pre = 500 (default value) or a larger number should be used.
divfor(Species ~ ., data = iris, nsplits = tuneres$nsplitsopt, proptry = tuneres$proptryopt, num.trees = 20)
# NOTE again: num.trees = 20 is specified too small for practical purposes.

## Prediction
train.idx <- sample(nrow(iris), 2/3 * nrow(iris))
iris.train <- iris[train.idx, ]
iris.test <- iris[-train.idx, ]
tuneres <- tunedivfor(formula = Species ~ ., data = iris.train, num.trees.pre = 20)
# NOTE again: num.trees.pre = 20 is specified too small for practical purposes.
rg.iris <- divfor(Species ~ ., data = iris.train, nsplits = tuneres$nsplitsopt, proptry = tuneres$proptryopt, num.trees = 20)
# NOTE again: num.trees = 20 is specified too small for practical purposes.
pred.iris <- predict(rg.iris, data = iris.test)
table(iris.test$Species, pred.iris$predictions)

## Variable importance
importance.divfor

rg.iris <- divfor(Species ~ ., data = iris, importance = "permutation", num.trees = 20)
# NOTE again: num.trees = 20 is specified too small for practical purposes.
rg.iris$variable.importance

## End(Not run)

---

**importance.divfor**

*Diversity Forest variable importance*

**Description**

Extract variable importance of `divfor` object.

**Usage**

```r
S3 method for class 'divfor'
importance(x, ...)
```

**Arguments**

- `x`:
  - `divfor` object.
- `...`:
  - Further arguments passed to or from other methods.

**Value**

Variable importance measures.

**Author(s)**

Marvin N. Wright

**See Also**

- `divfor`
Construct an interaction forest prediction rule and calculate EIM values as described in Hornung & Boulesteix (2021).

Description

Implements interaction forests as described in Hornung & Boulesteix (2021). Currently, categorical, metric, and survival outcomes are supported. Interaction forests feature the effect importance measure (EIM), which can be used to rank the covariate variable pairs with respect to the impact of their interaction effects on prediction. This allows to identify relevant interaction effects. Interaction forests focus on well interpretable interaction effects. See the 'Details' section below for more details.

Usage

interactionfor(
  formula = NULL,
  data = NULL,
  num.trees = ifelse(importance == "none", 2000, 20000),
  importance = "both",
  write.forest = TRUE,
  probability = FALSE,
  min.node.size = NULL,
  max.depth = NULL,
  restrict.depth = FALSE,
  replace = FALSE,
  sample.fraction = ifelse(replace, 1, 0.7),
  case.weights = NULL,
  class.weights = NULL,
  splitrule = NULL,
  always.split.variables = NULL,
  keep.inbag = FALSE,
  inbag = NULL,
  holdout = FALSE,
  quantreg = FALSE,
  oob.error = TRUE,
  num.threads = NULL,
  verbose = TRUE,
  seed = NULL,
  dependent.variable.name = NULL,
  status.variable.name = NULL,
  npairs = NULL,
  classification = NULL
)

Arguments

formula Object of class formula or character describing the model to fit.
### interactionfor

**data**  
Training data of class `data.frame`, `matrix`, `dgCMatrix` (Matrix) or `gwaa.data` (GenABEL).

**num.trees**  
Number of trees. The default number is 20000, if EIM values should be computed (and 2000 otherwise). This value may be reduced (e.g. to 10000), if the computation burden is too large. However, for most datasets the default number of trees, 20000, should be well easily feasible within reasonable computation time. See also the argument `restrict.depth`, which can be used to restrict the depths of the trees for large data sets to save computation time.

**importance**  
Effect importance mode. One of the following: "both" (the default), "qualitative", "quantitative", "mainonly", "none". See the 'Details' section below for explanation.

**write.forest**  
Save `interaction.forest` object, required for prediction. Set to FALSE to reduce memory usage if no prediction intended.

**probability**  
Grow a probability forest as in Malley et al. (2012).

**min.node.size**  
Minimal node size. Default 1 for classification, 5 for regression, 3 for survival, and 5 for probability.

**max.depth**  
Maximal tree depth. A value of NULL or 0 (the default) corresponds to unlimited depth, 1 to tree stumps (1 split per tree).

**restrict.depth**  
If set to TRUE, the maximal tree depth will be automatically set to 15, if the data features more than 1000 observations.

**replace**  
Sample with replacement. Default is FALSE.

**sample.fraction**  
Fraction of observations to sample. Default is 1 for sampling with replacement and 0.7 for sampling without replacement. For classification, this can be a vector of class-specific values.

**case.weights**  
Weights for sampling of training observations. Observations with larger weights will be selected with higher probability in the bootstrap (or subsampled) samples for the trees.

**class.weights**  
Weights for the outcome classes (in order of the factor levels) in the splitting rule (cost sensitive learning). Classification and probability prediction only. For classification the weights are also applied in the majority vote in terminal nodes.

**splitrule**  
Splitting rule. For classification and probability estimation "gini" or "extratrees" with default "gini". For regression "variance", "extratrees" or "maxstat" with default "variance". For survival "logrank", "extratrees", "C" or "maxstat" with default "logrank". NOTE: For interaction forests currently only the default splitting rules are supported.

**always.split.variables**  
Currently not useable. Character vector with variable names to be always selected.

**keep.inbag**  
Save how often observations are in-bag in each tree.

**inbag**  
Manually set observations per tree. List of size `num.trees`, containing inbag counts for each observation. Can be used for stratified sampling.

**holdout**  
Hold-out mode. Hold-out all samples with case weight 0 and use these for variable importance and prediction error.
The effect importance measure (EIM) of interaction forests distinguishes quantitative and qualitative interaction effects (Peto, 1982). This is a common distinction as these two types of interaction effects are interpreted in different ways (see below). For both of these types, EIM values for each variable pair are obtained: the quantitative and qualitative EIM values.

Interaction forests target easily interpretable types of interaction effects. These can be communicated clearly using statements of the following kind: "The strength of the positive (negative) effect of variable A on the outcome depends on the level of variable B." for quantitative interactions, and "For observations with small values of variable B, the effect of variable A is positive (negative), but for observations with large values of B, the effect of A is negative (positive)." for qualitative interactions.

In addition to calculating EIM values for variable pairs, importance values for the individual variables are calculated as well, the univariable EIM values. These measure the variable importance as in the case of classical variable importance measures of random forests.

The effect importance mode can be set via the importance argument: "qualitative": Calculate only qualitative EIM values; "quantitative": Calculate only quantitative EIM values; "both" (the default): Calculate qualitative and quantitative EIM values; "mainonly": Calculate only univariable EIM values.

The top variable pairs with largest quantitative and qualitative EIM values likely have quantitative and qualitative interactions, respectively, which have a considerable impact on prediction. The top variables with largest EIM values likely have a considerable impact on prediction. If the number of variables is larger than 100, not all possible variable pairs are considered, but, using a screening procedure, the 5000 variable pairs with the strongest indications of interaction effects are pre-selected.

NOTE: To make interpretations, it is crucial to investigate (visually) the forms the interaction effects of variable pairs with large quantitative and qualitative EIM values take. This can be done using the
plot function `plot.interactionfor` (first overview) and `plotEffects`.

NOTE ALSO: As described in Hornung & Boulesteix (2021), in the case of data with larger numbers of variables (larger than 100, but more seriously for high-dimensional data), the univariable EIM values can be biased. Therefore, it is strongly recommended to interpret the univariable EIM values with caution, if the data are high-dimensional. If it is of interest to measure the univariable importance of the variables for high-dimensional data, an additional conventional random forest (e.g., using the `ranger` package) should be constructed and the variable importance measure values of this random forest be used for ranking the univariable effects.

**Value**

Object of class `interactionfor` with elements

- **predictions** Predicted classes/values, based on out-of-bag samples (classification and regression only).
- **num.trees** Number of trees.
- **num.independent.variables** Number of independent variables.
- **unique.death.times** Unique death times (survival only).
- **min.node.size** Value of minimal node size used.
- **npairs** Number of variable pairs sampled for each split.
- **eim.univ.sorted** Univariable EIM values sorted in decreasing order.
- **eim.univ** Univariable EIM values.
- **eim.qual.sorted** Qualitative EIM values sorted in decreasing order.
- **eim.qual** Qualitative EIM values.
- **eim.quant.sorted** Quantitative EIM values sorted in decreasing order.
- **eim.quant** Quantitative EIM values. These values are labeled analoguously as those in `eim.quant.sorted`.
- **prediction.error** Overall out-of-bag prediction error. For classification this is the fraction of misclassified samples, for probability estimation the Brier score, for regression the mean squared error and for survival one minus Harrell’s C-index.
forest

Saved forest (If write.forest set to TRUE). Note that the variable IDs in the
split.multvarIDs object do not necessarily represent the column number in
R.

confusion.matrix

Contingency table for classes and predictions based on out-of-bag samples (clas-
sification only).

chf

Estimated cumulative hazard function for each sample (survival only).

survival

Estimated survival function for each sample (survival only).

splitrule

Splitting rule.

treetype

Type of forest/tree. classification, regression or survival.

r.squared

R squared. Also called explained variance or coefficient of determination (re-
gression only). Computed on out-of-bag data.

call

Function call.

importance.mode

Importance mode used.

num.samples

Number of samples.

replace

Sample with replacement.

eim.quant.rawlists

List containing the four vectors of un-adjusted 'raw' quantitative EIM values
and the four vectors of adjusted EIM values. These are usually not required by
the user.

For each of the four types of quantitative splits there exists a separate vector
of raw quantitative EIM values. For example, eim.quant.large.small.raw
contains the raw quantitative EIM values of the quantitative split type associated
with quantitative interaction effects for which the expected values of the out-
come variable are different, if the value of variable A is large and, at the same
time, the value of variable B is small. The list entries of the un-adjusted 'raw'
quantitative EIM values are labeled with the suffix .raw, while the list entries of
the adjusted quantitative EIM values miss this suffix. See Hornung & Boulesteix
(2021) for details on the raw and adjusted EIM values.

promispairs

List giving the indices of the variables in the pre-selected variable pairs. If the
number of variables is at most 100, all variable pairs are considered.

plotres

List of objects needed by the plot functions: eim.univ.order contains the sort-
ing of the univariable EIM values in descending order, where the first element
gives the index of the variable with largest EIM value, the second element the
index of the variable with second-largest EIM value and so on; eim.qual.order
/ eim.quant.order contains the sorting in descending order of the qualitative /
quantitative EIM values for the (pre-selected) variable pairs given by the object
promispairs above. The first element gives the index of the (pre-selected) vari-
able pair with largest qualitative / quantitative EIM value, the second element
the index of the variable pair with second-largest qualitative / quantitative EIM
value; data contains the data; yvarname is the name of the outcome variable
(survival time for survival); statusvarname is the name of the status variable.

Author(s)

Roman Hornung, Marvin N. Wright
References


See Also

predict.divfor, plot.interactionfor, plotEffects

Examples

```r
Not run:

Load package:
library("diversityForest")

Set seed to make results reproducible:
set.seed(1234)

Construct interaction forests and calculate EIM values:

Binary outcome:
data(zoo)
modelcat <- interactionfor(dependent.variable.name = "type", data = zoo,
 num.trees = 20)

Metric outcome:
data(stock)
```
modelcont <- interactionfor(dependent.variable.name = "company10", data = stock, num.trees = 20)

# Survival outcome:
library("survival")
mgus2$id <- NULL  # 'mgus2' data set is contained in the 'survival' package

# categorical variables need to be of factor format - important!!
mgus2$sex <- factor(mgus2$sex)
mgus2$pstat <- factor(mgus2$pstat)

# Remove the second time variable 'ptime':
mgus2$ptime <- NULL

# Remove missing values:
mgus2 <- mgus2[complete.cases(mgus2),]

# Take subset to make the calculations less computationally expensive for the example (in actual applications, we would of course use the whole data set):
mgus2sub <- mgus2[sample(1:nrow(mgus2), size=500),]

# Apply 'interactionfor':
modelsurv <- interactionfor(formula = Surv(futime, death) ~ ., data=mgus2sub, num.trees=20)

# NOTE: num.trees = 20 (in the above) would be much too small for practical purposes. This small number of trees was simply used to keep the runtime of the example short.
# The default number of trees is num.trees = 20000 if EIM values are calculated and num.trees = 2000 otherwise.

## Inspect the rankings of the variables and variable pairs with respect to the univariable, quantitative, and qualitative EIM values:

## Univariable EIM values:
modelcat$eim.univ.sorted

## Pairs with top quantitative EIM values:
modelcat$eim.quant.sorted[1:5]

## Pairs with top qualitative EIM values:
modelcat$eim.qual.sorted[1:5]

## Investigate visually the forms of the interaction effects of the variable pairs with largest quantitative and qualitative EIM values:
plot(modelcat)
plotEffects(modelcat, type="quant")  # type="quant" is default.
## Prediction:

# Separate 'zoo' data set randomly in training
# and test data:

data(zoo)
train.idx <- sample(nrow(zoo), 2/3 * nrow(zoo))
zoo.train <- zoo[train.idx, ]
zoo.test <- zoo[-train.idx, ]

# Construct interaction forest on training data:
# NOTE again: num.trees = 20 is specified too small for practical purposes.
modelcattrain <- interactionfor(dependent.variable.name = "type", data = zoo,
                               importance = "none", num.trees = 20)

# NOTE: Because we are only interested in prediction here, we do not
# calculate EIM values (by setting importance = "none"), because this
# speeds up calculations.

# Predict class values of the test data:
pred.zoo <- predict(modelcattrain, data = zoo.test)

# Compare predicted and true class values of the test data:
table(zoo.test$type, pred.zoo$predictions)

## End(Not run)

---

### plot.interactionfor

**Plot method for interactionfor objects**

#### Description

Plot function for interactionfor objects that allows to obtain a first overview of the result of the interaction forest analysis. This function visualises the distributions of the EIM values and the estimated forms of the bivariable influences of the variable pairs with largest quantitative and qualitative EIM values. Further visual exploration of the result of the interaction forest analysis should be conducted using `plotEffects`.

#### Usage

```r
S3 method for class 'interactionfor'
plot(x, numpairsquant = 2, numpairsqual = 2, ...)
```
Arguments

- **x**: Object of class `interactionfor`.
- **numpairsquant**: The number of pairs with largest quantitative EIM values to plot. Default is 2.
- **numpairsqual**: The number of pairs with largest qualitative EIM values to plot. Default is 2.
- **...**: Further arguments passed to or from other methods.

Details

For details on the plots of the estimated forms of the bivariable influences of the variable pairs see `plotEffects`.

NOTE: As described in Hornung & Boulesteix (2021), in the case of data with larger numbers of variables (larger than 100, but more seriously for high-dimensional data), the univariable EIM values can be biased. Therefore, it is strongly recommended to interpret the univariable EIM values with caution, if the data are high-dimensional. If it is of interest to measure the univariable importance of the variables for high-dimensional data, an additional conventional random forest (e.g., using the `ranger` package) should be constructed and the variable importance measure values of this random forest be used for ranking the univariable effects.

Value

A ggplot2 plot.

Author(s)

Roman Hornung

References


See Also

`plotEffects`

Examples

```r
Not run:

Load package:
library("diversityForest")
```
## Set seed to make results reproducible:

```r
set.seed(1234)
```

## Construct interaction forest and calculate EIM values:

```r
data(stock)
model <- interactionfor(dependent.variable.name = "company10", data = stock,
 num.trees = 20)
```

# NOTE: num.trees = 20 (in the above) would be much too small for practical
# purposes. This small number of trees was simply used to keep the
# runtime of the example short.
# The default number of trees is num.trees = 20000 if EIM values are calculated
# and num.trees = 2000 otherwise.

## When using the plot() function without further specifications,
## by default the estimated bivariable influences of the two pairs with largest quantitative
## and qualitative EIM values are shown:

```r
plot(model)
```

# It is, however, also possible to change the numbers of
# pairs with largest quantitative and qualitative EIM values
# to be shown:

```r
plot(model, numpairsquant = 4, numpairsqual = 3)
```

## End(Not run)

---

**plotEffects**  
*Interaction forest plots: Exploring Interaction Forest results through visualisation*

**Description**

This function allows to visualise the (estimated) bivariable influences of pairs of variables (with large quantitative and qualitative EIM values) on the outcome. This step is crucial, because in order to interpret interaction effects between variable pairs with large quantitative and qualitative EIM values, it is necessary to learn about the forms these interaction effects take.
Usage

```r
plotEffects(
 intobj,
 type = "quant",
 numpairs = 5,
 indpairs = NULL,
 pairs = NULL,
 allwith = NULL,
 pvalues = TRUE,
 twoplots = TRUE,
 addtitles = TRUE,
 plotit = TRUE
)
```

Arguments

**intobj**  
Object of class `interactionfor`.

**type**  
This can be either "quant" or "qual" and determines whether the plotted pairs are sorted according to either the quantitative or qualitative EIM values in decreasing order. Default is "quant".

**numpairs**  
The number of pairs to plot (default: 5). This is overwritten by `indpairs`.

**indpairs**  
Optional. The indices of the pairs in the sorted lists of quantitative (`type="quant"`) or qualitative EIM values to plot (`type="qual"`). This overwrites the `numpairs` argument.

**pairs**  
This can be used to specify the pairs to plot. It is an optional list of character string vectors, where each of these vectors has length two. Each list element corresponds to one pair, where the first character string gives the name of the first member of the respective pair to plot and the second character string gives the name of the second member. This argument overwrites `numpairs` and `indpairs`.

**allwith**  
This is an optional character string that can be set to the name of one of the variables. If provided, only variable pairs will be considered that feature the variable specified by this argument `allwith`. These pairs are again sorted in decreasing order according to the quantitative (`type="quant"`) or qualitative (`type="qual"`) EIM values and their number is restricted to the value given by `numpairs`. This argument `allwith` can be used, if it is of interest to learn whether a specific variable (e.g., sex or age) interacts with other variables in the data set and if so, which forms these interactions take.

**pvalues**  
Set to TRUE (default) to add to the plots p-values from tests for interaction effect obtained using classical parametric regression approaches. For categorical outcomes logistic regression is used, for metric outcomes linear regression and for survival outcomes Cox regression. See the 'Details' section below for further details.

**twoplots**  
Set to TRUE / FALSE if for each plot page the results of two / one pair(s) of variables should be shown. Default is TRUE.
Set to TRUE (default) to add headings providing the names of the variables in each pair. If type="quant", these headings also give information on the type of quantitative interaction effect. Setting addtitles to FALSE is, for example, useful, when the produced plots are intended for use in a publication, where these headings might not be desirable.

This states whether the plots are actually plotted or merely returned as ggplot objects. Default is TRUE.

Details

For each considered pair the bivariable influence of both pair members on the outcome estimated using a two-dimensional flexible function is shown. Such visualisations make it possible to learn about the forms of the interaction effects between variable pairs with large EIM values. Moreover, these visualisations reveal (pathological) cases in which variable pairs do not show indications of interaction effects despite featuring large EIM values.

For binary outcomes the estimated probabilities for the second class are predicted, for categorical outcomes with more than two classes the estimated probabilities for the largest class are predicted, for metric outcomes the means of the outcome are predicted, and for survival outcomes the log hazards ratio values compared to the median effect are predicted.

The kinds of estimates shown differ also according to whether both pair members are metric or only one of the two members is metric and the other one categorical or both pair members are categorical:

- If both pair members are metric and the outcome is categorical or metric we use two-dimensional LOESS regression, where in the case of categorical outcomes, in order to obtain probability estimates for the first class (or largest class for multi-class outcomes), we use the value '1' for the first class (largest class for multi-class outcomes) and the value '0' for the second class (all other classes for multi-class outcomes).
- If both pair members are metric and the outcome is survival we use a Cox proportional hazard additive model with a two-dimensional LOESS smooth (gamcox function from the 'MapGAM' package (version 1.2-5)) and in the rare cases for which the latter fails, we use classical Cox regression with an interaction term between the two covariates.
- If one pair member is metric and the other one categorical and the outcome is categorical or metric, we use LOESS regression between the outcome (coded as '0' and '1' in the case of categorical outcomes as described above) and the values of the metric variable separately for each category of the categorical variable. In the rare cases in which the LOESS regression fails we use classical linear regression.
- If one pair member is metric and the other one categorical and the outcome is survival, we use Cox regression with a linear tail-restricted cubic spline with four knots (univariable LOESS regression for survival outcomes does not seem to be available yet in R) separately for each category of the categorical variable. In cases in which the fitting of this spline regression fails we use classical Cox regression.
- If both pair members are categorical and the outcome is categorical or metric, we simply calculate the mean of the outcome (coded as '0' and '1' in the case of categorical outcomes as described above) for each possible combination of the categories of the two variables.
- If both pair members are categorical and the outcome is survival, we use classical Cox regression with an interaction term between the two variables (there is no need for any flexible modelling in this setting, because the Cox model with two categorical variables plus interaction term is saturated).
As described above (function argument: pvalues), there is an option to add p-values from tests for interaction effect to the plots. If at least one of the variables in the considered variable pair is categorical and features more than two categories, there are more than one interaction terms in the regression approaches used for testing, because the categorical variables are dummy-coded. Therefore, in these cases we obtain a p-value for each interaction term. In order to obtain a single p-value for the test for interaction we adjust these multiple p-values using the Holm-Bonferroni procedure and take the minimum of the adjusted p-values.

Value

A list of ggplot2 plots returned invisibly.

Author(s)

Roman Hornung

References


See Also

plot.interactionfor, plotPair

Examples

```r
Not run:

Load package:
library("diversityForest")

Set seed to make results reproducible:
set.seed(1234)

Construct interaction forest and calculate EIM values:

data(stock)
model <- interactionfor(dependent.variable.name = "company10", data = stock,
num.trees = 20)
```
# NOTE: num.trees = 20 (in the above) would be much too small for practical purposes. This small number of trees was simply used to keep the runtime of the example short. The default number of trees is num.trees = 20000 if EIM values are calculated and num.trees = 2000 otherwise.

## Obtain a first overview by applying the plot() function for interaction objects:

`plot(model)`

## Several possible application cases of the plotEffects() function:

# Visualise the estimated bivariable influences of the five variable pairs with the largest quantitative EIM values:

`plotEffects(model) # type="quant" is default.`

# Visualise the estimated bivariable influences of the five pairs with the largest qualitative EIM values:

`plotEffects(model, type="qual")`

# Visualise the estimated bivariable influences of all (eight) pairs that involve the variable "company7" sorted in decreasing order according to the qualitative EIM values:

`plotEffects(model, allwith="company7", type="qual", numpairs=8)`

# Visualise the estimated bivariable influences of the pairs with third and fifth largest qualitative EIM values:

`plotEffects(model, type="qual", indpairs=c(3,5))`

# Visualise the estimated bivariable influences of the pairs ("company3", "company5") and ("company1", "company9"):

`plotEffects(model, pairs=list(c("company3", "company5"), c("company1", "company9")))`

## Saving of plots generated with the plotEffects() function (e.g., for use in publications):

# Apply plotEffects() to obtain plots for the five variable pairs
# with the largest qualitative EIM values and store these plots in
# an object 'ps':

ps <- plotEffects(model, type="qual", pvalues=FALSE, twoplots=FALSE, addtitles=FALSE, plotit=FALSE)

# pvalues = FALSE states that no p-values should be shown in the plots,
# because these might not be desired in plots meant for publication.
# twoplots = FALSE ensures that we get one plot for each page instead of two plots per page.
# addtitles = FALSE removes the automatically generated titles, because these are likely
# not desired in publications.
# plotit = FALSE ensures that the plots are not displayed, but only returned (invisibly)
# by plotEffects().

# Save the plot with second largest qualitative EIM value:

p1 <- ps[[2]]

# Add title:
library("ggpubr")
p1 <- annotate_figure(p1, top = text_grob("My descriptive plot title 1", face = "bold", size = 14))
p1

# Save as PDF:
# library("ggplot2")
# ggsave(file="mypathfolder/FigureXY1.pdf", width=14, height=6)

# Save the plot with fifth largest qualitative EIM value:

p2 <- ps[[5]]

# Add title:
p2 <- annotate_figure(p2, top = text_grob("My descriptive plot title 2", face = "bold", size = 14))
p2

# Save as PDF:
# ggsave(file="mypathfolder/FigureXY1.pdf", width=14, height=6)

# Combine both of the above plots:
p <- ggarrange(p1, p2, nrow = 2)
p

# Save the combined plot:
# ggsave(file="mypathfolder/FigureXYcombined.pdf", width=14, height=11)

# NOTE: Using plotEffects() it is not possible to change the plots
# themselves (by e.g., increasing the label sizes or changing the
# axes ranges). However, the function plotPair() can be used to change
# the plots themselves.
## plotPair

### Description

This function allows to visualise the (estimated) bivariable influence of a single specific pair of variables on the outcome. The estimation and plotting is performed in the same way as in plotEffects. However, plotPair does not require an interaction for object and can thus be used also without a constructed interaction forest.

### Usage

```r
plotPair(
 pair,
 yvarname,
 statusvarname = NULL,
 data,
 levelsorder1 = NULL,
 levelsorder2 = NULL,
 pvalue = TRUE,
 returnseparate = FALSE,
 intobj = NULL
)
```

### Arguments

- **pair**: Character string vector of length two, where the first character string gives the name of the first member of the respective pair to plot and the second character string gives the name of the second member.
- **yvarname**: Name of outcome variable.
- **statusvarname**: Name of status variable, only applicable to survival data.
- **data**: Data frame containing the variables.
- **levelsorder1**: Optional. Order the categories of the first variable should have in the plot (if it is categorical). Character string vector, where the i-th entry contains the name of the category that should take the i-th place in the ordering of the categories of the first variable.
- **levelsorder2**: Optional. Order the categories of the second variable should have in the plot (if it is categorical). Character string vector specified in an analogous way as levelsorder1.
- **pvalue**: Set to TRUE (default) to add to the plot a p-value from a test for interaction effect obtained using a classical parametric regression approach. For categorical outcomes logistic regression is used, for metric outcomes linear regression and for survival outcomes Cox regression. See the ‘Details’ section of plotEffects for further details.

### Plot of the (estimated) simultaneous influence of two variables

---

```r
plotPair
```
returnseparate Set to TRUE to return invisibly the two generated ggplot plots separately in the form of a list. The latter option is useful, because it allows to manipulate the resulting plots (label size etc.) and makes it possible to consider only one of the two plots. The default is FALSE, which results in the two plots being returned together in the form of a ggarrange object.

intobj Optional. Object of class interactionfor. If this is provided, the ordering of the categories obtained when constructing the interaction forest will be used for categorical variables. See Hornung & Boulesteix (2021) for details.

Details

See the 'Details' section of plotEffects.

Value

A ggplot2 plot.

Author(s)

Roman Hornung

References


See Also

plotEffects, plot.interactionfor

Examples

## Not run:

## Load package:

library("diversityForest")

## Visualise the estimated bivariable influence of 'toothed' and 'feathers' on
## the probability of type="mammal":

data(zoo)
plotPair(pair = c("toothed", "feathers"), yvarname="type", data = zoo)
## Visualise the estimated bivariable influence of 'creat' and 'hgb' on survival (more precisely, on the log hazards ratio compared to the median effect):

```r
code
library("survival")
mkus2compl <- mgus2[complete.cases(mkus2),]
plotPair(pair=c("creat", "hgb"), yvarname="futime", statusvarname = "death", data=mkus2compl)
Problem: The outliers in the left plot make it difficult to see what is going on in the region with creat values smaller than about two even though the majority of values lie there.
--> Solution: We re-run the above line setting returnseparate = TRUE, because this allows to get the two ggplot plots separately, which can then be manipulated to change the x-axis range in order to remove the outliers:

ps <- plotPair(pair=c("creat", "hgb"), yvarname="futime", statusvarname = "death", data=mkus2compl, returnseparate = TRUE)
Change the x-axis range:
library("ggplot2")
ps[[1]] + xlim(c(0.5,2))
Save the plot:
ggsave(file="mypath\.folder/FigureXY1.pdf", width=7, height=6)

We can, for example, also change the label sizes of the second plot:
With original label sizes:
ps[[2]]
With larger label sizes:
ps[[2]] + theme(axis.title=element_text(size=15))
Save the plot:
library("ggplot2")
ggsave(file="mypath\folder/FigureXY2.pdf", width=7, height=6)

End(Not run)
```

---

### predict.divfor

**Diversity Forest prediction**

**Description**

Prediction with new data and a saved forest from `divfor`. 
Usage

```r
S3 method for class 'divfor'
predict(
 object,
 data = NULL,
 predict.all = FALSE,
 num.trees = object$num.trees,
 type = "response",
 se.method = "infjack",
 quantiles = c(0.1, 0.5, 0.9),
 seed = NULL,
 num.threads = NULL,
 verbose = TRUE,
 ...
)
```

Arguments

- **object**: divfor object.
- **data**: New test data of class `data.frame` or `gwaa.data` (GenABEL).
- **predict.all**: Return individual predictions for each tree instead of aggregated predictions for all trees. Return a matrix (sample x tree) for classification and regression, a 3d array for probability estimation (sample x class x tree) and survival (sample x time x tree).
- **num.trees**: Number of trees used for prediction. The first `num.trees` in the forest are used.
- **type**: Type of prediction. One of 'response', 'se', 'terminalNodes', 'quantiles' with default 'response'. See below for details.
- **se.method**: Method to compute standard errors. One of 'jack', 'infjack' with default 'infjack'. Only applicable if type = 'se'. See below for details.
- **quantiles**: Vector of quantiles for quantile prediction. Set type = 'quantiles' to use.
- **seed**: Random seed. Default is `NULL`, which generates the seed from R. Set to 0 to ignore the R seed. The seed is used in case of ties in classification mode.
- **num.threads**: Number of threads. Default is number of CPUs available.
- **verbose**: Verbose output on or off.
- **...**: further arguments passed to or from other methods.

Details

This package is a fork of the R package 'ranger' that implements random forests using an efficient C++ implementation. More precisely, 'diversityForest' was written by modifying the code of 'ranger', version 0.11.0. Therefore, details on further functionalities of the code that are not presented in the help pages of 'diversityForest' are found in the help pages of 'ranger' (version 0.11.0). The code in the example sections of `divfor` and `tunedivfor` can be used as a template for all common application scenarios with respect to classification, regression and survival prediction using univariable, binary splitting. Some function arguments adopted from the 'ranger' package may not be useable with diversity forests (for the current package version).
Value

Object of class divfor.prediction with elements

- predictions: Predicted classes/values (only for classification and regression)
- unique.death.times: Unique death times (only for survival).
- chf: Estimated cumulative hazard function for each sample (only for survival).
- survival: Estimated survival function for each sample (only for survival).
- num.trees: Number of trees.
- num.independent.variables: Number of independent variables.
- treetype: Type of forest/tree. Classification, regression or survival.
- num.samples: Number of samples.

Author(s)

Marvin N. Wright

References


See Also

divfor

Usage

```r
S3 method for class 'interactionfor'
predict(
 object,
 data = NULL,
 predict.all = FALSE,
)```
predict.interactionfor

num.trees = object$num.trees,
type = "response",
se.method = "infjack",
quantiles = c(0.1, 0.5, 0.9),
seed = NULL,
num.threads = NULL,
verbose = TRUE,
...
)

Arguments

object interactionfor object.
data New test data of class data.frame or gwaa.data (GenABEL).
predict.all Return individual predictions for each tree instead of aggregated predictions for all trees. Return a matrix (sample x tree) for classification and regression, a 3d array for probability estimation (sample x class x tree) and survival (sample x time x tree).
num.trees Number of trees used for prediction. The first num.trees in the forest are used.
type Type of prediction. One of 'response', 'se', 'terminalNodes', 'quantiles' with default 'response'. See below for details.
se.method Method to compute standard errors. One of 'jack', 'infjack' with default 'infjack'. Only applicable if type = 'se'. See below for details.
quantiles Vector of quantiles for quantile prediction. Set type = 'quantiles' to use.
seed Random seed. Default is NULL, which generates the seed from R. Set to 0 to ignore the R seed. The seed is used in case of ties in classification mode.
num.threads Number of threads. Default is number of CPUs available.
verbose Verbose output on or off.
...
... further arguments passed to or from other methods.

Details

Note that this package is a fork of the R package 'ranger' that implements random forests using an efficient C++ implementation. The documentation is in large parts taken from 'ranger', where some parts of the documentation may not apply to (the current version of) the 'diversityForest' package. Details on further functionalities of the code that are not presented in the help pages of 'diversityForest' are found in the help pages of 'ranger' (version 0.11.0).

Value

Object of class interaction.prediction with elements

predictions Predicted classes/values (only for classification and regression)
unique.death.times Unique death times (only for survival).
chf Estimated cumulative hazard function for each sample (only for survival).
survival Estimated survival function for each sample (only for survival).
stock

<table>
<thead>
<tr>
<th>num.trees</th>
<th>Number of trees.</th>
</tr>
</thead>
<tbody>
<tr>
<td>num.independent.variables</td>
<td>Number of independent variables.</td>
</tr>
<tr>
<td>treetype</td>
<td>Type of forest/tree. Classification, regression or survival.</td>
</tr>
<tr>
<td>num.samples</td>
<td>Number of samples.</td>
</tr>
</tbody>
</table>

Author(s)

Marvin N. Wright, Roman Hornung

References

See Also

interactionfor

stock

Data on stock prices of aerospace companies

Description

This data set contains 950 daily stock prices from January 1988 through October 1991, for ten aerospace companies. The names of the companies are anonymised and the stock prices for one of these companies (company10) were flagged as the outcome variable. Thus, for this data set, both the outcome and the covariates were metric.

Format

A data frame with 950 observations, nine covariates and one metric outcome variable

Details

The variables are as follows: covariates: company1, ..., company9, outcome variable: company10.
Source

OpenML: data.name: stock, data.id: 223, link: https://www.openml.org/d/223/

References

Examples

```r
## Load data:
data(stock)

## Dimension of data:
dim(stock)

## First rows of data:
head(stock)
```

tunedivfor

Optimization of the values of the tuning parameters nsplits and proptry

Description

First, both for `nsplits` and `proptry` a grid of possible values may be provided, where default grids are used if no grids are provided. Second, for each pairwise combination of values from these two grids a forest is constructed. Third, that pair of `nsplits` and `proptry` values is used as the optimized set of parameter values that is associated with the smallest out-of-bag prediction error. If several pairs of parameter values are associated with the same smallest out-of-bag prediction error, the pair with the smallest (parameter) values is used.

Usage

```r
tunedivfor(
    formula = NULL,
data = NULL,
    nsplitsgrid = c(2, 5, 10, 30, 50, 100, 200),
    proptrygrid = c(0.05, 1),
    num.trees.pre = 500
)
```
Arguments

formula Object of class formula or character describing the model to fit. Interaction terms supported only for numerical variables.
data Training data of class data.frame, matrix, dgCMatrix (Matrix) or gwaa.data (GenABEL).
nsplitsgrid Grid of values to consider for nsplits. Default grid: 2, 5, 10, 30, 50, 100, 200.
proptrygrid Grid of values to consider for proptry. Default grid: 0.05, 1.
num.trees.pre Number of trees used for each forest constructed during tuning parameter optimization. Default is 500.

Value

List with elements

nsplitsopt Optimized value of nsplits.
proptryopt Optimized value of proptry.
tunegrid Two-dimensional data.frame, where each row contains one pair of values considered for nsplits (first entry) and proptry (second entry).
ooberrs The out-of-bag prediction errors obtained for each pair of values considered for nsplits and proptry, where the ordering of pairs of values is the same as in tunegrid (see above).

Author(s)

Roman Hornung

References

See Also
divfor

Examples

Load package:
library("diversityForest")

Set seed to obtain reproducible results:
set.seed(1234)

Tuning parameter optimization for the iris data set:

tuneres <- tunedivfor(formula = Species ~ ., data = iris, num.trees.pre = 20)
NOTE: num.trees.pre = 20 is specified too small for practical
purposes - the out-of-bag error estimates of the forests
constructed during optimization will be much too variable!!
In practice, num.trees.pre = 500 (default value) or a
larger number should be used.

print(tuneres)
print(tuneres$nsplitsopt)
print(tuneres$proptryopt)
print(tuneres$tunegrid)
print(tuneres$ooberrs)

zoo

Data on biological species

Description

This data set describes 101 different biological species using 16 simple attributes, where 15 of these are binary and one is metric (the number of legs). The outcome "mammal vs. other" (type) is binary.

Format

A data frame with 101 observations, 16 covariates and one binary outcome variable

Details

The variables are as follows:

- **hair.** factor. Presence of hairs (true = yes; false = no)
- **feathers.** factor. Presence of feathers (true = yes; false = no)
- **eggs.** factor. Does the species lay eggs? (true = yes; false = no)
- **milk.** factor. Does the species give milk? (true = yes; false = no)
- **airborne.** factor. Does the species fly? (true = yes; false = no)
- **aquatic.** factor. Does the species live in the water? (true = yes; false = no)
- **predator.** factor. Is the species a predator? (true = yes; false = no)
- **toothed.** factor. Presence of teeth (true = yes; false = no)
- **backbone.** factor. Presence of backbone (true = yes; false = no)
• breathes. factor. Does the species breathe with lungs? (true = yes; false = no)
• venomous. factor. Is the species venomous? (true = yes; false = no)
• fins. factor. Presence of fins (true = yes; false = no)
• legs. metric. Number of legs
• tail. factor. Presence of tail (true = yes; false = no)
• domestic. factor. Is the species domestic? (true = yes; false = no)
• catsize. factor. Is the species large? (true = yes; false = no)
• type. factor. Binary outcome variable - type of species (‘mammal’ vs. ’other’)

The original openML dataset contains an additional variable animal, which is removed in this version of the data set. This variable provided the names of all species.

Source
OpenML: data.name: zoo, data.id: 965, link: https://www.openml.org/d/965/

References

Examples

```r
##' Load data:
data(zoo)

##' Numbers of observations in the two classes:
table(zoo$type)

##' Dimension of data:
dim(zoo)

##' First rows of data:
head(zoo)
```
Index

diversityForest
 (diversityForest-package), 2
diversityForest-package, 2
divfor, 3, 9, 27–29, 33

importance (importance.divfor), 9
importance.divfor, 9
interactionfor, 3, 10, 29, 31

plot.interactionfor, 13, 15, 17, 22, 26
plotEffects, 13, 15, 17, 18, 19, 25, 26
plotPair, 22, 25
predict.divfor, 7, 15, 27
predict.interactionfor, 29

stock, 31

tunedivfor, 28, 32

zoo, 34